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Abstract: Kernel-based methods and ensemble learning are two important paradigms for the
classification of hyperspectral remote sensing images. However, they were developed in parallel with
different principles. In this paper, we aim to combine the advantages of kernel and ensemble methods
by proposing a kernel supervised ensemble classification method. In particular, the proposed method,
namely RoF-KOPLS, combines the merits of ensemble feature learning (i.e., Rotation Forest (RoF)) and
kernel supervised learning (i.e., Kernel Orthonormalized Partial Least Square (KOPLS)). In particular,
the feature space is randomly split into K disjoint subspace and KOPLS is applied to each subspace
to produce the new features set for the training of decision tree classifier. The final classification
result is assigned to the corresponding class by the majority voting rule. Experimental results on two
hyperspectral airborne images demonstrated that RoF-KOPLS with radial basis function (RBF) kernel
yields the best classification accuracies due to the ability of improving the accuracies of base classifiers
and the diversity within the ensemble, especially for the very limited training set. Furthermore, our
proposed method is insensitive to the number of subsets.

Keywords: Rotation Forest; Kernel-based methods; Kernel Orthonormalized Partial Least Square;
classification; hyperspectral data

1. Introduction

Hyperspectral remote sensing images, which can record hundreds of contiguous spectral bands
in each pixel of the image, contains plenty of spectral information. The growing availability of
hyperspectral imagery has opened up a new area for the investigation of the urbanization, land cover
mapping, surface material analysis and target detection with improved accuracy [1–5]. The rich
spectral information in hyperspectral images provides a great potential for generating more accurate
classification maps compared to the ones produced by the multi-spectral images.

However, high dimensionality and relatively small size of training set pose the well-known
Hughes phenomenon, which limits the performances of supervised classification methods [6]. In
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order to alleviate this problem, many strategies have been proposed. As far as classification
algorithms are concerned, ensemble learning or classifier ensemble has been shown to have the
ability of alleviating the contradict of small training set and high-dimensionality. Furthermore,
ensemble learning proved to provide better and more robust solutions in numerous remote sensing
applications [7–9] in terms of the variety of available classification algorithms and the complexity of
the hyperspectral data. The effectiveness of an ensemble method relies on the diversity and accuracy
of the base classifiers [10,11]. Since the ensemble is typically more effective than a single classifier,
many approaches have been developed and widely used in remote sensing applications [12–16].
For instance, [15] applied multiple classifiers (e.g., Bagging, Boosting and consensus theory) to
multisource remote sensing data, and demonstrated that they outperformed several traditional
classifiers in terms of accuracies. In [16] suggested that the Random Forest (RF) classifier performed
equally to or better than the support vector machines (SVMs) for the classification of hyperspectral
data. In particular, a special attention has been paid to the Rotation Forest (RoF), which is a relatively
new classifier ensemble that can improve the accuracy of individual classifiers and diversity within the
ensemble simultaneously [17]. The authors of [18–20] adapted RoF to classify hyperspectral images
and found that it achieved better performances then traditional ensemble methods, e.g., Bagging,
AdaBoost and RF. The authors of [21] proposed to apply RoF and RF for fully polarized SAR image
classification using polarimetric and spatial features, and demonstrated that RoF can get better accuracy
than SVM and RF.

Although RoF has demonstrated great performances in the classification of hyperspectral data,
feature extraction methods used in RoF are limited to unsupervised ones in the previous studies, e.g.,
principle component analysis (PCA). RoF builds classifier ensembles based on independent decision
tree by using feature extraction and random subspace so that each tree is trained on the training
samples in a rotated feature space. It must be pointed out that, in the context of RoF, all the components
derived from the feature extraction are kept, the discriminatory information is preserved even though
it lies with the component responsible for the least variance [17]. According to the available prior
class information, feature extraction as a pre-processing step of hyperspectral image analysis can be
categorized into unsupervised and supervised ones [22,23].

In terms of feature reduction, PCA is one of the most popular unsupervised feature extraction
methods in remote sensing community [24,25]. In contrast, supervised methods take into account prior
class information to increase the separability of classes. A number of supervised feature extraction
approaches, e.g., Fisher’s linear discriminant analysis (FLDA) [26], partial least square regression
(PLS) [27] and orthonormalized partial least square regression (OPLS) [28], have been developed.
In remote sensing community, a modified FLDA was presented for the dimensionality reduction of
hyperspectral remote sensing imagery, and the desired class information was well preserved and
separated in the low-dimensional space [29]. The authors of [30] have found that PLS was superior to
PCA when achieving the goal of discrimination and dimensionality reduction. OPLS is a variant of
PLS, which is applicable to supervised problems, with certain optimality conditions regarding PLS.
Moreover, considering that OPLS projections are obtained to predict the output labels, in consequence
much more discriminative projection vectors are extracted compared to LDA, PLS [31,32].

A critical shortcoming of supervised feature extraction methods mentioned above is that they
are based on the linear relation between the input and output spaces, which does not reflect the real
data behavior [31,33,34]. In order to alleviate this problem, kernel methods have been developed and
applied to the feature selection and feature reduction in hyperspectral image [35,36]. Moreover, as far
as OPLS is concerned, the estimation of required parameter in OPLS is inaccurate without sufficient
training set [37]. In order to circumvent these limitations, a non-linear version of OPLS, i.e., kernel
OPLS (KOPLS), has been developed [38]. It is a very powerful feature extractor due to its appealing
property of obtaining the non-linear projections by using kernel functions. In [31], experimental results
revealed that KOPLS largely outperformed the traditional (linear) PLS algorithm especially in the
context of nonlinear feature extraction.
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In view of the above-mentioned facts, in this paper, we propose a novel kernel supervised feature
learning classification scheme, namely RoF-KOPLS, which succeeds in taking advantages of the merits
of KOPLS and RoF simultaneously. In the training step, the feature space is randomly split into
K disjoint subspace and KOPLS is applied to each subspace to generate the kernel matrix and the
transformation matrix. Then all the extracted features are retained to reformulate the new feature set
for the training of decision tree (DT) classifier. In the prediction step, the new feature set of test samples
is obtained by the kernel matrix and the transformation matrix, and then used to predict the class
labels. The final classification result is assigned to the corresponding class which gets the maximum
number of votes. We would like to emphasize that in this work we focus on pixel-wise classification,
although RoF can be combined with spatial information, such as Markov random fields [20]. In order
to examine the effectiveness of the proposed classification algorithm, experiments were conducted
on two different hyperspectral airborne images: an AVIRIS image acquired over the Northwestern
Indiana’s Indian Pines site and a ROSIS image of the University of Pavia, Italy.

The remainder of this paper is organized as follows. In Section 2, Rotation Forest and OPLS are
introduced. In Section 3, the proposed classification scheme is described based on the introduction
of OPLS, KOPLS and RoF. Experimental results obtained on two different hyperspectral images are
presented in Section 4. In Section 5, experimental results are discussed. Finally, we conclude this paper
with some conclusions and future lines.

2. Related Works

2.1. Rotation Forest

Rotation Forest is a novel ensemble classifier for building independent decision trees built on
the different sets of extracted features [17]. The main steps of RoF are summarized as follows: (1) the
feature space is randomly split into K disjoint subsets and each subset contains M features; (2) PCA is
applied to each feature set with a bootstrapped samples of 75% size of the original training set; (3) a
sparse rotation matrix Ri is constructed by concatenating the coefficients of the principal components
in each subset; (4) an individual DT classifier is trained with the new training samples formed by
concatenating M linear extracted features in each subset; (5) by repeating the above steps several times,
multiple classifiers were generated, and the final result is achieved by combining the outputs of all
classifiers. The main training and prediction steps of RoF are shown in Algorithm 1. Classification and
regression tree (CART) is adopted as the base classifier in this paper because of its sensitiveness to the
rotations of axes [39]. The Gini index, is used to select the best split in the construction process of DT.

2.2. Orthonormalized Partial Least Square (OPLS)

OPLS is a multivariate analysis method for feature extraction, which exploits the correlation
between the features and the target data by combining the merits of canonical variate analysis and
PLS [28,31,32]. Given a set of training samples {X, Y} = {xi, yi}n

i=1, where xi ∈ RD and yi ∈ R. n
and D represent the number of training samples and the dimensionality, respectively. Let X and Y
represent X = [x1, · · · , xn]

> and Y = [y1, · · · , yn]
>, respectively. Here, we denote by X̃ and Ỹ the

columnwise-centered version of X and Y, and denote by d the number of extracted features from the
original data. Let CXY = 1

n X̃>Ỹ represent the covariance between X and Y, whereas the covariance

matrix of X is given by CXX = 1
n X̃>X̃. U ∈ RD×d is referred as the projection matrix, thus the extracted

features can be formulated by X̃′ = X̃U.
The objective of OPLS is formulated as Equation (1)

OPLS: maximize: Tr
{

U>CXYC>XYU
}

subject to: U>CXXU = I (1)
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OPLS is optimal (i.e., in the sense of mean-square-error) for performing linear multiregression on
a given number of features extracted from the input data [40].

Algorithm 1 Rotation Forest

Input: {X, Y} = {xi, yi}l
i=1: training samples, T: number of classifiers, K: number of subsets (M:

number of features in each subset), L: base classifier. The ensemble L = ∅. F: Feature set
1: for i = 1 : T do
2: randomly split the features F into K subsets Fi

j
3: for j = 1 : K do
4: form the new training set Xi,j with Fi

j
5: generate X̂i,j by using the bootstrap algorithm, the 75% of the initial training samples
6: using PCA to transform X̂i,j to get the coefficients v(1)i,j , ..., v(Mk)

i,j
7: end for
8: sparse matrix Ri is composed of the above coefficients

Ri =


v(1)i,1 , ..., v(M1)

i,1 0 · · · 0

0 v(1)i,2 , ..., v(M2)
i,2 · · · 0

...
...

. . .
...

0 0 · · · v(1)i,j , ..., v(MK)
i,j


9: rearrange Ri to Ra

i so as to correspond to the original feature set
10: build an DT classifier Li using

{
XRa

i , Y
}

11: add the classifier to the current ensemble, L = L ∪ Li.
12: end for

Prediction phase
Input: The ensemble L = {Li}T

i . A new sample x∗. Rotation matrix:Ra
i .

Output: class label y∗
1: get the output ensemble with x∗Ra

i
2: calculate the confidence x∗ for each class, yj, by average combination method: p(yi|x∗) =

1
T ∑T

i=1 p(yi|x∗Ra
j ). As a result, x∗ is assigned to the class with the largest confidence.

3. Proposed Classification Scheme

3.1. Kernel Orthonormalized Partial Least Square (KOPLS)

OPLS assumes that there exists the linear relation between the input features and the label. It might
not be applicable when the linearity assumption is not hold. Kernel methods have been developed to
alleviate this problem and demonstrated to be effective in many application domains [41,42]. In kernel
methods, the original input data is mapped into a high or even infinite dimensional feature space by a
non-linear function. The core of kernel methods lies in the implicit non-linear mapping since only the
inner products are needed in the transformation [38,43].

Let us consider the function φ : RD → H that maps the input data into a Reproducing Kernel
Hilbert feature spaceH of very high-dimension or even infinite dimension. Thus, the input variables
{xi, yi}n

i=1 is mapped to {φ(xi), yi}n
i=1, where Φ ∈ Rn×dim(H) is the non-linear mapping with i-th row

of vector φ(xi). The extracted features can be given by Φ′ = ΦU.
The kernel version of OPLS can be expressed as follows:

KOPLS: maximize: Tr
{

U>Φ̃>ỸỸ>Φ̃U
}

subject to: U>Φ̃>Φ̃U = I (2)

where Φ̃ is the centered version of Φ.
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According to the Representer Theorem [41], each projection vector in U can be written as the
linear combination of the training data, such as U = Φ̃>A, where matrix A = [α1, · · · , αd] and αi is the
column vector containing the coefficients for the i-th projection vector [31], which is a new argument
for the maximization optimization problem. KOPLS method can be reformulated as follows:

KOPLS: maximize: Tr
{

A>KXỸỸ>KXA
}

subject to: A>KXKXA = I (3)

where, the kernel matrix is defined as Kx = Φ̃>Φ̃. In this paper, three kernels are used:

• Linear Kernel:
[le f tmargin = ∗, labelsep = 5mm]K(xi, xj) = xi · xj (4)

• Polynomial Kernel:

K(xi, xj) = (xi · xj + 1)c, c ∈ Z+ (5)

• Radial Basis Function Kernel:

K(xi, xj) = exp(−
∥∥xi − xj

∥∥2

2σ2 ), σ ∈ R+ (6)

3.2. Rotation Forest with OPLS

Rotation Forest with OPLS (RoF-OPLS) is a variant of RoF. The major difference between RoF
and RoF-OPLS is that OPLS is used to extract features for RoF-OPLS, while the feature extraction of
RoF is based on PCA. The main steps of RoF-OPLS are: firstly, divide the feature space into K disjoint
subspaces; then, OPLS is applied to each subspace with the boostrapped samples of 75% of the training
set; in the next step, the new training set obtained by rotating the original training set is treated as
input to the individual classifier; finally, by repeating the above steps several times, the final result is
generated by combining the outputs of all classifiers.

3.3. Rotation Forest with KOPLS

The success of MCSs (Multiple Classifier Systems) depend on not only the choice of base classifier,
but also the diversity within the ensemble [12,44]. Aiming at improving both the diversity and
classification accuracies of the DT classifiers within the ensemble, we propose a novel ensemble
method, i.e., Rotation Forest with KOPLS (RoF-KOPLS), which aims at combining the advantages of
KOPLS and RoF together. The proposed method can be summarized with the following steps (see
Algorithm 2 and Figure 1). In the training phase, the feature space is randomly split into K disjoint
subspace. For each subset, the initial training samples with 75% are drawn from the training data
by using a bootstrap sampling method. KOPLS is applied to each subspace to get the coefficients
Rk. In the next step, the kernel matrices of X̂i,j are calculated, and an individual classifier is trained
on the extracted features Fnew

i . In the prediction phase, the kernel matrices between X̂i,j and a new
sample x∗ is generated firstly. Then, the new transformed dataset Ftest

i is classified by the ensemble,
and the final result will be assigned to the corresponding class by the majority voting rule. We expect
that RoF-KOPLS can improve the performance of RoF-OPLS by introducing further diversity by
performing a kernel feature extraction within the ensemble. The base classifiers in RoF-KOPLS are
expected to be more diverse compared to these in RoF-OPLS, thus yielding more powerful ensemble.
Furthermore, depending on the types of kernel function, RoF-KOPLS can be more specific, i.e., RoF
with linear kernel (RoF-KOPLS-Linear), RoF with polynomial kernel (RoF-KOPLS-Polynomial), and
RoF with RBF kernel (RoF-KOPLS-RBF).
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Algorithm 2 Rotation Forest with KOPLS
Training phase
Input: {X, Y} = {xi, yi}l

i=1: training samples, T: number of classifiers, K: number of subsets, M:
number of features in a subset, L: base classifier. The ensemble L = ∅. F: Feature set

Output: The ensemble L
1: for i = 1 : T do
2: randomly split the features F into K subsets Fi

j
3: for j = 1 : K do
4: form the new training set Xi,j with Fi

j
5: randomly select the 75% of the initial training samples to generate X̂i,j
6: using KOPLS to transform X̂i,j with the aim of getting the coefficients Ri,j =

[
α1

i,j, · · · , αM
i,j

]
7: calculate the kernel matrices by X̂i,j, Ktraini,j = K(X̂i,j, X̂i,j)
8: end for
9: the features extracted will be given by: Fnew

i =
[
Ktrain>i,1Ri,1, · · · , Ktrain>i,KRi,K

]
10: train a DT classifier Li using

{
Fnew

i , Y
}

11: add the classifier to the current ensemble, L = L ∪ Li.
12: end for

Prediction phase
Input: The ensemble L = {Li}T

i . A new sample x∗. Rotation matrix: R.
Output: class label y∗

1: for i = 1 : T do
2: for j = 1 : K do
3: generate the kernel matrices between X̂i,j and x∗, Ktestk = K(X̂i,j, x∗i,j)
4: generate the test features of x∗, Ftest

i =
[
Ktest>i,1Ri,1, · · · , Ktest>i,kRi,K

]
5: end for
6: run the classifier Li using Ftest

i as input
7: end for
8: calculate the confidence x∗ for each class and assign the class label p(yi|x∗) = 1

T ∑T
i=1 p(yi|Ftest

i ) to
the class with the largest confidence.

Subset 1 Subset 2 Subset KM M M

 

KOPLS KOPLS KOPLS 

Subset 1 Subset 2 Subset K

M M M
 

Step 1

Split features

Step 2

Boostrap sampling

Step 3

Data transformation

Rotation Matrix

Step 4

Kernel matrices

Training 

samples

CART

Iteration 1
 

The ensemble model

Kernel matrices

Step 5

CART

Subset 1 Subset 2 Subset KM M M

 

KOPLS KOPLS KOPLS 

Subset 1 Subset 2 Subset K

M M M
 

Rotation Matrix

Training 

samples

CART

Iteration T

Kernel matrices

For pixel x∗ , the output class probability p(yi |x∗) = 1
T ∑T

i=1 p(yi |Vi).

Figure 1. Illustration of the RoF-KOPLS.
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4. Experimental Results

Two popular hyperspectral airborne images were used for experiments. More detailed
descriptions of the two data sets and the corresponding results are discussed in the next
two subsections.

The following measures were used to evaluate the performances of different
classification approaches:

• Overall accuracy (OA) is the percentage of correctly classified pixels.
• Average accuracy (AA) is the average of percentages of classified pixels for individual class.
• Kappa coefficient (κ) is the percentage of agreement corrected by the level of agreement that would

be expected by casually [23].

For the purpose of analysing the ensemble clearly, we adopted the following measures to estimate
its performance.

• Average of OA (AOA) is the average of OAs of individual classifiers within the ensemble.
• Diversity in classifier ensemble. Diversity has been regarded as a very significant characteristic in

classifier ensemble [45]. In this paper, coincident failure diversity (CFD) is used as the diversity
measure [10]. The higher the value of CFD, the more diverse the ensemble.

4.1. Results of the AVIRIS Indian Pines Image

The Indian Pines image was acquired by the Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS) sensors over the Indian Pines test site in Northwestern Indiana of an agricultural area.
The image is 145 × 145 pixels, with a spatial resolution of 20 m per pixel. In order to evaluate the
performance of our proposed methods, all full spectral bands, including 20 noisy and water absorption
bands, was used for experiment. It is composed of 220 spectral channels in the wavelength ranging
from 0.4 to 2.5 µm. Sixteen classes of interest are reported in Table 1. Figure 2 depicts the three-band
false color composite image and the reference data of this image.

In order to evaluate the performance of the proposed classification techniques, some methods
including support vector machine(SVMs), DT, RotBoost [46,47], DT with KOPLS (DT-KOPLS), and
RoF-PCA were implemented for comparison. The reason why we select SVMs and DT in comparison
to the proposed methods is that they are two of the leading classification techniques of hyperspectral
data. As fa as SVM is concerned, the radial basis function kernel is choosen for classification, which
include two parameters (i.e., penalty term C and the width of the exponential σ). Furthermore, in our
experiments, fivefold cross-validation was used to select the best combination of parameters under the
condition that C and σ were set to [2−4, 212] and [2−10, 25], respectively. Furthermore, DT-KOPLS is the
variant of DT. In terms of RoF-PCA, it is a ensemble method using independent DT built on a different
set of extracted features. It is worth noting that the feature extraction for RoF-PCA is based on PCA.
For DT-KOPLS, KOPLS is used for feature extraction prior to DT classifier. The range of extracted
components is from 2 to 30. In this paper, three kernels, e.g., linear, RBF and polynomial, are used
in KOPLS feature extraction prior to DT classifier. Only the best results are reported in this paper.
The kernel width σ in RBF kernel was computed by the median of all pairwise distances between the
samples [48], and c in polynomial kernel was set to 2. The reported results were achieved by averaging
the results obtained from ten Monte Carlo runs. According to our previous studies [19,20], T is set to
be 10 in the ensembles.

The number of features in a subset (M) is a crucial parameter for the Rotation Forest ensembles.
In order to investigate the impact of M on the performance of different classification scheme, we
randomly select a very limited training set, i.e., 10 samples per class. The evaluation of OA with the
increase of M is depicted in Figure 3. It should be noted that, the value of M should be less than the
number of classes for RoF-OPLS. For other methods, M ranges from 2 to 110. The results presented in
Figure 3 obviously show that there is no consistent pattern of the relationship between M and OAs,
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which is in accordance with the conclusions obtained in our studies [20,49]. The OAs obtained by
RoF-KOPLS-Linear and the RoF-KOPLS-Polynomial decrease as the increase of M. In particular,
it is worth noting that the RoF-KOPLS-RBF can obtain the best OAs in all cases. Furthermore,
RoF-KOPLS-RBF is insensitive to M in comparison with other classification methods when the value
of M is greater the number of classes (i.e., 16). Another observation is that, the optimal values
of M for different classification methods are various. For instance, RoF-KOPLS-RBF achieves the
best classification result when M = 100. To ensure a fair comparison, the optimal values of M are
independently selected for specific methods. Thus, the optimal values of M for RoF-OPLS, RoF-PCA,
RoF-KOPLS-RBF, RoF-KOPLS-Linear, RoF-KOPLS-Polynomial were set to be 14, 100, 100, 4 and 4,
respectively. Figure 4 plots the classification maps obtained by the individual and ensemble learning
methods (only one Monte Carlo run).

(a) (b)

Figure 2. AVIRIS Indian Pines data set. (a) Three-band color composite (bands 57, 27, 17);
(b) Ground-truth map containing 16 mutually exclusive land-cover classes. The legend of this scene is
shown at the bottom.
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Figure 3. Indian Pines AVIRIS Image. OAs obtained by DT, RoF-PCA, RoF-OPLS, RoF-KOPLS-Linear,
RoF-KOPLS-Polynomial, RoF-KOPLS-RBF with different number of M.
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Table 1. Overall, Average and Class-specific Accuracies for the Indian Pines AVIRIS image.

Class Train Test SVM DT RotBoost DT-KOPLS RoF-PCA RoF-OPLS
RoF-KOPLS

RBF Linear Polynomial

Alfalfa 10 54 76.30 74.81 82.50 42.41 85.91 86.11 89.81 81.85 73.52
Corn-no till 10 1434 27.33 29.87 56.64 11.05 52.01 46.69 53.18 39.52 32.36

Corn-min till 10 834 33.39 26.62 50.85 16.94 50.69 45.30 47.28 44.44 36.02
Bldg-Grass-Tree-Drives 10 234 56.37 26.79 75.00 8.550 66.16 73.55 67.31 49.15 45.68

Grass/pasture 10 497 53.76 57.24 76.18 34.35 71.17 72.72 78.17 69.72 69.72
Grass/trees 10 747 60.83 40.13 83.88 26.05 81.38 74.66 88.59 69.65 64.79

Grass/pasture-mowed 10 26 90.77 82.69 90.63 68.08 91.87 92.31 95.00 91.54 87.31
Corn 10 489 51.76 49.28 82.15 25.01 78.04 64.34 87.83 67.71 62.35
Oats 10 20 94.00 83.50 96.00 50.50 95.00 95.00 100.0 89.50 87.50

Soybeans-no till 10 968 45.61 31.24 67.12 17.07 62.21 54.32 55.51 52.36 40.19
Soybeans-min till 10 2468 34.89 30.06 43.00 17.32 41.17 29.11 41.17 34.85 31.67

Soybeans-clean till 10 614 32.98 24.92 48.66 14.66 45.15 40.54 56.81 31.89 23.21
Wheat 10 212 93.54 84.95 96.63 50.09 94.70 95.61 98.49 89.25 87.36
Woods 10 1294 67.67 68.63 80.02 37.33 73.75 80.02 83.79 73.22 70.83

Hay-windrowed 10 380 29.76 35.03 38.08 11.34 43.38 45.18 52.50 38.53 30.82
Stone-steel towers 10 95 88.00 89.68 97.41 64.42 95.29 92.21 90.84 91.58 92.63

OA 44.73 39.56 61.50 21.55 58.29 53.38 61.44 50.83 45.40
AA 58.56 52.22 72.80 30.95 70.49 67.98 74.14 63.42 58.50

κ 38.65 33.17 57.03 14.62 53.52 48.21 56.98 45.38 39.53
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(a) (b) (c)

(d) (e) (f)
.

Figure 4. Classification maps of the Indian Pines AVIRIS image (only one Monte Carlo run). OAs of
the classifiers are presented as follows: (a) DT (40.20%); (b) RoF-PCA (57.39%); (c) RoF-OPLS (54.97%);
(d) RoF-KOPLS-Linear (45.39%); (e) RoF-KOPLS-Polynomial (42.80%); (f) RoF-KOPLS-RBF (64.25%)

4.2. Results of the University of Pavia ROSIS Image

In the second study, the proposed scheme was tested on the ROSIS image, which is collected
from an university area with a spatial resolution of 1.3 m and 103 bands. The original recorded image
has a spatial dimension of 610 × 340 pixels, with 103 channels left for experiments by removing 12
noisy bands. Nine classes of interest are contained in the reference data with a total number of 42776
labeled samples. A false color composite image and the reference data are shown in Figure 5. For this
experiment, we randomly select only 10 samples per class as training samples, which represents a very
limited training set. In order to ensure a fair comparison, we conducted ten independent runs for each
experiment in terms of training samples selection and classification.

In the first experiment, the impacts of M on the global accuracies obtained by all classification
approaches were investigated. For the RoF-OPLS algorithm, the value of M should be less than the
number of classes. Hence, the values of M were set to be 4, 5, 7 and 8. However, this limitation is
not necessary for RoF-KOPLS and RoF-PCA methods. In order to clearly examine the effect of M on
the OAs obtained by RoF-KOPLS and RoF-PCA methods, the value of M was set to the range from
4 to 60. Figure 6 shows the OAs obtained by different methods as a function of different values of
M. Similar conclusion can be drawn with the former experiments. First, the performances of the
RoF methods rely on the values of M. It should be noted that the RoF-KOPLS-RBF is insensitive
to the value of M compared to other classification techniques when M is greater than 9 (i.e., the
number of classes). Second, the impact of M on OA seems to be irregular. Third, the overall accuracies
obtained by RoF-KOPLS-RBF are more accurate than those achieved by all other methods. Finally,
the overall accuracies obtained by the RoF-KOPLS-Linear method and the RoF-KOPLS-Polynomial
method exhibit larger variations as the increase of M. Nevertheless, the overall accuracies achieved by
the presented RoF-KOPLS-RBF method tend to be stable with the increase of the value of M. In order
to make fair comparisons, the value of M should be selected as the one achieving the best accuracy for
each classification algorithm. In consequence, the values of RoF-OPLS, RoF-PCA, RoF-KOPLS-RBF,
RoF-KOPLS-Linear, RoF-KOPLS-Polynomial were set to 8, 20, 20, 4 and 7, respectively. Figure 7 depicts
the classification maps obtained by all the considered methods.
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Self-Blocking Bricks

Shadows

Figure 5. ROSIS University of Pavia data set. (a) Three-band color composite (bands 102, 56, 31);
(b) Reference map containing 9 mutually exclusive land-cover classes. The legend of this scene is
shown at the bottom.
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Figure 6. OAs obtained by DT, RoF-PCA, RoF-OPLS, RoF-KOPLS-Linear, RoF-KOPLS-Polynomial,
RoF-KOPLS-RBF with different number of M from the University of Pavia ROSIS Image.
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(a) (b) (c)

(d) (e) (f)

Figure 7. Classification maps of the University of Pavia ROSIS image (only one Monte Carlo run). OAs
of the classifiers are presented as follows: (a) DT (54.06%); (b) RoF-PCA (66.0%); (c) RoF-OPLS (65.24%);
(d) RoF-KOPLS-Linear (57.26%); (e) RoF-KOPLS-Polynomial (60.57%); (f) RoF-KOPLS-RBF (70.65%).

5. Discussion

5.1. Discussion on the AVIRIS Indian Pines Image

The overall and class-specific accuracies of different classification algorithms are presented in
Table 1. The results reveal that the classifier ensembles can yield more accurate accuracies compared
to single classifiers. It is apparent that the proposed RoF-KOPLS-RBF method provides good results
roughly equivalent to the recently proposed method, Rotboost, which is followed by RoF-PCA
and RoF-OPLS. Furthermore, it should be noted that the proposed RoF-KOPLS-RBF method can
achieve considerable increases in most class-specific accuracies, which significantly outperforms
others. The McNemar’s test revealed that the difference between RoF-KOPLS-RBF and RoF-OPLS are
statistically significant (|z| > 1.96) [50]. The kernel-based method improves the accuracies by 8.06% in
OA and 6.16% in AA. Furthermore, as we can see from the Figure 4, the Rotation Forest ensembles
can improve the classification accuracies and produce more smooth classification maps. These results
validate the good performance of the proposed RoF-KOPLS-RBF by combining KOPLS and RoF.

The number of classifiers (T) and training samples are the key parameters for the proposed
method. In order to investigate the influence of T on the classification accuracies, we have performed
the classification results when the number of feature in a subset M is set to 100. As we can see from the
Figure 8a, the classification accuracies are improved with the increase of T.
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Figure 8. Sensitivity to the change of the number of trees. (a) Indian Pines AVIRIS image; (b) University
of Pavia ROSIS image.

Table 2 presents classification accuracies obtained by individual classifier using different numbers
of training samples. As reported in the table, the proposed RoF-KOPLS-RBF, RoF-KOPLS-Linear,
RoF-KOPLS-Polynomial, and RoF-OPLS methods are superior to DT and DT-KOPLS. RoF-KOPLS-RBF,
RoF-OPLS, and RoF-PCA achieve better classification accuracies when compared to SVM. It can be
found that the proposed RoF-KOPLS-RBF method gains the best classification results under most of
training scenarios as compared to other classification techniques. As we can see from the Table 2,
when we compare the proposed method with the recently new classification method RotBoost, our
proposed method is equivalent or superior to the RotBoost approach. Therefore, it can be concluded
that RoF-KOPLS-RBF works more efficiently with relatively low number of labeled training samples.

Table 3 provides the OAs, AOAs, and diversities obtained by different RoF ensembles using
10 samples for each class. The accuracy of individual classifier and diversity are two important
properties for a classifier ensemble as higher values of AOA and diversity always give rise to
better performance. The results in this table show that the proposed RoF-KOPLS-RBF method
acquires the highest AOA and diversity, leading to the best classification accuracies. Furthermore,
it is worth noting that the effect of kernel functions on the classification accuracies are significant.
RoF-KOPLS-RBF method obtains better classification results in comparison to RoF-KOPLS-Linear and
RoF-KOPLS-Polynomial methods. This can be attributed to RoF-KOPLS-RBF’s higher values of AOA
and diversity.
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Table 2. OAs and AAs (in Parentheses) Obtained for Different Classification Methods When Applied to the Indian Pines AVIRIS image.

Samples Per Class SVM DT RotBoost DT-KOPLS RoF-PCA RoF-OPLS
RoF-KOPLS

RBF Linear Polynomial

10 44.73 (58.56) 39.56 (52.22) 61.50 (72.80) 21.55 (30.95) 58.29 (70.49) 53.38 (67.98) 61.44 (74.14) 50.83 (63.42) 45.40 (58.50)
20 55.45 (68.76) 44.48 (58.01) 68.34 (77.97) 22.74 (32.89) 65.32 (77.01) 61.28 (74.67) 67.40 (79.38) 59.44 (71.25) 53.31 (66.80)
30 60.81 (73.23) 49.39 (61.94) 71.58 (80.62) 26.38 (32.49) 69.06 (78.67) 65.81 (77.20) 71.88 (82.52) 63.74 (75.35) 59.31 (71.40)
50 65.69 (77.39) 53.81 (65.11) 75.83 (83.40) 54.33 (64.49) 73.54 (82.88) 69.65 (80.24) 75.55 (85.86) 67.84 (78.21) 63.98 (74.97)
60 69.53 (79.64) 55.61 (66.13) 77.24 (83.39) 58.62 (68.30) 75.46 (82.91) 71.17 (80.97) 76.99 (86.66) 70.37 (79.56) 66.36 (76.58)
80 72.58 (80.81) 58.11 (68.27) 78.83 (84.76) 66.43 (74.52) 77.02 (83.34) 74.05 (82.66) 79.70 (88.27) 73.49 (81.26) 70.32 (78.57)
100 73.50 (79.48) 60.67 (69.70) 79.82 (84.71) 67.90 (74.97) 78.12 (84.00) 75.72 (83.48) 82.56 (89.51) 74.36 (81.49) 71.51 (79.79)
120 78.04 (85.35) 62.95 (70.77) 81.00 (85.36) 71.01 (77.23) 79.48 (84.99) 76.93 (83.76) 83.97 (90.39) 75.98 (82.93) 74.56 (81.16)
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Table 3. OAs (in Percent), AOAs (in Percent), and Diversities Obtained for Different Rotation Forest
Ensembles When Applied to the Indian Pines AVIRIS Image.

Classifiers RoF-PCA RoF-OPLS
RoF-KOPLS

RBF Linear Polynomial

OA 58.29 53.38 61.44 50.83 45.40
AOA 45.76 42.75 48.16 41.13 40.01

Diversity 47.76 44.19 48.84 40.95 37.75

5.2. Discussion on the University of Pavia ROSIS Image

The classification accuracies of all the classification techniques are summarized in Table 4.
From this table, the best OA, kappa coefficient, and class-specific accuracies for most classes are
achieved by the presented RoF-KOPLS-RBF method, which is followed by the RotBoost, RoF-PCA and
RoF-OPLS approach. In this case, the OA of the RoF-OPLS approach is improved by 5.46% compared
to the RoF-KOPLS-RBF. According to the results of McNemar’s test, the RoF-KOPLS-RBF classification
map is significantly more accurate compared to those achieved by other methods except the RotBoost
approach with a confident level of 5%. We can conclude that the proposed RoF-KOPLS-RBF method
inherits the good merits of KOPLS and RoF, thus leading to improved classification result.

As like in the first experiment, the impacts of T and training samples on the classification results
have also been explored. When investigating the influence of T on the classification accuracies, the
number of feature in a subset M is set to 20 achieving the best accuracy for the proposed method.
Figure 8b shows the OA (%) using different number of T. With the increase of T, the classification
results are significantly improved. Table 5 gives the OAs and AAs (in parentheses) obtained by
different classification approaches when using different number of training samples. As expected,
the classification accuracies obtained by all methods becomes higher with the increase of the training
set size. Analogous to the first experiment, the proposed RoF-KOPLS-RBF method demonstrates
relatively higher performance with a very limited number of training samples in terms of OAs and
AAs, as compared to the other classification approaches. Moreover, from Figure 7, we can draw that
the Rotation Forest ensembles generate more accurate classification maps with reduced data noise in
comparison with the individual classifiers.

The OAs, AOAs, and diversities obtained by Rotation Forest ensembles are reported in Table 6
to evaluate the ensemble clearly. It can be noted that the proposed RoF-KOPLS-RBF approach gives
the highest AOA and diversity, when compared to other classification approaches. RoF-KOPLS-RBF
gains the best overall accuracy due to the fact that higher AOA and diversity lead to better ensemble
performance, which confirms the validity of combining the merits of KOPLS and Rotation Forest.
As can be seen from the table, we can conclude that the kernel function can give rise to significant
impact on the classification accuracies, which is similar to the first experiment. RoF-KOPLS-RBF
achieves the higher values of AOA and diversity when compared to RoF-KOPLS-Linear and
RoF-KOPLS-Polynomial, leading to better classification results.

In addition, it should be noted that although the proposed method has shown good performance
in the classification of hyperspectral data, it is confronted with some common cons for Rotation Forest,
e.g., the relative low computational efficiency and sensitivity to the number of features in a subset [21].
Moreover, the proposed method only consider the spectral information so that it obtains suboptimal
classification results when compared to the method taking advantage of the spatial and spectral
information simultaneously [20].
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Table 4. Overall, Average and Class-specific Accuracies for the Pavia ROSIS image.

Class Train Test SVM DT RotBoost DT-KOPLS RoF-PCA RoF-OPLS
RoF-KOPLS

RBF Linear Polynomial

Bricks 10 3682 74.40 55.89 69.16 33.58 66.55 67.47 71.94 69.70 65.17
Shadows 10 947 99.97 94.19 99.98 84.09 99.54 99.95 99.88 99.86 99.80

Metal Sheets 10 1345 99.20 96.88 99.70 56.27 99.40 99.30 98.70 96.60 95.97
Bare Soil 10 5029 69.70 49.81 71.32 22.81 71.94 73.81 67.69 61.44 48.88

Trees 10 3064 88.18 72.11 94.38 42.28 90.42 90.16 89.67 86.06 72.40
Meadows 10 18649 62.26 46.63 61.65 35.81 63.05 56.47 68.44 54.60 52.70

Gravel 10 2099 63.60 37.81 68.64 37.63 61.02 54.82 66.83 48.99 37.85
Asphalt 10 6631 64.90 58.93 63.43 38.95 64.83 67.92 67.35 70.68 63.83
Bitumen 10 1330 86.66 70.75 90.48 57.97 81.63 76.90 80.58 74.34 74.41

OA 69.27 54.46 69.34 37.51 69.06 66.49 71.95 64.11 58.81
AA 78.76 64.78 79.86 45.49 77.60 76.31 79.01 73.59 67.89

κ 61.76 44.63 62.12 26.42 61.55 58.81 64.69 55.72 49.36

Table 5. OAs and AAs (in Parentheses) Obtained for Different Classification Methods Using Different Numbers of Training Samples When Applied to the Pavia
ROSIS Image.

Samples Per Class SVM DT RotBoost DT-KOPLS RoF-PCA RoF-OPLS
RoF-KOPLS

RBF Linear Polynomial

10 69.27 (78.76) 54.46 (64.78) 69.34 (79.86) 37.51 (45.49) 69.06 (77.60) 66.49 (76.31) 71.95 (79.01) 64.11 (73.59) 58.81 (67.89)
30 78.30 (84.06) 62.88 (72.96) 79.22 (85.31) 61.56 (67.88) 75.75 (82.68) 78.92 (83.91) 80.25 (86.28) 70.04 (79.33) 61.85 (74.01)
40 81.69 (86.50) 64.03 (73.45) 81.40 (87.21) 65.61 (72.69) 79.68 (84.63) 80.47 (85.03) 81.96 (87.10) 71.74 (81.39) 64.62 (75.97)
50 83.36 (87.84) 64.71 (74.04) 83.71 (88.13) 73.08 (77.40) 81.71 (86.45) 80.97 (85.87) 83.56 (88.35) 73.52 (83.06) 66.91 (77.59)
60 84.22 (88.39) 66.64 (75.15) 84.61 (88.89) 72.07 (79.04) 82.48 (87.31) 81.58 (86.52) 84.47 (89.17) 74.51 (82.91) 68.05 (77.99)
80 85.65 (89.39) 68.58 (76.87) 85.06 (89.42) 73.54 (78.37) 83.66 (87.83) 82.62 (87.33) 86.20 (90.22) 76.47 (84.64) 69.96 (79.47)
100 87.28 (90.17) 69.77 (77.56) 86.05 (90.37) 80.05 (83.56) 85.56 (89.55) 83.38 (88.05) 87.33 (90.93) 77.59 (85.33) 71.49 (81.0)
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Table 6. OAs (in Percent), AOAs (in Percent), and Diversities Obtained for Different Rotation Forest
Ensembles When Applied to the Pavia ROSIS image.

Classifiers RoF-PCA RoF-OPLS
RoF-KOPLS

RBF Linear Polynomial

OA 69.06 66.49 71.95 64.11 58.81
AOA 57.48 57.16 58.09 56.42 56.81

Diversity 55.78 57.86 59.00 53.56 46.99

6. Conclusions

In this paper, a new classification approach is presented by combining the advantages
of kernel-based feature extraction, i.e., KOPLS, and ensemble method, i.e., Rotation Forest.
The performance of the proposed methods was evaluated by several experiments based on two
popular hyperspectral images. Experimental results demonstrated that the proposed RoF-KOPLS
methodology can inherit the merits of RoF and KOPLS to achieve more accurate classification results.

The following conclusions can be drawn according to the experimental results:

• RoF-KOPLS with RBF kernel yields the best accuracies against the comparative methods
above-mentioned due to the ability of improving the accuracy of base classifiers and the diversity
within the ensemble, especially for the very limited training set.

• In RoF-KOPLS, the kernel functions can give rise to significant influences on the classification
results. Experimental results have shown that RoF-KOPLS with RBF kernel obtained the best
performances.

• RoF-KOPLS with RBF kernel is insensitive to the number of features in a subset when compared
to other methods.

In the future, we will further explore the integration of Rotation Forest and kernel methods in
classifier ensemble for real application of the hyperspectral images. On the one hand, we will attempt to
combine the proposed method with Adaboost or Bagging [51]. On the other hand, given the important
role of spatial features in the classification of hyperspectral image [52], spatial information will be
incorporated to improve the performances of the proposed classification scheme in the following work.
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Abbreviations

The following abbreviations are used in this manuscript:

PCA Principle Component Analysis
RBF Radial Basis Function
FLDA Fisher’s Linear Discriminant Analysis
PLS Partial Least Square Regression
OPLS Orthonormalized Partial Least Square Regression
KOPLS Kernel Orthonormalized Partial Least Square Regression
RF Random Forest
SVMs Support Vector Machines
RoF Rotation Forest
DT Decision Trees
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CART Classification and Regression Tree
RoF-OPLS Rotation Forest with OPLS
RoF-KOPLS Rotation Forest with KOPLS
OA Overall Accuracy
AA Average Accuracy
AOA Average of OA
κ Kappa coefficient
CFD Coincident Failure Diversity
RotBoost Rotation Forest with Adaboost
DT-KOPLS DT with KOPLS
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