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Abstract: Full-waveform lidar systems capture the complete backscattered signal from the interaction
of the laser beam with targets located within the laser footprint. The resulting data have advantages
over discrete return lidar, including higher accuracy of the range measurements and the possibility
of retrieving additional returns from weak and overlapping pulses. In addition, radiometric
characteristics of targets, e.g., target cross-section, can also be retrieved from the waveforms. However,
waveform restoration and removal of the effect of the emitted system pulse from the returned
waveform are critical for precise range measurement, 3D reconstruction and target cross-section
extraction. In this paper, a sparsity-constrained regularization approach for deconvolution of
the returned lidar waveform and restoration of the target cross-section is presented. Primal-dual
interior point methods are exploited to solve the resulting nonlinear convex optimization problem.
The optimal regularization parameter is determined based on the L-curve method, which provides
high consistency in varied conditions. Quantitative evaluation and visual assessment of results show
the superior performance of the proposed regularization approach in both removal of the effect of
the system waveform and reconstruction of the target cross-section as compared to other prominent
deconvolution approaches. This demonstrates the potential of the proposed approach for improving
the accuracy of both range measurements and geophysical attribute retrieval. The feasibility and
consistency of the presented approach in the processing of a variety of lidar data acquired under
different system configurations is also highlighted.
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1. Introduction

Laser remote sensing is being increasingly adopted as a useful tool for capturing 3D information
in conjunction with other descriptive data (e.g., intensities) from targets, and it is now being utilized for
a number of applications. These include classification [1,2], object extraction and 3D reconstruction [3],
vegetation structure characterization [4,5] and digital elevation model (DEM) generation [6].

Discrete lidar systems estimate the distance between the sensor and the target through precise
measurement of the transit time between the emitted and backscattered laser pulse using real-time echo
detection. Such discrete systems generally do not specify the exploited pulse detection method [4,7,8]
and only provide range information with a single backscatter intensity value, inherently neglecting the
backscattering characteristics of the illuminated target. In contrast, highly accurate pulse detection and
subsequent range measurement is potentially possible in full-waveform lidar, subject to the methods
adopted for data post-processing. Full-waveform lidar systems record the entire backscattered signal,
providing a range measurement, a measure of the energy reflected from the target and the distribution
of the returned energy along the laser path. Physical characteristics of the underlying target can then
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be revealed, thus enhancing the capability of the lidar system to yield both geometric and physical
information of targets for a broad range of applications.

Classical pulse detectors, in ideal conditions, can only provide the range and amplitude values
of pulses, without allowing removal of the effect of the transmitted pulse or the delivery of echo
parameters and radiometric information about targets [9,10]. Moreover, even though accurate range
determination is an important aspect in processing full-waveform lidar data, restoring the target
response is a key prerequisite step not only for range measurement but also for the extraction of
geophysical attributes of the target. The target cross-section is an attribute that is independent of the
instrument [11,12] and is more related to the effective target area (and its shape) inside the footprint,
as well as to its reflectivity and the direction of the incoming light [13,14]. The scattering cross-section,
which provides insight into geophysical characteristics and target roughness [11,15] is an issue of
considerable significance in laser radar remote sensing [14,16] and it can be recovered in the case of
full-waveform lidar [8].

In addition, more useful attributes can be extracted by analyzing the lidar signal geometry.
Recovery of overlapping signals and weak echoes is also feasible and advantageous in full-waveform
lidar to avoid both misinterpretation and incorrect estimation of the range. The additional pulses,
which may not be detected by discrete return systems, along with their associated features, can provide
useful inputs for further processing, e.g., for segmentation, classification and 3D modelling [1,17–19].

A lidar waveform is generally complex, particularly in vegetated areas. Overlapping waveforms
are recorded as a consequence of a finite detection time, noise, impulse function of the receiver and
changes in the transmitted pulse, leading to resolution degradation for closely located targets along the
laser beam [20]. Critical to the success of full-waveform lidar systems is the ability to understand and
interpret the shape of the recorded return laser pulse so as to separate fine object structures. A number
of lidar waveform processing approaches have been developed [14,21–23] and these have generally
concentrated on decomposition of the waveform into a series of parametric (e.g., Gaussian) pulses so
as to extract the range, amplitude and pulse width. Since the lidar waveform is essentially the result
of a convolution of the system transmitted laser pulse and the target cross-section, the retrieval of
target properties requires a deconvolution of the returned waveform. In addition, account must be
taken of the fact that incorporation of the system properties delivers a more meticulous analysis of
the waveform [24]. In particular, deconvolution essentially removes the effect of the system signal,
resulting in an unbiased estimate of the target cross-section.

This paper proposes a new signal deconvolution approach for efficient temporal target
cross-section retrieval from full-waveform lidar. This is achieved through a regularization approach
with sparsity constraints that can be efficiently solved when cast in the form of a convex optimization
problem. An efficient way to determine the optimal regularization parameter value, a critical issue in
regularization, through utilization of the L-curve method and a search for the bending point on such a
curve, is introduced. In order to model and estimate the system waveform, in situations where it is
unavailable, an appropriate approach is proposed through the use of blind deconvolution of waveforms
recorded over nearly flat targets, without requiring information about the surface reflectivity.

The remainder of the paper is organized as follows: Section 2 provides a review of research on
lidar waveform processing. Following this, in Section 3, the proposed lidar waveform deconvolution
method is presented through reference to the fundamentals of laser propagation, regularization
for deconvolution and estimation of an optimal regularization parameter value. In Section 4,
the experimental tests with both synthetic and real data covering different test sites are presented,
and performance of the proposed lidar waveform deconvolution approach is evaluated. Concluding
remarks are offered in Section 5.

2. Review of Related Research

With full-waveform lidar systems increasingly being adopted, improved methods are being
developed for the processing of lidar waveforms. Approaches adopted in the literature can be
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categorized as either decomposition- or deconvolution-based, where the former approaches fit
parametric functions to the received signals before retrieval of the target cross-section.

2.1. Decomposition Methods

Gaussian waveform decomposition methods for the extraction of a parametric description of
the pulse properties, including range, width and amplitude, have been developed for instance by
Hofton et al. [21] for a laser vegetation imaging sensor (LVIS), by Persson et al. [22] for the TopEye
Mark II lidar system and by Wagner et al. [14] for small footprint data. Generally, a set of Gaussian
functions is considered to both fit to the received backscattered waveform and to characterize each
pulse shape in this approach. Gaussian decomposition and other similar decomposition methods
have been extensively used to interpret targets related to the backscattered waveform in urban and
forested areas [1,2,17,25]. However, this method is considered challenging in the case of echoes with
low signal strength (low SNR) and it is deficient in its calculation of the cross-section in complex
waveforms. The method also requires initial determination of the number of targets [16,18,23,26],
which is sometimes impractical or of high computational cost. In addition, a symmetric function
might not always be sufficiently accurate to describe the target characteristics [17,27]. Furthermore,
Gaussian decomposition has a vulnerability in that it can result in a null solution or even negative
amplitudes in some cases [11,18]. The possibility of failure in the detection of peaks and in the fitting
of Gaussian functions to complex waveforms, principally due to a high dependency on local maxima,
has been reported [18]. These problems cause the range accuracy to deteriorate, which then impacts
upon subsequent lidar processing.

More complicated parametric distribution functions for the extraction of pulse parameters have
been investigated. Chauve et al. [27] extracted target attributes from pulses by utilizing a mixture
of the generalized Gaussian and Lognormal functions, with an improved global fitting for the
former, and a better pulse fitting result locally in asymmetric cases for the latter. This work was
extended by Chauve et al. [17] to suppression of the ringing effect, and the results were utilized in
DTM and Canopy Height Model (CHM) extraction, as well as for accurate determination of tree height.
A low rate of height underestimation in the CHM generation was reported by the authors. A set of
parametric pulse shapes (the Burr, Nakagami and generalized Gaussian models) have been considered
by Mallet et al. [23], where it was pointed out that the efficacy of the approach when applied to
object classification was inadequate. However, more accurate results could be achieved when these
waveform features were utilized in combination with geometric attributes. Lin et al. [18] studied weak
and overlapping pulses and reported higher obtainable accuracies in multi-target separation using a
rigorous pulse fitting method, however at very high computational cost.

In general, decomposition methods all attempt to fit a function (or functions) to the received
waveform and extract related attributes from the parametric function(s). However, parameter
estimation based only on the received waveform and not on the perceived deviations in the transmitted
pulse may not in general be valid [11]. In addition, direct extraction of the range from the maximal
amplitude value is not recommended since the signal pulse may be altered as a result of superimposing
different target responses [12,15]. It has therefore been suggested that recording both the received
and the outgoing waveforms is indispensable [12]. Disentanglement of the received waveform from
the instrument and estimation of a signal more related to the target response can be achieved by
exploiting deconvolution approaches. Reconstruction of instrument-independent target features by
deconvolution can result in precise characterization of the actual response of the targets [5,12].

2.2. Deconvolution Methods

The retrieval of target cross-section by signal deconvolution is an ill-posed problem and a unique
solution is usually not obtainable without the imposition of appropriate solution constraints [16].
Unlike Gaussian decomposition, deconvolution does not require information regarding the number of
signal peaks and there is no essential assumption regarding the pulse shape [7,26].
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An encouraging reported approach for both retrieval of the target response and improved range
estimation is Wiener filtering [5,12,19,20]. The Wiener filter minimizes the mean square error between
the approximated cross-section and the true surface response. However, negative amplitudes and
ringing effects usually appear in signals restored by using this method [19,20].

In another approach, reported in Roncat et al. [11], the differential cross-section is measured by
using B-splines as a linear deconvolution approach, with the assumption that pulses are not necessarily
symmetric. Negative amplitude values were reported in the resulting cross-section profile.

Wu et al. [28] defined four steps to form a pre-processing sequence for calibrating full-waveform
lidar data based upon synthetic waveform generation from the DIRSIG simulation model. The defined
steps are noise removal, signal deconvolution, geometric correction, and angular rectification.
Among these, deconvolution has emerged as the most critical for waveforms from lidar with a
nadir scan angle, while geometric calibration is the principal enhancement factor for off-nadir scanning.
The Richardson-Lucy (R-L) method was adopted in the deconvolution investigation. While this
method is efficient in most cases, underestimation of the amplitude values and the occasional missing
of pulses, in addition to essential speculation on the number of iterations by the user, remain its main
shortcomings. It is noticeable that increasing the number of iterations does not generally guarantee
that the optimal results will be achieved because after some iterations the quality of the restored signal
can deteriorate and spurious pulses will be generated as a result of noise amplification [29,30]. As also
reported in Neilsen [31], increasing the number of iterations in the R-L algorithm has an adverse effect
on the range resolution and can cause an increase in the range error.

Deconvolution of the received waveform can be accomplished by regularization techniques,
as demonstrated in Wang et al. [16]. This approach can restrain noise propagation and improve
computational efficiency. However, the method utilized to estimate the regularization parameter,
namely the discrepancy principle, demands that the noise level in the waveform be known, which is
not practical in the case of real data and hence the method is restricted in its application.

Negative amplitude values can be avoided by using iterative deconvolution methods, e.g., the
Gold and R-L methods. Such approaches can also minimize smearing effects (signal distortion level)
on the signal and they have been shown to be effective in retrieving pulses in lidar data [20,26,28],
as well as in other fields of research [32]. Wu et al. [20] reported that not all peaks can be detected.
This can cause errors in range estimation and lead to false target detection. Moreover, the solutions
generated by these methods can be significantly affected by the number of iterations. Thus, any invalid
assumptions can lead to inaccurate results.

Application of compressed sensing in lidar processing using synthetic data has also attracted
limited attention [33,34]. In this case, inclusion of lidar data compression in the acquisition was
endeavored in order to cope with large data volume. The transmitted waveform of the chaotic type
presented in [34] was described to compress waveform data whilst allowing retrieval of the range
information using the DIRSIG simulation model. Higher SNR were perceived in case of chaotic signals
than that of using linear Frequency Modulated (LFM) signals. Reconstructing of randomly generated
surfaces was investigated at different complexity levels through implementing compressed sensing
in [33]. The edges connecting facets could not be retrieved in [33] when the proposed method is based
on the total variation algorithm, while such an algorithm is known for successful retrieval of edges.
In addition, the complexity of surfaces is required in [33] to appropriately retrieve the surface.

The present paper explores the theory of signal deconvolution for improved full-waveform
lidar processing through a reliable sparsity-constrained regularization. In addition, the estimation of
system waveforms based on blind deconvolution is presented and an approach to the determination
of regularization parameters is proposed.

3. Methodology

The proposed approach explores signal deconvolution for target cross-section retrieval. Following
a brief review of two major classes of deconvolution methods and a justification for selection of the
most efficient group, the sparsity-constrained regularization for deconvolution is presented and the
approaches to the sparse solution are detailed. A method based on the L-curve for the determination
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of the regularization parameter is then proposed and a new approach using blind deconvolution for
estimation of the system waveform is developed.

3.1. Deconvolution for Cross-Section Retrieval

Deconvolution is the process of signal and image restoration in a system with linear and
shift-invariant characteristics [35]. There are two major classes of deconvolution methods, namely
direct and iterative. Of the latter group, the Gold [36] and R-L [37,38] are recognized as approaches
that provide signals/images of positive values, provided that the input raw waveform values are
also non-negative [32]. Direct deconvolution methods, on the other hand, involve a regularization
parameter, which controls the level of restoration. The number of optimal iterations in the iterative
methods is of the same level of significance as the regularization parameter in the direct deconvolution
methods, and different values for each of these parameters will surely result in a different solution, and
sometimes may deliver over-smooth or noisy results. Unfortunately, selection of the optimal number of
iterations is still a challenge and changes in this number may result in varying levels of signal recovery
(overestimation or underestimation). In this research, direct deconvolution methods are investigated for
two main reasons. First, an optimal regularization parameter can be more appropriately determined,
so controlling the solution will therefore not be problematic. Second, this class of deconvolution
approaches makes it possible to incorporate additional constraints and conditions [39] and, in turn,
is more flexible compared to the iterative approaches.

3.1.1. Target Cross-Section Retrieval

As mentioned, the process of target cross-section retrieval is an ill-posed problem, and it requires
consideration of additional conditions. In this situation, substantial perturbations can occur in the
restored signal as a consequence of either trivial changes in the received waveform or noise in the
waveform. Therefore, regularization is a necessary way to achieve a stable solution to the deconvolution
problem by providing an approximation after imposing additional constraints [40]. In order to
accomplish the condition, it is necessary to determine an optimal regularization parameter by an
appropriate method [41].

The target cross-section for an extended non-overlapping diffuse surface with reflectivity ρ,
the solid angle of π steradians, and under incidence angle θ, will be [13]:

σex “ 4ρdAcos pθq (1)

where dA “
πR2β2

t
4 is the effective target area illuminated by the laser footprint, for a transmitter with

a typical disk-like aperture with βt as its beamwidth, at the range R.
The received signal power Pr ptq at the receiver is essentially a convolution of the point spread

function (system waveform) S ptq and the unknown differential target cross-section σ ptq, along with
an additive noise term n ptq, and it can be expressed through the following equation [16]:

Pr ptq “ S ptq ˚ σ ptq ` n ptq (2)

In Equation (2), any possible loss of the transmitted pulse energy when intercepted by multi-return
targets (e.g., vegetation) is ignored, and σ ptq represents only the cross-section of the effective areas in
multi-return targets. In order to recover the target response, the effect of convolution in Equation (2)
should be compensated through deconvolution.

3.1.2. Sparsity-Constrained Regularization

Throughout the rest of this paper, waveforms are treated as discrete signals. The general form
of the variational regularization, used to retrieve the temporal target cross-section σ in Equation (2),
is expressed by Gunturk and Li [35] as:

σ “ argmin
σ
t||P´ Sσ||2

` λϕ pσqu (3)
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where, λ P p0,8q is the regularization parameter, ϕ p.q is the regularization function, ||.|| denotes the
Euclidean norm, P is a vector representing the received waveform and S is the blur matrix comprised
of the system waveform.

This objective function seeks a solution by minimizing the sum of squared dissimilarities between
the estimated and the desired solution, while imposing a constraint on the solution to achieve desirable
properties. The first term (residual) in Equation (3) measures how the solution fits the data, and the
regularization term introduces prior information about the solution and imposes a penalty on large
amplitude values of the retrieved signal [42]. The selection of λ should be made with caution, since it
controls the level of signal restoration and different values result in different solutions, and sometimes
may deliver over-smooth or noisy results.

The regularization function plays a critical role and different regularization functions,
appropriate to different specific applications have been introduced in the literature [35].
Tikhonov regularization [43], which is the most common variational regularization method, makes
use of the regularization function ϕ pσq “ ||Lσ||2, where L is a regularization operator. Through a
consideration of prior information and adherence to the Gibbs distribution, the signal probability is
determined by measuring the deviation from smoothness [44]. This is a convex quadratic optimization
problem and can be solved with different approaches [42]. However, the Tikhonov regularization
function, which utilizes the l2-norm, exaggerates data smoothness. The shape of the penalty function
affects the solution. When using the l2-norm, as in Tikhonov regularization, large residuals are allocated
a higher weight than small residuals [42], and also small elements are revealed in the obtained signal
associated with small singular values [45]. As a result, Tikhonov regularization may cause oscillation
around principal peaks, restoring signals with under-estimated amplitude values, and it may also
generate negative amplitude values [32,46]. To avoid such problems, sparsity constraints have been
introduced as an appropriate technique in regularization [35,47]. The term sparsity refers to the
minimum number of nonzero elements within a desired solution that can be included in the objective
function through use of the l0-norm.

Sparse formulation of the regularization solution can be expressed as follows:

σ “ argmin
σ
t||P´ Sσ||2

` λ||Lσ||0u (4)

where ||.||0 represents the sparsity constraint on the solution.
Among the methods for sparse solution, greedy pursuit methods and convex optimization

have proven to be effective and are broadly used whilst also being computationally tractable [48].
The effectiveness of convex relaxation techniques in achieving an appropriate solution for the
sparsity-constrained regularization has been verified to a large extent, especially in cases involving
high noise levels. More importantly, a local optimal point, where it exists in convex optimization,
is also globally optimal [42]. In convex optimization methods the idea is to impose a relaxation
and replace the l0-norm in Equation (4) by its closest convex form, the l1-norm, such that standard
methods in convex optimization can be adopted [48]. The reason for the substitution of the l0-norm
with the l1-norm is that the former results in impractical methods because of the high computational
complexity [35]. The cost function is therefore altered to:

σ “ argmin
σ
t||P´ Sσ||2

` λ||Lσ||1u (5)

In contrast with Tikhonov regularization, substantial weight is assigned to small residuals in
the case of the l1-norm penalty functions in sparse regularization, hence resulting in even smaller
residuals [42]. Additionally, the l1-norm solution does not produce signal elements relevant to small
singular values [45]. Large amplitude values can be recovered by imposing smaller penalties when
adopting the l1-norm solution, in lieu of that of the l2-norm [44]. Also, the oscillations of Tikhonov
regularization can be controlled to a large extent by this solution. The l1-norm regularization method
has been adopted in many applications, from signal/image deconvolution to feature selection, and
to compressed sensing [35,49]. In the case of waveform deconvolution, small elements of the target
response vector are encouraged to become zero, which is an aim of sparse solutions.
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A sparse solution for Equation (5) always exists as a nonlinear function of the noisy observations,
although it is not necessarily unique. However, solving this problem involves high computational
complexity compared to its counterpart in the l2-norm solution due to its non-differentiability [50].

By recasting waveform restoration into the form of the convex problem in Equation (5), advanced
approaches in convex optimization can be explored. Iterative Shrinkage/Thresholding (IST) methods,
based on either the proximal gradient or expectation-maximization [35,51], together with interior-point
methods [42,50,51], are noteworthy examples. To exploit the latter group, the convex optimization
should be converted to a quadratic form, second-order cone programming (SOCP) problem [50,51],
where interior-point methods have proven to be effective in producing highly accurate results
compared with other methods such as the barrier method [42].

3.1.3. Optimization with SOCP

Linear and convex quadratic problems can be expressed in the style of nonlinear convex SOCP
problems, which can be efficiently solved by primal-dual methods [52,53]. The SOCP form of the main
objective function in Equation (5), with σ, u and v as the variables, is written as [42]:

min u` λv s.t. ||Sσ´ P|| ď u, ||σ||1 ď v (6)

Because of the convexity of the cost function and the second-order cone constraint, the SOCP
problem in Equation (6) is a convex problem. In primal-dual interior-point methods, Newton’s
method is employed to calculate the search direction on the central path, from the modified
Karush-Kuhn-Tucker (KKT) conditions. Assigning the residual components (the dual, centrality
and primal residuals) to zero, the Newton step can be obtained as the primal-dual search direction by
solving a set of equations [42].

3.1.4. Blur Matrix Structure

The blur matrix S in Equation (5) should be structured as a function of the system waveform
elements. Undesirable oscillations will likely be revealed in cases where an inappropriate blur model
is defined [54]. The blur matrix can be constructed in the following form [55], where hi represents the
ith element of the system waveform:

S “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

h1 0 0 ¨ ¨ ¨ 0
h2 h1 0 ¨ ¨ ¨ 0
...

...
...

. . .
...

hn hn´1 hn´2 ¨ ¨ ¨ 0
0 hn hn´1 ¨ ¨ ¨ 0

0 0 hn
. . .

...

0 0 0
. . . h1

...
...

...
. . .

...
0 0 0 hn hn´1

0 0 0 0 hn

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(7)

This blur matrix has a Toeplitz form and belongs to the class of zero boundary condition.
The received waveform is a (m + n ´ 1) ˆ 1 vector; with the target cross-section vector of size m ˆ 1,
the system waveform vector of size n ˆ 1 and the dimension of the blur matrix S is (m + n ´ 1) ˆ m.
In Section 3.3, an approach for estimation of the system waveform in cases where it is unknown will
be presented.

3.2. Determination of the Regularization Parameter

Optimal selection of the regularization parameter is important for an ideal adjustment between
the regularization function and the solution residual, as the solution can be significantly affected by
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the selected value [35]. An optimal regularization parameter avoids under-/over-regularized results
and in turn unreliable outputs. Therefore, a proper choice of the regularization parameter needs to be
investigated thoroughly in order to achieve the optimal value.

Among the available approaches, some only deal with the residual term, without considering
the regularization term. Of this type, the discrepancy principle [56] and generalized cross-validation
(GCV) [57] could be mentioned. However, some other approaches, e.g., the L-curve [58], take care of
both terms simultaneously [59].

The discrepancy principle method relies strictly upon a known data noise level and it estimates
the regularization parameter such that the residual term is proportional to the predefined noise
level [54,59]. The known noise level is considered as a highly impractical requirement when dealing
with real data. Hansen et al. [54] highlighted an over-smoothed output yet with a known (or with
a precise estimate of) noise level. Use of a large regularization parameter value makes the output
signal over-smooth, and hence, the detailed description of the target response is not recovered [45,59].
These deficiencies make this approach inappropriate in the case of full-waveform lidar data processing.

Unlike the discrepancy principle, the GCV makes no assumption with regard to the noise level.
The optimal value of the regularization parameter is obtained by minimizing the GCV function, where
the effort is to achieve the minimal value of the residual term and eliminate the influence of small
singular values on the output signal [54,59]. However, the occurrence of high correlation between
noise elements impedes the achievement of an appropriate regularization parameter. Moreover,
finding an absolute minimum value of the GCV function may not be achievable due to difficulty in
locating the function’s minimum value since it is near constant in the vicinity of the minimum [45].
This method is also known for resulting in an overestimated regularization parameter, even in cases of
unnoticeable correlation between errors. When it is applied to data with high noise level, results can
be unsatisfactory [59].

In the L-curve method, both the residual and regularization terms are considered concurrently in
order to find the optimal regularization parameter. In search of the optimal value, these two terms
are plotted against each other for a range of plausible regularization parameter values. The idea is
to find a changing point on the curve, where both terms are minimized simultaneously. This point is
actually the margin between over- and under-regularization of the results and it is a representative
of the optimal value for the regularization parameter [35]. The L-curve method is adopted for
estimation of the optimal regularization parameter in this research in the following way: Suppose
P “ tpRg1 , Rs1q, . . . , pRgn, Rsnqu is a set of n pairs from the regularization (Rgi) and residual term (Rsi)
magnitudes that constitute the vertices of the L-curve for a range of regularization parameter values
(λ1, λ2, . . . , λn). The optimal regularization value λOpt over the aforementioned set of points Pi can
then be conveniently calculated by finding the maximum Euclidean distance. Figure 1 illustrates the
location of the optimal regularization parameter on a sample L-curve.
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3.3. System Waveform Estimation

Waveform deconvolution requires the emitted signal to be known. This information is not always
available in the recorded lidar data. In this section, a new method for estimation of the system
waveform using blind deconvolution is proposed. Under the assumption of an ideally flat target
(at nadir) and considering the measured transmitted signal sM ptq as a convolution of the transmitted
pulse s ptq and the impulse function of the transmitter hS ptq on one side; and assuming the measured
received waveform rM ptq as a convolution of the transmitted pulse s ptq and the receiver impulse
function hR ptq on the other side; the measured received waveform can be expressed in the frequency
domain as [24]:

RM p f q “ SM p f q
HR p f q
HS p f q

“ SM p f qH p f q (8)

The atmospheric propagation is treated as a constant value for similar targets located at similar
ranges from the receiver. Therefore, the average of the system waveform can be obtained by
deconvolution over a number of recorded samples. A prominent approach to eliciting a rough
estimation of the unknown system waveform is to exploit blind deconvolution, which provides an
estimate of both the point spread function (PSF) and the true signal [35,54]. In this research, only
pulses captured at nadir over almost flat targets are taken into account for the calibration. In order
to alleviate the effects of possible changes of the received waveforms from similar targets due to the
noise, changes of the (unknown) system waveform or other unknown sources, the retrieved system
waveforms are averaged. Estimation of the system waveform in this study is carried out using the
iterative damped R-L method [60]. Once the system waveform is estimated, it will be applied to
waveforms from other targets in order to achieve a rough estimate of the target cross-section via
deconvolution. Possible changes in the system waveform, even between subsequent pulses, makes the
retrieved target cross-section only a rough approximation.

3.4. Quantitative Assessment of the Retrieved Waveform

For quantitative comparison of the methods, the Fréchet distance, Spectral Angle Mapper (SAM),
and Pearson correlation coefficient have been utilized to calculate the similarity of the results with the
“true” cross-section signal.

The SAM metric measures the angle between two waveforms via treating them as vectors with
identical lengths, and it can be expressed as follow:

θ “ cos´1

¨

˝

řN
i“1 RtiR fi

b

řN
i“1 Rt2

i
řN

i“1 R f 2
i

˛

‚ (9)

Here, Rt and R f represent the retrieved and reference waveforms, respectively, where i and N are
the index referring to the waveform samples and the total number of samples in a waveform.

The Pearson correlation coefficient r considers the linear relationship between the retrieved
waveform Rt and the reference signal R f in terms of the magnitude and direction:

r “
SS2

Rt,R f

SSRt,RtSSR f ,R f
(10)

where, SSRt,R f refers to the covariance of the waveforms, and SSRt,Rt and SSR f ,R f represent the
standard deviations of each signal.

The Fréchet distance between P : ra, bs Ñ R2 and Q :
“

a1, b1
‰

Ñ R2 as two planar curves, with
d pP pα ptqq , Q pβ ptqqq representing the Euclidean distance between these two curves at specified
vertices, is defined as the minimum required length in connecting two separate paths, when navigating
continuously from one endpoint to the other [61]:

δF pP, Qq “ in f
α,β

max
tPr0,1s

d pP pα ptqq , Q pβ ptqqq (11)
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where a, b P R and a ď b (respectively a1, b1), a (respectively β) is a function with continuous
nondecreasing characteristics from [0, 1] onto ra, bs (respectively

“

a1, b1
‰

), and in f (.) is the “infimum”
or the maximum lower bound of a set.

4. Experiments and Discussion

4.1. Experimental Data

A synthetic dataset and three different real datasets are investigated in order to evaluate the
presented method.

4.1.1. Synthetic Data

Ten synthetic lidar waveforms were generated by convolution of a known system signal
and the given differential target cross-sections. For simplicity, all samples were considered as
mixtures of samples with Gaussian distribution, with various levels of complexity and also different
arrangements of pulses along the signals. This simulated data enables direct comparison of the restored
waveform with the known “truth” data, facilitating quantitative evaluation of the performance of
the deconvolution methods. Different arrangements of pulses with different amplitude values were
considered so as to model different complexities of targets. In order to investigate the robustness of
the methods against noise, the simulated signals were contaminated by three different noise levels
(Gaussian noise with σ = 0.01, 0.02, and 0.05), after imposing a convolution with the synthetic system
waveform. The absolute value of the amplitude values was utilized in order to avoid negative values
resulted from the Gaussian noise. Figure 2 illustrates an example of both the synthetic system signal
and the received waveforms at three different noise levels for limited samples. The true signals have
been generated by computing the probability density functions based on the normal distribution, with
different values assigned to the standard deviation to control the pulse shape.
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Figure 2. (a) The synthetic system waveform; and (b–d) selected sample waveforms at different
noise levels.
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4.1.2. Real LiDAR Datasets

Three different real datasets have been utilized to assess different aspects of the proposed method,
including the approximation of the system waveform and the extraction of radiometric attributes
for different targets. The QLD dataset was acquired over Rockhampton in Queensland, Australia, in
December 2012. The NSW dataset was captured over the Namoi River in New South Wales, Australia
in September 2013, and the third dataset was acquired over the Karawatha forest park in Queensland,
Australia in October 2013. The laser footprint diameters at nadir were approximately 0.30 m, 0.50 m,
and 0.15 m, respectively. A Riegl LMS-Q680i scanner, operating at 1550 nm, with the laser beam width
of 0.5 mrad was used to acquire the datasets. Further details regarding the three lidar missions are
provided in Table 1.

Table 1. Data specification.

Parameter QLD Dataset NSW Dataset Karawatha Dataset

Flying altitude (AGL-m) 600 1000 300
Pulse rate (kHz) 150 240 240

Maximal scan angle (˝) 30 40 25

Although all datasets were recorded with the same instrument, the QLD data was provided
without the system waveforms, while such information was delivered in the NSW and Karawatha
data. With the latter two datasets, more satisfactory results are expected because of the recording of an
equivalent system waveform for each received signal. Partial differences even between subsequent
emitted pulses could then be observed.

As shown in Figure 3, the recorded system waveform in the NSW dataset was usually incomplete
and there is no information at the signal tail. Interestingly, the maximum amplitude of the received
waveform, shown in Figure 3, is higher than the value of the system waveform, which may seem
contradictory. However, it is noticeable that amplitude values of the received waveform and the system
waveform are not necessarily of identical units, which could be connected to the sampling procedure
of the transmitted pulse [5]. The delayed backscattered energy due to multiple scattering within the
tree crown is another possible explanation for this phenomenon.
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Figure 3. (a) A typical recorded waveform in the NSW dataset; and (b) its corresponding original
system waveform.

The diversity of lidar datasets can present challenges in waveform deconvolution and thus the
provision of the QLD, NSW and Karawatha datasets provided a good opportunity to evaluate the
consistency of the proposed regularization method.
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4.2. Preprocessing

The raw incoming waveform typically exhibits a certain level of noise due to sensor impacts
and environment conditions. Moreover, deconvolution might amplify the noise due to its
characteristics [31]. Therefore, a noise reduction method for full-waveform lidar based on the
integration of the Savitzky-Golay (S-G) [62] and the Singular Value Decomposition (SVD) approaches
was employed in the analysis [63]. This approach has advantages for signal pattern preservation,
in addition to avoidance of waveform distortion.

4.3. Deconvolution Results for Synthetic Waveforms

The synthetic data were processed by the proposed regularization approach and the results
were compared to those from the commonly used approaches in signal processing, namely the R-L,
Wiener filter, Tikhonov regularization, and Gaussian decomposition methods. The regularization
parameter was determined by the L-curve method. The performance of the utilized approaches
was quantitatively evaluated through a comparison of the estimated target cross-section with the
“truth” data.

Table 2 explains the parameter tuning for the methods, including the utilized algorithms and the
associated references. The optimal iteration numbers of the R-L method were estimated by calculating
the goodness of fit to the truth data by using the RMSE criterion, through consideration of a wide
range of iteration numbers from 1 to 500. For the Wiener filter, the Noise to Signal Ratio (NSR) was
calculated from the truth data at different noise levels by dividing the variance of the noise elements to
the noise-free signal. Similar to the proposed deconvolution method, the regularization parameter
was estimated by the L-curve method in the case of Tikhonov regularization. The exact number of
expected pulses was assumed to be known in order to apply the Gaussian decomposition method
through application of nonlinear optimization, e.g., the Levenberg-Marquardt algorithm [14].

Table 2. Parameter tuning of the methods.

Method Algorithm Parameter Tuning Reference(s)

Gaussian decomposition Levenberg-Marquardt/Thrust
region (curve fitting in Matlab)

Visual inspection to specify
the number of pulses [14,64]

R-L deconvolution deconvlucy function in Matlab RMSE criterion to select
optimal iteration numbers -

Wiener filtering deconvwnr function in Matlab Noise variance
Signal Variance -

Tikhonov regularization CVX package L-curve [65,66]

Sparsity-based regularization CVX package L-curve [65,66]

Qualitative comparisons of the proposed method against the other four methods are shown in
Figure 4 for selected samples. The figure provides a detailed evaluation of their performance in cases
where the quantitative measures do not necessarily show a better performance of the proposed method.
As shown in Figure 4a, qualitative inspection reveals the weakness of the R-L method in the retrieval
of the second pulse, where two separate pulses are instead generated. Gaussian decomposition
overestimates the amplitude for all three pulses, as well as the area under the first pulse, while the
proposed method marginally overestimates two pulses. The Wiener filter and Tikhonov regularization
methods generate oscillatory pulses that underestimate amplitude values of all pulses. In Figure 4b,
the fourth pulse was not recovered by the R-L method, while the second and the last pulse were also
shifted, with an underestimation of the last pulse as well. The proposed method retrieved all the
pulses at their correct positions and with a minimum of spurious pulses. Gaussian decomposition only
retrieves the third pulse which is marginally shifted. The second and fourth pulses were not retrieved
by the Wiener and Tikhonov methods, while oscillation and underestimation of amplitude values were
apparent. The last pulse was shifted by both the R-L and proposed methods in Figure 4c. Also, the R-L
method could not retrieve the first two pulses and the fourth pulse, and many additional pulses were
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generated, probably as a result of noise amplification. The first two pulses and the last three pulses
were combined separately in two pulses by the Gaussian decomposition, where the amplitude values
were significantly overestimated. The Wiener filter performed slightly better in the retrieval of pulses
than the Tikhonov method, yet the amplitude values were underestimated. In Figure 4d, the sixth
pulse was marginally shifted by the proposed method, while the amplitudes of three other pulses
were overestimated. The R-L method in this case cannot place the fourth pulse, while the first two
pulses were not correctly restored in terms of both their amplitude and pulse locations. In addition,
the last two pulses were slightly shifted and some other false pulses were generated. Two pulses were
retrieved as combinations of the first four pulses by the Gaussian decomposition, where the amplitude
values were overestimated. In Figure 4e, the first, fourth and fifth pulses were not restored by the
R-L method, with spurious pulses instead being generated. The Gaussian decomposition method
retrieved the last two pulses as well as a combination of the first two pulses, with the amplitudes being
overestimated. Tikhonov and Wiener filtering resulted in both oscillations and underestimation of
amplitude values for all pulses. In Figure 4f, the second pulse was not restored in its position using the
R-L method. Gaussian decomposition, on the other hand, does not retrieve the first pulse, while the
last pulse is overestimated in terms of both amplitude and the area under the pulse. The Wiener filter
produces additional pulses, in addition to oscillation around the main peaks, whereas less spurious
pulses were generated using the Tikhonov method. Even though the proposed method occasionally
overestimates some of the pulses, the area under the curves were almost similar to the true signal.
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the R-L, Wiener filter, Tikhonov regularization and Gaussian decomposition methods.

It is noteworthy that the proposed method provides results of higher accuracy, retrieving all the
peaks with minimal oscillations and minimum change in pulse position. By increasing the noise level
to 0.05, better performance of the proposed method becomes more apparent, in comparison with the
R-L method as the second best approach.

Figure 5 shows the comparison of the proposed method versus the R-L method, the Wiener filter,
the Tikhonov regularization and Gaussian decomposition at three different noise levels based upon
different quantitative metrics. Quantitatively, the accuracy of all methods is gradually diminished
with increases in the noise level. According to the similarity metrics, shown in Figure 5, the proposed
approach retrieves the synthetic target responses with higher accuracy in the majority of the cases.
A slightly better performance is apparent for the R-L method at a σ value 0.02. However, the provided
results of the R-L method are based on an ideal number of iterations related to the minimum RMSE
against the true signals, which cannot be readily determined when dealing with real data.

As shown in Figure 5, Tikhonov regularization, Wiener filtering and Gaussian decomposition all
provide signals with the lowest similarity to the truth waveforms. As seen in Figure 4, both Tikhonov
regularization and the Wiener filter approaches result in ringing effects, with better separated pulses
in the Wiener filter at the cost of revealing more spurious pulses and higher negative amplitude values.
Both methods are deficient in regard to retrieval of the amplitude values and they both fail when
dealing with complex waveforms and closely located pulses, with a higher level of pulse omission
for the Tikhonov method. The inferior performance of Gaussian decomposition is mainly due to the
inadequacy of the method in resolving closely located pulses. In addition, it generates pulses with
negative amplitude values, as shown in Figure 6. Such pulses can be easily detected and removed from
further processing, though at the cost of information deficiency. The poor performance of this method
in the retrieval of the true signals is due to the smaller variance (pulse width) of the fitted pulse than
the synthetic system waveform, which ultimately results in no solution for that pulse. The superior
performance of the proposed method can be seen by looking at both the SAM distance and the
correlation coefficient in Figure 5, while differences in terms of the Frechet distance are less noticeable.
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Figure 7 shows the L-curves related to the l1-norm and Tikhonov regularization methods.
The L-curve provides an appropriate basis for determination of the optimal regularization parameter,
which occurs at a balance point, thus demonstrating approximately reciprocal minimum values of both
the residual and regularization terms. Although the optimal regularization parameter for solutions
(at each noise levels) results in roughly similar residual norms (vertical axis), the solution magnitude
(horizontal axis) is evidently larger in the case of the l1-norm method at both noise levels. This implies
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that the solution amplitude can be retrieved with higher values closer to the true cross-section via
the l1-norm, and it confirms the underestimation of amplitude by the Tikhonov method. Overall,
closer similarity to the truth data confirm the potential of the proposed method for retrieval of the
cross-section signal.
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Figure 6. (a,b) Negative amplitudes resulting from Gaussian decomposition. Red curves represent
individual scatterers, while the sum of all Gaussian functions are shown in black.
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Figure 7. The L-curve plots related to the proposed and Tikhonov regularization approaches for the
same waveform at two different noise levels: (a) σ = 0.01 and (b) σ = 0.05.

4.4. QLD Dataset

The system waveform was not available in the QLD dataset. Due to its necessity for target
cross-section retrieval, an estimation of the system waveform was provided by averaging the
waveforms calculated from more than 500 waveform samples through applying blind deconvolution.
The selected asphalt targets from which the system waveform was estimated have very gentle slopes
of 2.4 degrees on average, at nadir. These small slope values cannot be considered as detrimental
to the determination of the system waveform, since the pulse shapes are not distorted significantly
by these gentle slopes. The averaged system waveform estimated based on blind deconvolution is
shown in Figure 8a, where it was applied with the Gaussian decomposition, R-L method, the proposed
method and Tikhonov deconvolution. Based on the USGS spectral library [67] for different types of
asphalt, the reflectivity value of 0.2 proposed by Wagner et al. [14] was adopted since none of the
values in the spectral library were more than 0.2 for the desired wavelength. Figure 8b shows the
restored sample waveforms, where the first two returns are from a canopy and the last pulse belongs
to a grass surface underneath.
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Figure 8. (a) Estimated system waveforms based on blind deconvolution; and (b) restored target
responses using different methods.

The waveforms restored by the considered methods based on the estimated system waveforms
from blind deconvolution were then examined, where prominent peaks are shown in all methods and
marginal fluctuations were revealed in the restored signal in some cases.

From the restored signal, the target cross-section can be calculated. The overall target cross-section
of the third pulse in Figure 8b, obtained simply by calculating the area under the pulse after applying
the range correction [68], is 0.054 for the l1-norm solution and 0.057 for the Tikhonov regularization
method. These values are close to the equivalent value (0.071) obtained for a grass target with an
approximate reflectivity of 0.25 [67] using Equation (1). The target cross-section estimates from
Gaussian decomposition and the R-L methods were 0.082 and 0.046, respectively. This overestimation
by Gaussian decomposition method is explained by the fact that such a function cannot describe all
pulses appropriately. It is noticeable that the second pulse was not recovered when the number of
expected pulses was set to three in the Gaussian decomposition. All three visible pulses could be
restored by setting this value to four instead, while the restoration resulted in a null solution for the
fourth pulse (located immediately after the third pulse).

Marginal underestimation of the total cross-section value by all methods, including the proposed
method but excepting the case using Gaussian decomposition, can be attributed to either the footprint
area being partially occluded by other targets (e.g., leaves) within the laser path which diminishes
the transmitted pulse energy before it reaches the target, or to the approximated system waveform
averaged over several samples. In addition, asphalt may not be ideally representative of a Lambertian
target due to its variable optical characteristics [1]. Nevertheless, the experiment demonstrated the
feasibility of blind deconvolution for estimation of the system waveform. This characteristic was
confirmed in the NSW dataset where system waveforms were recorded.

4.5. NSW Dataset

The NSW dataset allowed further evaluation of the potential of the proposed approach in
situations where the system waveform is recorded. Moreover, the availability of the system waveform
provides an avenue to evaluate the proposed blind deconvolution approach. The effect of the
L-curve method on the determination of regularization parameters can then be investigated and
the performance of the proposed l1-norm regularization approach can be compared to that of the other
considered methods.

4.5.1. Evaluation of Blind Deconvolution for System Waveform Estimation

Over 4000 waveforms captured at nadir over non-asphalt flat targets were selected for the
estimation of the system waveform, with the retrieved system waveform being plotted against the
average of the recorded system waveforms in Figure 9a. The result shows that the shapes of both system
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waveforms are similar. The amplitude of the estimated waveform is slightly larger. This difference is
explained by the fact that they are averaged over many samples, in which the arithmetic mean can be
affected by extreme values. The SAM measure between the estimated and the averaged real waveforms
is as small as 6.8 degrees. This result strongly supports the use of blind deconvolution for system
waveform estimation when such information is not available. The retrieved temporal cross-section
of a returned lidar waveform obtained using these two system waveforms in the proposed l1-norm
solution in the NSW dataset is shown in Figure 9b where similar amplitude values are seen in both
pulses, through the first pulse is marginally underestimated when the estimated system waveform
is adopted.
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Figure 9. (a) The reconstructed system waveform by blind deconvolution versus the average of the
recorded system waveforms; and (b) comparison of the restored signals based upon the original
incomplete system waveform and that retrieved from blind deconvolution.

4.5.2. Target Cross-Section Recovery

Figure 10a illustrates the L-curve plots, which depict the associated magnitudes of the residual
and the regularization terms for a range of expected regularization parameters of the waveform in
Figure 3 for the l1-norm and Tikhonov regularization approaches. As seen, the maximum magnitude of
the regularization term (horizontal axis) in the proposed l1-norm approach is larger than the magnitude
of this term for Tikhonov regularization, implicitly confirming the potential of the former approach in
the retrieval of a signal with higher amplitude values.

Larger regularization parameters for Tikhonov regularization (λ = 32.37) represent the placing of
more emphasis on the regularization term and forcing the residual term to smaller values. Nevertheless,
as shown in Figure 10b, the deconvolved signal was affected by noise and underestimation of the main
amplitude values, together with fluctuations in between major amplitude values, which will occur as a
consequence of the intrinsic characteristics of the l2-norm, as well as smaller regularization terms, in
comparison with the proposed l1-norm solution. On the other hand, while a smaller regularization
parameter for the l1-norm method (λ = 15.26) indicates less emphasis on the regularization term,
it allows the regularization magnitude to reach higher amplitude values. The deconvolved signal with
the l1-norm reveals the least artifacts or oscillations, especially around the main peaks.

Even though the nonlinear optimization results in the desired parameters for both pulses,
Gaussian decomposition fails to retrieve the second pulse, mainly due to the smaller pulse width
(variance) of the fitted function than that of the system waveform. This example clearly shows the
deficiency of such a method in the retrieval of the target cross-section, even for pulses that are clearly
separated. The R-L method results in a signal similar to that of the proposed method, when marginal
over-/under-estimation of the pulses is evident.
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Figure 11 presents a complex lidar waveform in the NSW dataset. The lidar signal penetrated
through the tree canopy before reaching the ground, producing multiple peaks with varying
amplitudes. The effect of multiple scattering reduces the strength of the pulses and causes delay
in the returns, resulting in a long tail in the received waveform. The result of the implemented
denoising approach in Azadbakht et al. [63], on the received waveform, is illustrated in Figure 11a.

The restored signals using the proposed l1-norm method in comparison with those from the
Tikhonov, Wiener and R-L approaches using the recorded system waveform are presented in Figure 11b.
The l1-norm regularization reveals all the peaks with no oscillation or negative amplitude. In the
l1-norm solution, small amplitude values between the main pulses, and after the ground return
(last pulse), can be related to tree leaves and branches. The weak signals may be attributed to multiple
scattering of tree foliage or to noise. Spikey-like pulses emerge in the case of the R-L approach, as the
closest approach to the l1-norm method in terms of cross-section retrieval, probably as a result of noise
amplification. This confirms the vulnerability of the R-L method illustrated earlier using the synthetic
dataset (Section 4.3). In comparison to all other methods, the R-L method produces a significantly
overestimated amplitude for the first pulse. The largest oscillation and negative amplitudes in the
restored waveforms are associated with the Tikhonov method, due to the inherent properties of the
l2-norm solution. Next is the Wiener filter with slightly smaller estimated amplitude values in addition
to oscillation. In Figure 11, none of the pulses were retrieved using Gaussian decomposition, principally
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due to the system waveform being wider than the fitted Gaussian pulses in the received waveform.
This method could also not fit a pulse to the second return when three pulses were considered as an
initial value for the nonlinear optimization problem.
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4.6. Karawatha Dataset

The target cross-section, the reflectance and the backscatter coefficient [15] of three types of
extended non-overlapping targets were calculated, after retrieval of the temporal cross-sections and
application of further required corrections [68]. Samples were collected over a range of scan angles from
nadir to 25 degrees by inspecting points in a high resolution aerial photograph, taken simultaneously.
Except for water bodies that were only available at limited scan angles, a total of around 200 samples
were collected for each target.

Diffuse target reflectance behaviour was assumed in the calculation of the radiometric features,
although this assumption is not valid for some targets, e.g., water bodies. However, relatively small
reflectance values are due to the low strength of the received signal at off-nadir, for instance in the case
of water bodies with specular reflectance characteristics. The provided results from the boxplots in
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Figure 12 confirm the reliability and relevance of the proposed approach in lidar waveform restoration.
These targets can be readily distinguished only by using the radiometric information, while their
height is almost similar and, therefore, geometric attributes are not effective.Remote Sens. 2016, 8, 648; doi:10.3390/rs8080648 22 of 26 
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Figure 12. (a) Target cross-section; (b) the reflectance; and (c) the backscatter coefficient for the selected
targets aggregated over different scan angles.

5. Conclusions

This paper has presented a new deconvolution approach for efficient target cross-section extraction
from full-waveform lidar data. The deconvolution, which removes the lidar system signal from
the returned waveform and reconstructs the target cross-section independently of the instrument,
is achieved through a versatile regularization approach with sparsity constraints, which copes
with different kinds of waveforms. The regularization parameter, a critical issue in deconvolution,
is determined with the L-curve method in which the optimal parameter is found at the turning point
of the curve. Blind deconvolution is proposed to estimate the system signal, which is necessary on
lidar instruments that do not record the system waveform.

The proposed approach has been evaluated using both synthetic and real lidar datasets acquired
with and without system waveforms. While the synthetic data allowed for evaluation with “true”
target cross-section, the real data provided an avenue to assess the consistency of the proposed
approach under different instrument and environmental conditions. The results with synthetic data
showed that the l1-norm regularization, with the regularization parameter derived by the L-curve
method, is superior to Tikhonov regularization, the Wiener filter, Gaussian decomposition and the R-L
methods, which currently attract wide usage in lidar signal processing. The restored waveforms are
strongly similar to the truth data despite the interference of different noise levels (Section 4.3).

The effectiveness of the proposed deconvolution method has been further demonstrated in
experimental testing with real data, with and without system signals. It has been shown that
the l1-norm approach always results in a deconvolved signal almost free of substantial oscillations
and negative amplitude values, while such phenomena are usually present with other approaches.
Taken together, the findings of this study support adoption of sparse regularization as a means to
retrieve the target response from full-waveform lidar.

The L-curve method has been shown to be reliable in the determination of the regularization
parameter, as demonstrated in the experiments with both synthetic and real data.

Another finding to emerge from this research is that blind deconvolution has been demonstrated
to be useful in the estimation of the system waveform when it is not available. Comparisons between
the restored lidar waveforms using the system waveform based on blind deconvolution has been
reported. Although restoration of the exact target response is not anticipated, due to the approximate
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estimation of the system waveform by averaging over several selected samples, the results demonstrate
the consistency of the reported method in retrieving all pulses. Moreover, investigation of the blind
deconvolution in the NSW dataset showed that the retrieved system waveform is in close agreement
with the average system waveform of more than 3000 waveform samples. These visual and qualitative
assessments indicate the significance of blind deconvolution in the retrieval of the system waveform,
and they confirm that the deconvolved signal is associated with the target cross-section.

It is concluded that the proposed regularization approach can efficiently process full-waveform
lidar data to restore the target cross-section. The use of this approach will provide additional insight
into the waveform data. The restored cross-section affords the potential identification of either desired
reflecting surfaces or even specific targets in a more consistent manner than is achieved with other
approaches, thus improving the accuracy of range measurement and target attribute retrieval.

Future research will concentrate on investigation of the extracted geometric and radiometric
features using the proposed method, along with additional potential attributes from the restored
signal. Moreover, since direct regularization methods support inclusion of new constraints to better
control the solution, investigation of additional term(s) in the objective function may result in even
higher accuracy.
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