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Abstract: Near surface air temperature (Ta) is one of the most critical variables in climatology,
hydrology, epidemiology, and environmental health. In situ measurements are not efficient for
characterizing spatially heterogeneous Ta, while remote sensing is a powerful tool to break this
limitation. This study proposes a mapping framework for daily mean Ta using an enhanced
empirical regression method based on remote sensing data. It differs from previous studies in three
aspects. First, nighttime light data is introduced as a predictor (besides land surface temperature,
normalized difference vegetation index, impervious surface area, black sky albedo, normalized
difference water index, elevation, and duration of daylight) considering the urbanization-induced Ta
increase over a large area. Second, independent components are extracted using principal component
analysis considering the correlations among the above predictors. Third, a composite sinusoidal
coefficient regression is developed considering the dynamic Ta-predictor relationship. This method
was performed at 333 weather stations in China during 2001–2012. Evaluation shows overall mean
error of −0.01 K, root mean square error (RMSE) of 2.53 K, correlation coefficient (R2) of 0.96, and
average uncertainty of 0.21 K. Model inter-comparison shows that this method outperforms six
additional empirical regressions that have not incorporated nighttime light data or considered
predictor independence or coefficient dynamics (by 0.18–2.60 K in RMSE and 0.00–0.15 in R2).
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1. Introduction

Near-surface air temperature (Ta), defined as the air temperature 2 m above the land surface [1],
is one of the most critical variables in climatology [2], hydrology [3], epidemiology [4], and
environmental health [2]. Ta is traditionally measured at weather stations. They provide highly
frequent measurements with long-term records but are not efficient for characterizing spatial
heterogeneities due to their low sampling densities [5,6], particularly over urban and mountainous
areas, where climatic effects can be fairly strong.

Remote sensing, alternatively, provides a greatly important and valuable source of information
that can be used to estimate spatially continuous Ta. The previous studies can be grouped into two
categories: atmosphere-based and land-based. The former retrieves air temperature profiles over a
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wide coverage from atmospheric infrared radiation obtained by GOES [7], AIRS [8], MODIS [9], etc.
The spatial resolution of the retrieved Ta is rather coarse (typically several to tens or hundreds of
kilometers), and the accuracy is sometimes lower than 10 K [10].

The land-based studies commonly employ physical or statistical methods. The physical method is
based on the energy balance dynamics, i.e., the sum of incoming net radiation and anthropogenic heat
fluxes equals the sum of sensible, latent, and soil heat fluxes. The sensible and latent heat fluxes are
transformed into a function of surface-air temperature differences and Ta is then derived by solving the
energy balance equation [11]. The accuracy is generally 1–3 K [12]. This method has a solid physical
background and is useful for exploring the essence of Ta formation and variation from an energy
balance perspective. Nonetheless, it is not frequently used due to the complexity of the model [13].

The statistical method, on the other hand, is much simpler in practical use, including the
geostatistical method, the temperature/vegetation index (TVX) method, and the empirical regression
method. The geostatistical method often integrates remotely sensed land surface temperature (LST)
with spatial interpolators, typically elevation, to estimate Ta from discrete sites using techniques such as
kriging/co-kriging [14,15], spatial regression kriging [16], and geographically weighted regression [17].
The accuracy ranges from about 1 to 6 K. The remote sensing-based geostatistical method shows better
estimates than the conventional regression method [14,17]. However, it is largely dependent on the
arbitrary locations of weather stations [18,19].

The TVX method assumes that the bulk temperature of a fully vegetated canopy approximates
the air temperature within the canopy, and Ta is thus predicted based on the TVX correlation and
the estimated vegetation response of indefinitely thick canopy [20]. The accuracy is around 2–5 K [12].
This method requires no external data source beyond remotely sensed surface temperature and
vegetation responses. However, it greatly relies on the negative TVX correlation built within a sample
window [1,20], suggesting probable unstableness with varying soil moisture and window size and
unsuitableness in winter, at night, and over urban, snow, ice, and water surfaces [20,21]. Moreover, the
estimated Ta may have a strong spatial autocorrelation due to the moving window calculation [22].

The empirical regression method establishes a relationship of Ta with predictors, and then extends
the relationship to surfaces with known predictors but unobserved Ta. It has two major parts: predictors
and regression tools. Previous studies have adopted biophysical, geometrical, geographical and
meteorological predictors, such as LST [6], normalized difference vegetation index (NDVI) [23],
albedo [13], impervious surface area (ISA) [24], sky view factor (SVF) [1], normalized difference water
index (NDWI) [1], elevation [25], and solar radiation [26]. Among them, LST and elevation are the
most powerful ones [13]. The regression tools include linear regression [6,23,27], neural network [28],
support vector machine [1], regression tree [26], etc. The regression method generally performs well
(an accuracy of around 1–4 K) when training samples are appropriate [29]. The empirical regression
method has simpler operability compared to the physical method, better robustness against weather
station locations compared to the geostatistical method, and wider applicability on different covers
compared to the TVX method.

However, the remote sensing-based regression method has typically focused on Ta mapping over
non-urban areas [6,30,31]. With rapid urban expansion, an increasing number of weather stations have
been newly installed in urban areas [32,33] and many previously rural weather stations have now
been surrounded by urban surfaces [34]. Therefore, to better estimate Ta over a large area with urban,
suburban and rural weather stations all together, it is necessary to take into account the urbanization
impact. A few studies [1,35,36] have recently attempted to estimate Ta incorporating urban features
such as ISA and SVF, and yet the considerable difference in anthropogenic heat caused by human
activities (in sectors such as transportation, buildings, and human metabolism [37]) has not been
accounted for over large regions. Previous studies using climate or meteorological models [38,39] have
shown that anthropogenic heat is an important heating source to warm Ta [40] by 2 K or more [41].
Nevertheless, it is challenging to explicitly quantify spatio-temporal anthropogenic heat release across
a wide area considering that it usually requires accessible and appropriate data from local agencies and
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institutions [42]. Also, energy balance-based quantification with remote sensing data is inapplicable
and instable due to the spatio-temporal Ta that is to be estimated [43]. Alternatively, nighttime light
data from DMSP/OLS were used by Chen et al. (2012) to approximate anthropogenic heat flux
over entire China from 1992 to 2009 based on their strong linear correlation (correlation coefficient
R2 > 0.9) [44]. Therefore, nighttime light data is possibly a supplement to the current predictor pool for
accounting for the impact of anthropogenic heat to some extent.

Moreover, many previous regressions have adopted multiple predictors while neglecting their
correlations [23,24], which leads to inflated parameter variances, instable coefficient estimates, and
consequently biased Ta predictions [45]. Finally, the relationship between Ta and most predictors
varies with time [35], and yet the regression coefficients have commonly been regarded as temporally
stationary and uniformly determined through the whole period of time. One notable study to derive
dynamic coefficients is provided by Good (2015) using temporally moving window regression [35].

This study presents a mapping framework for daily mean Ta using an enhanced empirical
regression method based on remote sensing data. It differs from previous studies in that
satellite-derived nighttime light data is introduced for the first time as one of the predictors to account
for anthropogenic heat, and independent components are extracted from the multiple predictors before
a time-varying coefficient regression modeled by composite sinusoidal functions is performed. Ta
was estimated at 333 weather stations in China during 2001–2012 and then evaluated according to
cross-validation, uncertainty analysis, and model inter-comparison.

The primary objectives of this study are three-fold. First, this study aims to develop a simple
and practical method that improves the accuracy of Ta estimation and can be easily followed for
other applications. Second, this study attempts to introduce the idea of using nighttime light data
for Ta estimation and inspire others to further explore the relationship between the nighttime light
data and Ta. Finally, this study provides a framework of using times series of multiple variables to
estimate spatio-temporal Ta so that other meteorological variables can also be estimated under the
similar framework.

2. Study Area and Data

2.1. Study Area and Meteorological Data

The study area (Figure 1a) corresponds to three MODIS sinusoidal tiles (i.e., h26v04, h26v05
and h27v05), covering an area of approximately 4.32 million km2 (30–50◦ N, 93–136◦ E) in China.
The elevation (Figure 1a,b), ranging from 1 to 6667 m, forms a high western but low eastern terrain
(also called the three-step ladder topography) [46]: the highest step is the Qinghai–Tibet Plateau with
an average elevation of more than 4000 m and alpine highland climate; the medium step includes
basins (e.g., Sichuan Basin) and plateaus (e.g., Loess Plateau) at 1000–2000 m elevations; and the
lowest step is mainly plain (e.g., North China Plain) at elevations of 500 m or less. The medium and
lowest levels exhibit temperate monsoon climate in the north and subtropical monsoon climate in
the south. The main land covers are grasslands (41.3%), croplands (35.1%), and forest (16.7%); sparse
vegetation, urban and built-up land, shrubland, and savanna cover the rest (6.9%) of the area (Figure 1c
according to the yearly MODIS land cover product in 2012). The study area crosses 13 provinces in
China (Figure 1a), with population ranging from 3 to 96 million in each province (according to the
tabulation on the 2010 population census of China).

A total of 333 discrete weather stations are distributed across the study area (Figure 1a). More
weather stations (~50%) are in the lower elevation regions (<500 m) and fewer (~3%) are in the higher
elevation regions (>4000 m), as shown in Figure 1b, highlighting the necessity of providing Ta estimates
in the regions with sparsely-distributed stations. The weather stations are primarily located over
urban and built-up lands (35.4%), croplands (29.7%), and grasslands (25.8%), which together are rather
representative (60%) of the study area considering their similar distributions over grasslands and
croplands (Figure 1c). On the other hand, weather stations “over”-represent the urban and built-up
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lands, suggesting the importance of incorporating urbanization impacts for Ta estimation. Daily
mean Ta values measured at these stations between 2001 and 2012 were collected from the China
Meteorological Data Sharing Service System (http://cdc.nmic.cn), where Ta values with a quality flag
of “fault,” “unobserved,” or “uncontrolled” were eliminated.
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Figure 1. General view of the study area and weather stations: (a) spatial view; (b) statistics of elevation;
(c) statistics of land cover. The elevation and land cover data were obtained from GTOPO30 digital
elevation model (DEM) and yearly MODIS land cover product (MCD13Q1) in 2012, respectively.

2.2. Spatio-Temporal Predictors

Eight variables (seven commonly used plus one never used) over the study area during the
2001–2012 period were used as predictors for Ta estimation (Table 1): LST, NDVI, ISA, black-sky
albedo (BSA), NDWI, nighttime stable light (NSL), elevation (ELV), and duration of daylight
(DDL). LST, NDVI, and BSA were directly collected from MODIS products (NASA’s EOSDIS,
https://earthdata.nasa.gov/), while ISA and NDWI were further derived from the NDVI and
BSA products. MODIS data were chosen mainly because they provided large coverage, high
temporal resolution, a series of land surface products, and easy public access. NSL was obtained
from DMSP/OLS (NOAA NCEI, http://www.ngdc.noaa.gov) considering its close correlation with
anthropogenic heat release [47], ELV was obtained from GTOPO30 (USGS, https://lta.cr.usgs.gov/),
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and DDL, a substitute for solar radiation considering their significant relationship [48], was calculated
according to the latitude of a given location and the day of a year.

Table 1. Predictors used for Ta estimation.

Predictor Source Spatial Resolution Temporal Resolution

Land surface temperature (LST) MOD11A1 (~22:30) 1000 m 1 day

Normalized difference
vegetation index (NDVI) MOD13Q1 (~10:30) 250 m 16 days

Impervious surface area (ISA) Temporal mixture analysis
of NDVI time series 250 m 1 year

Black-sky albedo (BSA) MCD43A3 500 m 16 days

Normalized difference water
index (NDWI) Calculated from BSA 500 m 16 days

Nighttime stable light (NSL) DMSP/OLS 30” 1 year

Elevation (ELV) GTOPO30 30” -

Duration of daylight (DDL) Calculated from latitude
and day of year 1000 m 1 day

2.2.1. LST

Daily LST product acquired by Terra at ~22:30 with a spatial resolution of 1 km (MOD11A1 in
version 5) was obtained. It is retrieved using a generalized split-window algorithm [49], resulting in
an accuracy of 2 K in most cases [50]. However, the error can be markedly increased due to systematic
anomalies (e.g., due to the MODIS optical leak correction error inducing anomalously high values at
the end of scan lines) [29], large emissivity uncertainties (e.g., in arid and semi-arid areas) [51], and
complex atmospheric conditions (e.g., clouds and heavy aerosols) [52].

Therefore, the following procedures were performed to eliminate low quality data. First,
LSTs with sensor zenith angles of <11◦ or >130◦ were considered to suffer from a significant error
from the optical leak correction and thus excluded. Then, LSTs flagged with “average emissivity
error ≤0.04 (or >0.04)” or “average LST error >3 K” were eliminated. Finally, abnormally low LSTs,
determined by histogram-based quartile statistics [53], were probably caused by undetected clouds
and thus filtered out. In this study, Terra nighttime LST, instead of Aqua and/or daytime LST, was
chosen because it is more stable and accurate [54,55] and has a weaker angular effect [56] and a larger
number of valid pixels [57].

2.2.2. NDVI and ISA

A 16-day composite NDVI product acquired by Terra at ~10:30 with a spatial resolution of
250 m (MOD13Q1) was collected. It adopts the maximum/averaged NDVI value in the case of
clouds/cloud-free to represent the entire 16-day period, where the daily NDVI is determined by
atmospherically corrected red and near-infrared reflectance at a 250-m resolution (MOD09GQ). Pixels
flagged with “lowest quality,” “quality so low that it is not useful,” “L1B data faulty,” or “not useful
for any other reason/not processed” were eliminated.

ISA was derived year by year using a temporal mixture analysis of the annual NDVI time series
(proposed by Yang et al. (2012) [58]), resulting in a temporal resolution of one year and a spatial
resolution of 250 m. The fundamental assumption of this process is that the NDVI series can be
regarded as linear mixtures of temporal profiles of endmember NDVI series. In detail, the NDVI
series of each pixel were rearranged from high to low values and six maximums were extracted;
then principal component analysis (PCA) was conducted on the six maximum NDVI series and three
endmembers (i.e., forest, crops, and impervious surface) were determined; and finally, the NDVI series
of each pixel were linearly unmixed according to the endmember NDVI series and the endmember
fractions (including ISA) were obtained.
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2.2.3. BSA and NDWI

Terra/Aqua combined 16-day composite albedo product with a spatial resolution of 500 m
(MCD43A3) was collected. It is generated from Terra and Aqua daily reflectance (MOD09GA and
MYD09GA) during a 16-day period using the 16-day anisotropy model (MCD43A1). MCD43A3
contains BSA (i.e., directional hemispherical reflectance) and white-sky albedo (i.e., bi-hemispherical
reflectance) for seven narrowbands and visible, near-infrared, and shortwave broadbands. Given
that BSA and white-sky albedo are almost linearly correlated [47] and total solar energy reflected
by the surface is commonly characterized by the shortwave broadband [59], BSA-shortwave was
extracted and the pixels flagged with “processed, good quality” or “magnitude inversion [numobs ≥ 7]”
were used.

NDWI, an indicator of water content [60], was calculated from BSA for near- and mid- infrared
bands (i.e., NDWI = (ρBSA−NIR − ρBSA−SWIR) / (ρBSA−NIR + ρBSA−SWIR)), generating spatial and
temporal resolutions of 16-day and 500 m, respectively.

2.2.4. NSL

DMSP/OLS stable light data (NSL), an annual composite of cloud-free nighttime lights with a
grid cell of 30 arc seconds, was used. NSL covers nighttime lights from urban, suburban, and rural
areas with persistent lighting and discards ephemeral events, such as fires [61]. Pixels outside the valid
data range 1–63 were eliminated. Lacking on-board calibration and setting a constant gain, NSL time
series obtained from different sensors (e.g., F15: 2000–2007, F16: 2004–2009, and F18: 2010–2012) are
not directly comparable.

Therefore, an inter-calibration was performed following Elvidge et al. (2009) [62]. First, the city
of Jixi in Heilongjiang Province was selected as the calibration area due to its stable socio-economic
development, and NSL from satellite F16 in 2007 of the calibration area was chosen as the reference
considering the highest cumulative value [61]. Then, a second-order regression was conducted
between the reference data and the other dataset of the calibration area to eliminate inter-annual
discrepancies [63], and the derived regression coefficients were further used to calibrate the NSL
time series over the entire study area [63]. Finally, NSL from different satellites in the same year was
averaged to keep continuity during the period.

2.2.5. ELV

GTOPO30, a digital elevation model (DEM) with a horizontal grid spacing of 30 arc seconds,
was used. Eight sources of topographic information are used to derive GTOPO30 and the
estimated accuracy is considered suitable for regional climate applications (http://webgis.wr.usgs.gov/
globalgis/gtopo30/gtopo30.htm).

2.2.6. DDL

DDL was calculated by Equation (1) over the study area with the same spatial and temporal
resolutions as LST [64]:

DDL =
2

15
cos−1

{
−tanΦtan

[
23.45sin

(
360

284+DOY
365

)]}
, (1)

where Φ is the latitude, and DOY is the day of year.
All of the above predictors were re-projected, co-registered, and then extracted for the weather

station coordinates using the nearest neighbor method [29]. Any Ta-predictor correspondence with one
or more invalid/unqualified values was excluded. Finally, a total of 433,108 Ta-predictor “pairs” were
available for the following method over this study area between 2001 and 2012. They had a significant
seasonality (Figure 2) that was mainly determined by the distribution of qualified MODIS/LSTs due to
the clouds [57].
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Figure 2. Twelve-year and 333-station averaged daily distribution (as percentage) of qualified
Ta-predictor “pairs.”

3. Methods

The overall modeling framework (Figure 3) contained three steps. Step 1: z-score standardization
and PCA were used to extract independent components from the eight predictors (Section 3.1);
Step 2: the obtained independent components were regressed against Ta collocated in both space and
time following a time-varying coefficient scheme (Section 3.2); and Step 3: the derived regression
coefficients were applied to available predictors for Ta estimation over the surfaces where weather
stations were absent (Section 3.3). Three different experiments were conducted for model evaluation
(Section 3.4): cross-validation, uncertainty analysis, and model inter-comparison. More detailed
descriptions follow below.
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3.1. Independent Component Extraction

Collinearity among explanatory variables leads to series of problems in regression-based
predictions, such as unreliable coefficients and predictions [45] as well as aggravated data redundancy
and computational complexity. Therefore, the collinearity was first diagnosed using a pairwise
Pearson’s linear correlation coefficient r, a major indicator of collinearity [45]. Considering that LST,
NDVI, NDWI, and DDL annually vary in bell-shaped curves, their direct correlations are inflated
and tend to be positive (e.g., r = 0.34 between LST and NDVI, Figure 4a). To reduce the influence of
seasonality in time series, deseasonalization was separately conducted on LST, NDVI, NDWI and DDL
by subtracting the monthly mean and then dividing by the monthly standard deviation [65] (Each
year was divided into 12 months, and the mean value and standard deviation were calculated for each
variable for each month during the 2001–2012 period.) Deseasonalization was not performed on the
other four predictors because the BSA time series do not show a regular shaped seasonal pattern over
different land covers and the ISA, NSL and ELV values are constant in a year for a given location. As a
result (Figure 4b), r ranges from −0.6 to 0.5 after deseasonalization: that between NDVI and ISA is
the highest (r = −0.6), and the positive/negative NDVI–NDWI, LST–DDL, NDWI–ISA, and NSL–ELV
relationships are also remarkable (|r| > 0.4).
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(b) after deseasonalization of the LST, NDVI, NDWI, and DDL time series.

Regarding this issue, z-score standardization and PCA were performed on the eight predictors.
z-score standardization was used given the notably different dimensions and magnitudes of the
eight predictors which cause the variance to be dominated by the predictor with a large scale during
PCA [66]. Specifically, the time series of each predictor were separately standardized by subtracting
the daily mean and then dividing by the daily standard deviation to achieve fair comparability [67]
(The daily mean and standard deviation were calculated day by day from all observations of each
variable during the 2001–2012 period.) PCA was chosen because it is a simple and commonly used
orthogonal transformation that requires no parameter, removes variable correlations and thus reduces
the collinearity [45]. Specifically, the eight standardized predictors were transformed into an orthogonal
space, yielding a set of linearly uncorrelated components and their weights/coefficients [68]. Figure 5
shows that 86% of the variance was accounted for by the first four principal components (PC1–PC4),
which were used as independents in the following regression. More components significantly increase
the number of unknown parameters and thus the difficulty of solving the regression equations
(Equation (5)), while fewer components include less spatio-temporal information, which may yield a
lower accuracy.
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3.2. Time-Varying Coefficient Regression

Linear regression between Ta and PC1-PC4 was performed day by day (Figure 6), showing
significant temporal variations in the intercept and each of the regression coefficients, generally on
seasonal and local timescales. Therefore, Ta was regressed against temporally and spatially collocated
PCs using time-varying coefficients (Equation (2)) that were assumed to be smooth and modeled here
as composite sinusoidal functions (Equations (3) and (4)):
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T (m, n) = β(n) +

[
L

∑
l=1

α (n, l) P (m, n, l)

]
+ ε (m, n) (2)

with

α (n, l) = kα (l) +
Iα(l)

∑
i=1

Aα (i, l) sin (ωα (i, l) n + θα (i, l)) (3)

β (n) = kβ +

Iβ

∑
i=1

Aβ (i) sin
(
ωβ (i) n + θβ (i)

)
, (4)

where T (m, n) is Ta at site m on day n, β (n) is the time-varying intercept, α (n, l) is the time-varying
slope of PC l, P (m, n, l) is the PC value, L is the total number of PCs (i.e., 4 in this study), ε (m, n) is
the random error; kα (l) is the mean value of α (n, l), Aα (i, l), ωα (i, l) and θα (i, l) are the amplitude,
frequency, and phase shift of the ith sine function of α (n, l), respectively, and Iα (l) is the total number
of the sine functions; similarly, kβ, Aβ (i), ωβ (i), θβ (i), and Iβ are the parameters of sine functions
for β .

By including multiple sites and days, a set of equations was formulated as follows:

T = β+αP, (5)

with
T

M×N,1
= [a1, a2, ..., an]

T, an
M,1

= [T (1, n) , T (2, n) , ..., T (m, n)]T

P
M×N×L,1

= [b1, b2, ..., bn]
T, bn

M×L,1
= [c1,n, c2,n, ..., cm,n]

T, cm,n
L,1

= [P (m, n, 1) , P (m, n, 2) , ..., P (m, n, l)]T

α
M×N,M×N×L

=

 d1 0
. . .

0 dn

, dn
M,M×L

=

 en 0
. . .

0 en

, en
1,L

= [α (n, 1) , α (n, 2) , ..., α (n, l)]

β
M×N,1

= [f1, f2, ...fn]
T, fn

M,1
= [β (n) , β (n) , ..., β (n)]T,

where M and N are the total numbers of weather stations and days included, respectively.

3.3. Spatio-Temporal Ta Estimation

The number of known Ta observations is M × N. The number of unknown parameters

(i.e., kα (l), Aα (i, l), ωα (i, l), θα (i, l), Iα (l), kβ, Aβ (i), ωβ (i), θβ (i), and Iβ) is L+ 1+ 3
(

L
∑

l=1
Iα (l) + Iβ

)
.

A Levenberg–Marquardt algorithm with a universal optimization scheme was applied to solve
Equation (5). The derived coefficients were then applied back to the spatially collocated predictors
across the entire study area and period to reconstruct spatio-temporal Ta according to Equations (2)–(4).
The estimated Ta has a spatial resolution of 250 m and a temporal resolution of one day, while Ta is
absent in the case of missing PCs/predictors due to the quality control.

3.4. Model Evaluation

First, cross-validation was conducted by a leave-10%-out procedure. Specifically, we divided
the study area into 12 subsets and randomly, in each subset, selected 90% of the collocated data as
training sets, and then estimated Ta of the remaining 10% with the regression model parameterized
by the selected 90%. This procedure was repeated 10 times in each subset (i.e., a total of 120 times in
the study area). The root mean square error (RMSE), mean absolute error (MAE), mean error (ME),
and correlation coefficient (R2) of the predicted Ta versus the measured Ta for each withheld weather
station were calculated and then summarized across space (by land cover and site) and time (by year,
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season and month). To further evaluate the representation of temporal patterns by the predicted Ta,
trend and seasonal decomposition [69] was performed on both the predicted and the measured Ta time
series during the study period. The derived inter- and intra-annual variation parameters (mainly trend
slope, seasonal amplitude and annual average temperature) were compared over each weather station.

Second, uncertainty analysis was performed using a jackknife-bootstrap procedure [29].
Specifically, a total of 120 different training sets were randomly selected to obtain regression parameters
which were then used to estimate Ta at the same weather station on the same day. The standard
deviation of all Ta estimates for a given station at a given time was defined as the absolute uncertainty.
The spatio-temporal average uncertainty and the uncertainty statistics by land cover and weather
station were calculated.

Finally, model inter-comparison was conducted to show the relative improvements of the
proposed model ((6) in Figure 7). Specifically, six additional empirical regressions were used ((1)–(6) in
Figure 7): (1) temporally stationary, linear regression with LST, (2) temporally stationary, multi-linear
regression with the seven predictors (without NSL), (3) temporally stationary, multi-linear regression
with the eight predictors, (4) time-varying coefficient regression with PC1–PC4 of the eight predictors
using a 30-day moving window [35], (5) time-varying coefficient regression with the eight predictors
using composite sinusoidal functions, and (6) time-varying coefficient regression with PC1–PC4 of
the seven predictors (without NSL) using composite sinusoidal functions. The above cross-validation
procedure was also conducted for each of these models and the average RMSE and R2 were calculated
and compared with those from our proposed model.
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4. Results

4.1. Spatial Patterns of Errors

Figure 8a shows the scatter plot between the measured and the estimated Ta. Overall, a good
agreement was found between them given the mean slope of 0.95, intercept of 0.48 and ME of −0.01 K
(R2 = 0.96, p < 0.05, Figure 8b). The overall RMSE is 2.53 K with the 2.5th/97.5th percentiles (Figure 8b).
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Figure 8b shows the statistics of error by land cover. The biases between the estimated and
the measured Ta are different among land covers (at a significance level of 0.05 according to t-test
and F-test on their averages and variances). Yet the differences are not large in magnitude (0.03 in
R2, 0.34 K in ME, and 0.25 K in RMSE), suggesting an independence of model performance against
weather stations’ land covers.

Figure 8d displays the ME of each weather station; 2% show significant underestimation
(−3.5 < ME < −2.5), 8% show slight underestimation (−2.5 < ME < −1.5), 81% are unbiased
(−1.5 < ME < 1.5), and 9% are slightly overestimated (1.5 < ME < 2.5). In other words, 98% of
the stations fall within ±2.5 K limits. As for RMSE, for all the weather stations validated (Figure 8c,d),
about 32% range from 2.3 to 2.5 K, and 60% (80%) are smaller than 2.5 K (2.7 K).

The absolute bias between the estimated and the measured Ta does not have a strong dependence
on Ta, LST, NDVI, ISA, BSA, NDWI, NSL, ELV, and DDL (Figure 9). This illustrates that the regression
model has not only fully discovered the relationship between Ta and the predictors but also presented
no clear preference for air temperatures, surface properties, or nighttime light in global terms.
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4.2. Temporal Patterns of Errors

Table 2 shows the statistics of RMSE and R2 by year (2.44–2.64 K and 0.97–0.98, respectively),
season (2.47–2.62 K and 0.90–0.98, respectively) and month (2.40–2.63 K and 0.85–0.93, respectively).
No apparent difference (<0.23 K in RMSE and 0.08 in R2) or patterns were found during years or
seasons. It suggests the robustness of this model against data availability, which has shown evident
seasonality in Figure 2. This was to be expected given that the time-varying coefficient modeling in the
regression does not require consistently available data over time [35].

Table 2. Error between the estimated and the measured Ta sorted by year, season, and month.

Year RMSE (K) R2 Month RMSE (K) R2 Season RMSE (K) R2

2001 2.55 0.97 December 2.46 0.93
Winter 2.53 0.982002 2.56 0.98 January 2.61 0.93

2003 2.45 0.98 February 2.62 0.92
2004 2.53 0.97 March 2.63 0.90 Spring 2.62 0.92
2005 2.51 0.98 April 2.63 0.88
2006 2.56 0.97 May 2.61 0.85
2007 2.44 0.98 June 2.53 0.85

Summer 2.50 0.902008 2.45 0.98 July 2.44 0.88
2009 2.56 0.98 August 2.40 0.87
2010 2.60 0.98 September 2.46 0.87

Autumn 2.47 0.932011 2.64 0.98 October 2.50 0.90
2012 2.52 0.98 November 2.42 0.93
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Furthermore, the trend slope, seasonal amplitude, and annual average temperature derived from
the estimated Ta well agrees with those from the measured Ta (Figure 10), revealing that the inter- and
intra- annual variations of Ta are well represented by this model.Remote Sens. 2016, 8, 656  14 of 22 
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Figure 10. Scatter plots of the trend slope, seasonal amplitude, and annual average temperature
respectively, derived from the measured and the estimated Ta over the collocated weather stations.

4.3. Uncertainty Analysis

Figure 11 shows that the average uncertainty across the entire study area and period is 0.21 K,
with different weather stations having uncertainties of 0.07–0.63 K and 85% of them falling in the range
of 0.10–0.30 K; only three of them (i.e., less than 1%) have an uncertainty larger than 0.50 K. The largest
average uncertainty was found over the forest class (0.26 K), which, however, is not greatly different in
magnitude from the other classes (0.20–0.25 K, Figure 11).

Remote Sens. 2016, 8, 656  14 of 22 

 

 

Figure 10. Scatter plots of the trend slope, seasonal amplitude, and annual average temperature 
respectively, derived from the measured and the estimated Ta over the collocated weather stations. 

4.3. Uncertainty Analysis  

Figure 11 shows that the average uncertainty across the entire study area and period is 0.21 K, 
with different weather stations having uncertainties of 0.07–0.63 K and 85% of them falling in the 
range of 0.10–0.30 K; only three of them (i.e., less than 1%) have an uncertainty larger than 0.50 K. 
The largest average uncertainty was found over the forest class (0.26 K), which, however, is not 
greatly different in magnitude from the other classes (0.20–0.25 K, Figure 11). 

 
Figure 11. Frequency of the absolute uncertainty over weather stations and the statistics of the 
absolute uncertainty by land cover. 

4.4. Model Inter-comparison 

Table 3 lists the RMSE and R2 of different empirical regressions, showing that the proposed 
model (i.e., composite sinusoidal coefficient regression with PC1–PC4 of the eight predictors) 
outperforms the other models with the lowest RMSE (2.53 K). In detail, the multi-variable regressions 
(models (2)–(3): RMSE = 3.33–3.35 K, R2 = 0.94–0.96) yield much improved accuracies compared to the 
uni-variable regression with LST (model (1): RMSE = 5.13 K, R2 = 0.89) because of the increased 
information added for Ta estimation; and the time-varying coefficient regressions (models (4)–(7): 
RMSE = 2.53–3.11 K, R2 = 0.81–0.96) are more accurate than the globally constant coefficient-scheme 
(models (1)–(3)). The composite sinusoidal coefficient regression directly with the eight predictors 

Figure 11. Frequency of the absolute uncertainty over weather stations and the statistics of the absolute
uncertainty by land cover.

4.4. Model Inter-comparison

Table 3 lists the RMSE and R2 of different empirical regressions, showing that the proposed model
(i.e., composite sinusoidal coefficient regression with PC1–PC4 of the eight predictors) outperforms the
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other models with the lowest RMSE (2.53 K). In detail, the multi-variable regressions (models (2)–(3):
RMSE = 3.33–3.35 K, R2 = 0.94–0.96) yield much improved accuracies compared to the uni-variable
regression with LST (model (1): RMSE = 5.13 K, R2 = 0.89) because of the increased information added
for Ta estimation; and the time-varying coefficient regressions (models (4)–(7): RMSE = 2.53–3.11 K,
R2 = 0.81–0.96) are more accurate than the globally constant coefficient-scheme (models (1)–(3)).
The composite sinusoidal coefficient regression directly with the eight predictors without PCA
(model (5)) is unsolvable due to large amounts of unknown regression parameters. Hence, PCA
is necessary from the perspectives of both variable independence and model solution. Moreover, the
composite sinusoidal coefficient regression after PCA of the seven predictors excluding NSL (model (6))
presents a larger RMSE by 0.58 K than that after PCA of the eight predictors including NSL (model (7)),
revealing that the use of NSL has improved the model performance. Finally, both with PC1–PC4
of the eight predictors, our proposed model using composite sinusoidal functions to describe the
dynamic coefficients (model (7)) performs better than the temporally moving-window regression
strategy (model (4)).

Table 3. Averaged error of different regression models according to cross-validation.

Model RMSE (K) R2

(1) Linear regression with LST 5.13 0.89
(2) Linear regression with the seven predictors (excluding NSL) 3.35 0.94
(3) Linear regression with the eight predictors 3.33 0.96
(4) Moving-window regression with PC1–PC4 of the eight predictors 2.71 0.81
(5) Composite sinusoidal coefficient regression with the eight predictors - -
(6) Composite sinusoidal coefficient regression with PC1–PC4 of the
seven predictors (excluding NSL) 3.11 0.96

(7) Composite sinusoidal coefficient regression with PC1–PC4 of the
eight predictors 2.53 0.96

5. Discussion

5.1. Nighttime Light, Predictor Independence, and Coefficient Dynamics

Various forms of energy use by human activities eventually turn into anthropogenic heat released
into the atmosphere [44], increasing the air temperature. Considering the close relationship between
NSL and urbanization [63], population [70], economy [71], energy consumption [72], etc., NSL is
further found to correlate well with the anthropogenic heat flux density [44,47]. This study does not try
to calculate the anthropogenic heat with NSL, but attempts to use NSL to provide relevant information
on the anthropogenic heat for better Ta estimation over a large area. Results (Table 3) show that the
incorporation of NSL improves the accuracy of the multi-variable linear regression (by 0.02 K in RMSE
and 0.02 in R2, Table 3) and of the composite sinusoidal coefficient regression (by 0.58 K in RMSE,
Table 3). With more precise spatio-temporal anthropogenic heat data or higher-resolution nighttime
light data (e.g., VIIRS), the Ta estimates may be further improved.

Collinearity-induced problems [45] are well recognized in multi-variable statistical routines.
Large numbers of variables accounting for different sources of influence on Ta usually mean (high)
correlations among them [68,73]. Yet, previous regression-based Ta studies have not considered the
collinearity among predictors an important issue primarily because the Ta estimation has mainly been
conducted within the range of sampled data, i.e., when the influence of collinearity is limited [45]. This
study confirms that the accuracies of linear regressions before and after PCA (with all PCs) are similar
(0.02 K in difference). However, PCA is essential for the proposed method considering the increasing
amount of unknown parameters with redundant datasets (Section 3.3).

Dynamic regression coefficients result in better Ta estimates than the temporally stationary
coefficients (by 0.62 K or more in RMSE, Table 3) because the association of Ta and the set of predictors
varies significantly by time (Figure 6). The moving window algorithm [35] is a simple and effective
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approach to account for this matter, while the composite sinusoidal regression we proposed yields a
higher accuracy (by 0.18 K in RMSE, Table 3) probably due to the better robustness against noise and
data availability (Section 4.2). It is worth noting that the coefficient functions are modeled globally,
thus it is unable to capture the inter-annual change in Ta-predictor relationship.

5.2. The Seven Predictors and Complementary Predictors

Except for NSL discussed above, the seven predictors (i.e., LST, NDVI, ISA, BSA, NDWI, ELV,
and DDL) selected in this study have been used in many other Ta mapping literatures due to their
close correlations with Ta. Specifically, LST is the most powerful predictor because of the heat transfer
between the land and the atmosphere primarily through convection [13]. NDVI and NDWI represent
greenness and wetness, respectively [74], both of which strongly influence evapotranspiration and
surface cooling [75], and thus a decrease in NDVI/NDWI is usually followed by a Ta rise. Similarly, ISA
contributes to enhancing sensible heat flux while reducing latent heat flux [40,69] and consequently
heating up the atmosphere. BSA (or albedo) indicates a reflective proportion of incoming solar
radiation, and therefore a low albedo increases solar heat absorption as well as heat release to the
atmosphere [13,57]. As for ELV, numerous studies have demonstrated that Ta decreases as ELV
increases [68]. ELV is particularly useful for characterizing the spatial variation of Ta over a wide range
of elevation.

Solar radiation is a dominant heating source for the surface, which then transfers heat to the
immediate atmosphere [59]. A number of methods have been proposed to model spatio-temporal
solar radiation, such as retrieval from satellite data [76], interpolation from surrounding weather
stations [77,78], empirical estimation from other meteorological observations (e.g., diurnal air
temperature range) [79,80], generation from weather models [81], and geometrical simulation
accounting for shadows and clouds [82]. However, satellite-retrieved solar radiation has a coarse
spatial resolution [76] and we lack appropriate data to calculate precise solar radiation (specifically,
we lack solar radiation observations from weather stations, spatio-temporal meteorological data such
as air temperature, water vapor, clouds, total optical length, and atmospheric transmittance [1], and
3D urban structures for shadow determination [82]). Alternatively, DDL was used as a substitute for
daily solar radiation in calm and clear days considering their significant correlation [48], the simplicity
of DDL calculation, and the spatio-temporal variance in DDL. Even though DDL is unable to reflect
the effects of clouds and aerosols on the solar radiation reaching the surface, the biases can be limited
because we only focused on estimating Ta under clear skies (Section 3.3).

To quantify the contributions of the seven predictors in improving the Ta estimation, we carried
out statistical regressions excluding each one of the seven predictors. Results (Table 4) show that the
inclusion of LST reduces RMSE by 1.59 K and increases R2 by 0.06, which illustrates the most significant
role played by LST. Following it, ELV, NDWI, BSA, and DDL increase the accuracy by 0.20–0.30 K
in RMSE and 0.02 in R2 (Table 4), which makes their inclusion indispensable. Also, they are readily
available. On the other hand, ISA makes only a modest improvement (0.14 K in RMSE and 0.00 in R2,
Table 4), which is possibly attributed to its low temporal variance (one-year resolution). Considering
that the calculation of ISA is not as easy as the others, it may be removed from the predictor pool to
save preprocessing time. Finally, NDVI slightly affects the predictive power (by 0.04 K in RMSE and
0.00 in R2, Table 4) and may be excluded without inducing large errors. This has been explained by the
fact that NDWI, accounting for water content, has a more direct relationship to evapotranspiration
and NDVI does not provide more valuable information beyond NDWI for Ta estimation [1].

Apart from the eight predictors used in this study, several additional factors are well known
to impact Ta. Surface heterogeneity is one of them by affecting local surface–air interactions [83,84].
Heterogeneity can be characterized by a moving window-based semi-variogram model [85], spatial
scale-based entropy spectrum [86], or landscape structure-based indices [87] and may help improve the
local Ta estimation considering neighborhood interactions involved in the pixel-station pair correlation.
In other words, it alters the representativeness of the station-measured observation at a pixel scale,
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and thus could be appropriate as a modulator to adjust the spatial distribution of the estimated Ta, as
an additional weight to adjust the contributions of spatial predictors [5], or as a reference to limit the
regression to the less heterogeneous areas. It should not be used as an independent variable in the
regression because its relationship with Ta is not straightforward.

Table 4. Averaged error increase by excluding each one of the seven predictors from the regression.

Predictor Excluded ∆RMSE (K) ∆R2 Predictor Excluded ∆RMSE (K) ∆R2

LST 1.59 0.06 NDWI 0.30 0.02
NDVI 0.04 0.00 ELV 0.30 0.02

ISA 0.14 0.00 DDL 0.20 0.02
BSA 0.22 0.02

Sky view factor (SVF) is also known as an important predictor because it indicates the topography
and building structures that affect the amount of radiation received or emitted by the ground [1]. SVF
was not included in this study because we lacked fish-eye images and 3D urban structures that are
commonly required for SVF calculation [88]. An alternative method was proposed by Ho et al. (2014),
who used an empirically calibrated relationship of SVF with the shadow proportion derived from
remote sensing images [1], which may provide an easier approach to map SVF over large areas.

5.3. Spatio-Temporal Resolutions and Extensions

First, the spatial and temporal resolutions of the eight predictors used in the regression are
different, varying from 250 m to ~1 km in space and one day to one year (or multiple years) in time
(Table 1). Spatially, the predictors do not have the same field of view, leading to a false collocation and
correspondence. Temporally, the predictors (except for LST) have larger gaps than in situ measured
daily Ta, thus incapable of characterizing intermediate Ta variations. Particularly, the yearly NSL
data, the only dataset that we had access to for accounting for the anthropogenic heat impact, cannot
represent intra-annual variations of anthropogenic heat discharge flux [42,89], and it consequently
cannot accurately express its dynamic relationship with Ta.

Second, the spatial and temporal resolutions of the estimated Ta are the same as the finest
ones of the predictors, i.e., 250 m and one day in this study. Spatially, the actual Ta can be more
heterogeneous [5], especially over urban and mountainous areas (e.g., at a scale of 10–30 m [90]).
Use of predictors with enhanced spatial resolutions, a spatial heterogeneity index as a modulator or
weight (Section 5.2), or downscaling technologies (e.g., [90]) may help characterize local details of Ta.
Temporally, Ta varies within a day, which cannot be represented by a daily average. Use of diurnally
varying predictors, such as geostationary satellite-derived LST [91], is promising. Integration of the
composite sinusoidal coefficient regression with a predictor-related diurnal parametric model of Ta
may also be a possible solution.

Third, the proposed method can be used to generate Ta for a larger space and time domain.
Spatially, the method adopts a global-window regression scheme for this study area. Nevertheless,
a larger area may require not only a moving and varying regression window but also climatic and
environmental factors other than surface predictors. Temporally, the method assumes periodic changes
of regression coefficients. This raises a challenge of determining the breakpoint of such stationarity in
time, i.e., the time domain during which the resulted empirical relationship between Ta and predictors
can be applied.

5.4. Ta Estimation under Cloudy Skies

The influence of clouds on Ta estimation is three-fold. First, thick clouds induce information loss of
surface predictors observed by the infrared and visible imagers on board satellites. This not only limits
the spatial Ta estimation under cloudy skies [92] but also reduces the accuracy of Ta estimation under
clear skies due to the decreasing amount of available data with strong seasonality [29]. Second, thin or
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sub-pixel clouds and cloud shadows undetected in remote sensing images degrade the pixel quality,
especially for LST by presenting fairly low values. This brings in anomalies and may further distort
the Ta–predictor correlations during the regression. Third, clouds influence the energy balance of the
surface–air system [93,94], which is a complex process. One of the examples is the limitation of daytime
warming and thus the reduction of LST–Ta lapse rate [29]. In such cases, the Ta-predictor relationship
built by cloud-free data cannot handle the change in physical mechanisms under cloudy skies.

The method proposed in this study can reduce the impacts of missing or abnormal data on
Ta estimation under clear skies due to the composite sinusoidal modeling of regression coefficient
dynamics [29,35] (Section 4.2). However, it cannot predict Ta under cloudy skies. Kloog et al. (2014)
have associated the predicted Ta under clear skies with the Ta in neighboring grid cells and then
applied their relationship back to the Ta across buffers around weather stations to fill the Ta where
satellite data is missing [92]. Yet, their methods have not considered the physical change in surface–air
interactions. There are some studies using microwave signals (e.g., AMSR) for their advantage of
penetrating clouds [95,96]. However, the resulted spatial resolution is extremely low (several to tens
of kilometers). Future studies should put more effort into model development, accounting for the
environmental process with cloud presence, and integrating microwave and infrared data is considered
a promising solution. In addition, smog has similar effects on Ta estimation [90,97,98], which requires
further focus as well.

6. Conclusions

This study proposed a method to estimate daily mean Ta based on a time-varying coefficient
regression of independent components against collocated weather station Ta. The components were
derived from PCA of seven commonly used predictors (i.e., LST, NDVI, ISA, BSA, NDWI, ELV, and
DDL), and one never used predictor (NSL), and the regression coefficients were modeled in a dynamic
fashion using composite sinusoidal functions.

The method was tested for a 12-year period over 4.32 million km2 in China. Cross-validation
shows overall ME, RMSE, and R2 of −0.01 K, 2.53 K, and 0.96, respectively. Around 98% of the stations
have Ta estimates within ±2.50 K limits of the observed Ta, and 60% (80%) have RMSEs smaller than
2.50 K (2.70 K). The bias of the estimated Ta shows that the method has no clear preference for air
temperatures, land covers, surface properties, or nighttime light in global terms, and is robust against
data availability. Moreover, the inter- and intra- annual patterns of Ta are well represented by the
estimation. The average uncertainty is 0.21 K, where 85% of stations have uncertainties of 0.10–0.30 K.
The model inter-comparison further reveals that the proposed method provides enhancements over
six additional regressions by 0.18–2.60 K in RMSE and 0.00–0.15 in R2 because NSL was used as one of
the predictors, PCA was implemented to reduce the correlations among predictors, and the regression
coefficients were modeled dynamically by composite sinusoidal functions.

This method was not proposed to replace previous models, but to highlight the three remaining
issues (Section 1) and to supplement the Ta mapping system. Further enhancements may consider (1)
including more auxiliary data such as adding SVF as one of the predictors or using the spatial
heterogeneity index as a modulator or weight to adjust the spatial distribution of Ta estimates;
(2) incorporating an anthropogenic heat-related predictor with a higher spatio-temporal resolution;
(3) designing a different combination of variables and selecting different amounts of principle
components or using a de-collinearity process other than PCA; (4) integrating the time-varying
coefficient regression with the predictor-related diurnal Ta parameters to estimate sub-daily Ta; and
(5) mapping Ta in the case of clouds or smog.
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