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Abstract: Leaf Area Index (LAI) is a key variable that bridges remote sensing observations to
the quantification of agroecosystem processes. In this study, we assessed the universality of the
relationships between crop LAI and remotely sensed Vegetation Indices (VIs). We first compiled
a global dataset of 1459 in situ quality-controlled crop LAI measurements and collected Landsat
satellite images to derive five different VIs including Simple Ratio (SR), Normalized Difference
Vegetation Index (NDVI), two versions of the Enhanced Vegetation Index (EVI and EVI2), and
Green Chlorophyll Index (CIGreen). Based on this dataset, we developed global LAI-VI relationships
for each crop type and VI using symbolic regression and Theil-Sen (TS) robust estimator. Results
suggest that the global LAI-VI relationships are statistically significant, crop-specific, and mostly
non-linear. These relationships explain more than half of the total variance in ground LAI observations
(R2 > 0.5), and provide LAI estimates with RMSE below 1.2 m2/m2. Among the five VIs, EVI/EVI2
are the most effective, and the crop-specific LAI-EVI and LAI-EVI2 relationships constructed by
TS, are robust when tested by three independent validation datasets of varied spatial scales. While
the heterogeneity of agricultural landscapes leads to a diverse set of local LAI-VI relationships,
the relationships provided here represent global universality on an average basis, allowing the
generation of large-scale spatial-explicit LAI maps. This study contributes to the operationalization
of large-area crop modeling and, by extension, has relevance to both fundamental and applied
agroecosystem research.
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1. Introduction

Leaf Area Index (LAI), defined as one half the total green leaf area (double-sided) per unit
horizontal ground surface area of vegetation canopy [1,2], is an essential biophysical variable used
extensively in soil-vegetation-atmosphere modeling [3–5]. In agroecosystems, the total leaf area of
the crop canopy, as quantified through LAI, is one of the key constraints on carbon assimilation
and transpiration rates, which together drive the accumulation of crop primary productivity [6,7].
Therefore, LAI is commonly required to estimate photosynthesis, evapotranspiration, crop yield, and
many other physiological processes in agroecosystem studies [8–11].

LAI has historically been measured for crop canopies using in situ (destructive or optical)
approaches or remote sensing techniques [12–16]. Although the in situ approaches are accurate and
easy to implement, they are also labor and time intensive, and the sample-based measurements are
spatially discontinuous [17,18]. In contrast, remote sensors onboard satellite or aircraft are capable of
making spatially complete measurements of surface reflectance, which are related to the greenness of
canopy. Therefore, there has been continuous interest in estimating LAI using images acquired from
airborne/space-borne sensors [19–26].

To estimate LAI using remotely sensed data, two types of methodologies have been adopted: the
process-based approach and the empirical approach based on Vegetation Index (VI), also called the
VI approach [24,27]. Process-based approaches obtain LAI estimates by inverting a radiative transfer
model forced with canopy reflectance data retrieved remotely [28–33]. Radiative transfer models
simulate the (bidirectional) reflectance of the land surface through a series of physical or mathematical
description of the physical and radiometric properties of background (i.e., soil or snow surface), the
object (i.e., canopy or other surfaces), atmosphere, as well as solar and sensor geometries [34–39].
However, unknown model variables usually outnumber reflectance observations, leaving model
inversion unsolved or with multiple solutions—an issue referred to as the “ill-posed problem” [40].
Therefore, although the process-based approach benefits from detailed physical descriptions of the
atmosphere-canopy-soil system, its robustness largely depends on the accuracy of model parameters,
which has limited its applicability in large scale [41].

Unlike the process-based approach, the VI approach provides a simple yet effective alternative by
establishing a statistical relationship between remotely sensed VIs and observed LAI values, hereafter
referred as an LAI-VI relationship [19,42,43]. VIs are constructed from reflectance of two or more
spectral bands, and can be used to estimate biophysical/biochemical characteristics of vegetation,
such as LAI, biomass, and canopy chlorophyll content [44–47]. A number of VIs has been show
to correlate well with LAI. The earliest attempts used VIs such as the Simple Ratio (SR) [48] and
Normalized Difference Vegetation Index (NDVI) [49], which were designed to accentuate the difference
between red and near-infrared (NIR) reflectance. More optimized VIs were later proposed with
increased sensitivity to vegetation characteristics (e.g., LAI) and minimized effect from confounding
factors (e.g., canopy geometry, soil, and atmosphere). These include Soil Adjusted Vegetation Index
(SAVI) [50], Atmospherically Resistant Vegetation Index (ARVI) [51], Enhanced Vegetation Index
(EVI) [44,52,53], Modified Triangular Vegetation Index (MTVI2) [54], Wide Dynamic Range Vegetation
Index (WDRVI) [55], and EVI2 [56]. Besides different types of VI used, the LAI-VI relationships also take
various mathematical forms or equations, such as linear, exponential, logarithm, or polynomial [57–59].

Numerous studies, mostly at local scales, have tested the VI approach and demonstrated its
effectiveness at various locations around the world, using either field-measured or remotely sensed
reflectance data [60–63]. Nevertheless, the LAI-VI relationship is not unique, particularly in agricultural
settings, but rather represented by a family of equations as a function of the specific geographical,
biological, and environmental setting of a study. As a result, the VI approach requires a new set of LAI
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measurements to be made at each new location, each time, and for each crop, rendering its application
impractical over large areas or multiple time periods [64–66].

This “one place, one time, one equation” issue has been identified as a major limitation of the
VI approach to map LAI with remotely sensed observations [27,36,58,67,68]. While our knowledge
of the dependence of the LAI-VI relationship on plant/crop types or canopy geometry continues
to advance [43,57–59,62,69,70], a number of questions remain. For example, to what extent can
we spatially and temporally generalize the LAI-VI relationships? Can the variation caused by a
number of environmental factors be controlled within an acceptable range? Is there a “one-size-fits-all”
relationship that suits a global sample across different crop types and time periods? To answer these
questions, we (1) synthesized a global dataset of in situ crop LAI measurements and remotely sensed
VIs derived from Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+)
images; (2) established LAI-VI relationships for different crop types and VIs; and (3) evaluated the
universality and diversity of these LAI-VI relationships. For consistency with the general LAI research
community, we have followed the Committee on Earth Observation Satellites Land Product Validation
(CEOS LPV) LAI protocol throughout the data collection, analysis, and evaluation stages [2].

2. Data and Methodology

2.1. LAI data Collection and Quality Control

We assembled a global dataset of in situ crop LAI measurements from a number of sources,
including regional flux networks, research campaigns, peer-reviewed journals, sample data in crop
models, and investigators who collected the LAI data (Table S1). To be included in our dataset, a
set of LAI measurements had to have: (1) accurate geographical location; (2) information on date of
measurement, crop type, and method of measurement; (3) cloud-free Landsat images available at the
measurement location, within 15 days of the measurement time; (4) ancillary information about the
experimental design.

We then conducted a thorough data quality control, using four rules to identify and eliminate
data with potential quality issues:

Rule 1: LAI values less than 0.1 m2/m2 or greater than 6 m2/m2 are beyond the prediction power
of VIs and were thus eliminated (details see Section 3.2.4) [57–59].

Rule 2: At each site from which in situ data were obtained, we examined the local LAI-VI
relationships and used auxiliary data to identify potentially low quality data with respect to remote
sensing applications. Our study was based on the widely supported assumption that a statistically
significant LAI-VI relationship will exist at a given site; the lack of a significant relationship, therefore,
indicates potential in situ or satellite data quality issues. In addition, since our LAI definition is only
restricted to green leaves, we were careful in checking the phenological stage when the LAI was
measured in each site, and removed LAI measured in senescence stage when leaves were not green.
When there is no specific information on the phenological stage, we checked the time series of both
LAI and VIs to make sure that all observations stopped at or shortly after peak growth period.

Rule 3: Any crop type with a sample size less than 1% of the overall dataset was eliminated.
Rule 4: After Rules 1–3 were checked, we applied a binned interquartile range (IQR) approach to

eliminate additional outliers. First, we grouped LAI into 0.5 m2/m2 bins. Within each bin, the LAI data
were ranked according to corresponding NDVI values from the lowest to the highest, and the median,
25% quartile (Q1), and 75% quartile (Q3) were computed. Then outliers were defined as values below
Q1 – 1.5IQR or above Q3 + 1.5IQR.

Since LAI beyond 6 m2/m2 is not uncommon for crops like maize, wheat, and rice [36,64,71,72],
we produced another version of dataset with slightly different quality control measures, where rule
1 was replaced by an IQR approach over LAI. This version is thereafter referred to as the full-range
dataset. We built LAI-VI relationships for both datasets separately.



Remote Sens. 2016, 8, 597 4 of 29

2.2. Remotely Sensed Data

We used both Landsat TM and ETM+ images to generate VIs for the in situ LAI observations. Both
sensors share the same band designations and spatial/temporal resolutions, thus we did not address
between-sensor variability [73]. We selected the closest-in-time Landsat image within 15 days from
each LAI measurement date. Each image was subjected to three levels of radiometric/atmospheric
corrections: (1) at-sensor radiance; (2) Top of Atmosphere (TOA) reflectance, and (3) surface reflectance.
These corrections were made using the Landsat Ecosystem Disturbance Adaptive Processing System
(LEDAPS) software [74,75]. LEDAPS first converts digital number (DN) values to at-sensor radiance,
which is then converted to TOA reflectance based on solar zenith angle, Earth-Sun distance,
bandpass, and solar irradiance. Finally, atmospheric correction routines based on 6S radiative transfer
algorithm [76] convert at-sensor radiance to surface reflectance. Clouds were masked using Automatic
Cloud-cover Assessment (ACCA) algorithm [75,77], which is a part of the LEDAPS processing package.

We selected five VIs that are commonly employed in LAI related studies: the Simple Ratio (SR) [48],
Normalized Difference Vegetation Index (NDVI) [49], Enhanced Vegetation Index (EVI) [44,53],
EVI2 [57], and Green Chlorophyll Index (CIGreen) [78] (Table 1). SR and NDVI were selected as two of
the earliest and simplest VIs, widely used in remote sensing applications. EVI is representative of many
soil-line based VIs, such as SAVI and ARVI. Compared to NDVI, EVI is less sensitive to soil background
and atmospheric noise, and less saturated at high LAI values. EVI2 is a version of EVI that does not
require the blue band to facilitate the use of data from sensors without that capability [56]. Recent
studies demonstrated that EVI2 and EVI perform comparably in LAI estimation at local scales [58,79].
Therefore, we aimed to evaluate EVI2 over multiple locations at large scales using our in situ global
dataset. CIGreen was originally designed to exploit the relationship of canopy chlorophyll content and
visible green reflectance [78,80,81]. It has been shown to outperform many other VIs for predicting
LAI at field scales [57,66], but has not yet been tested at a global scale. These VIs have been proved to
be effective in estimating crop LAI in many previous investigations (Table S2).

Table 1. Vegetation indices used in this research (NIR, Red, Green, and Blue corresponds to TM/ETM+
band 4, band 3, band2, and band 1 respectively).

Index Equation

Simple Ratio SR “ NIR
Red

Normalized Difference Vegetation Index NDVI “ NIR´Red
NIR`Red

Enhanced Vegetation Index EVI “ 2.5 NIR´Red
1`NIR`6Red´7.5Blue

Enhanced Vegetation Index 2 EVI2 “ 2.5 NIR´Red
1`NIR`2.4Red

Green Chlorophyll Index CIGreen “
NIR

Green ´ 1

2.3. Establishment of the Global LAI-VI Relationships

2.3.1. Exploratory Analysis: Symbolic Regression

In the exploratory analysis, we used symbolic regression to establish LAI-VI relationships for
each VI (derived from DN, at-sensor radiance, TOA reflectance or surface reflectance) and each crop
type or group of crops: maize, soybean, wheat, rice, cotton, pasture, row crops (all except pasture),
and all crops. Symbolic regression is a semi-supervised method that searches a space of mathematical
expressions to find the simplest relationship that minimizes estimation errors. Unlike traditional
regression methods, symbolic regression does not require the mathematical form of the relationship to
be defined.

In this study, the symbolic regression of the LAI-VI relationships was performed through the
Eureqa® package [82,83]. Eureqa® identifies the optimal functions based on samples of dependent
and independent variables, a set of operators (i.e., addition, subtraction, exponential, power, sine,
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cosine), and an error metric. We used LAI as dependent variable and VI as independent variable, and
defined an operator set consisting of addition, subtraction, multiplication, exponential, logarithmic,
and power. For simplicity, we excluded division, and selected invertible functions with only one term
(i.e., VI) and a maximum of three coefficients. We used mean squared error (MSE) as the error metric,
which Eureqa® aimed to minimize during the search. After Eureqa® obtained the functional forms
of the relationships, regression coefficients were estimated using Least Absolute Deviation (LAD)
regression [84]. LAD regression minimizes the sum of absolute errors and provides a robust estimation
more resistant to outliers [85,86]. The relationships established through symbolic regression and LAD
regression are thereafter referred to as the best-fit functions. Each function is restricted to a reasonable
VI range, which only produces LAI between 0 and 6 m2/m2 to avoid extrapolation.

The best-fit functions were evaluated using three goodness-of-fit (GOF) metrics: R2, root mean
squared error (RMSE), and mean absolute error (MAE). GOF metrics were calculated via a split-sample
cross validation method which used 75% of the samples for regression and the remaining 25% for
testing. We reported the mean values of GOF metrics after 500 iterates of the cross validation. Since
most of the best-fit functions are non-linear, R2 (calculated as the regression sums of squares divided
by total sums of squares) was not used to compare models but rather to describe the percentage of the
total variance of LAI explained by the LAI-VI relationships [87]. In addition, we also produced the
median and quantiles of absolute residuals and their distributions along the LAI range as additional
model evaluation statistics following the CEOS LPV LAI protocol [2].

2.3.2. Refined Models of LAI-EVI and LAI-EVI2 relationships

In order to account for the measurement errors in both LAI and VI data, and solve the issue
of non-constant residual variance found in many of the best-fit functions, we adopted a rigorous
statistical method to construct refined models for LAI-EVI and LAI-EVI2 relationships, as EVI and
EVI2 were more effective than other VIs (see Section 3.2.2). This method was based on simple linear
regression and Theil-Sen estimator after transformations of dependent and/or independent variables,
as recommended to the remote sensing community by Fernandes and Leblanc [88].

We first applied power transformations over LAI and/or EVI/EVI2 to eliminate non-linearity,
non-normality of the error terms, and non-constancy of the error variance. Selection of optimal
transformation forms were based on Box-Cox model of power transformations on the response variable
(i.e., LAI), and Box-Tidewell model for power-transformations on the predictor variable (i.e., EVI,
EVI2) [89]. A score test (Cook-Weisberg test) for non-constant error variance was also used to ensure
homoscedasticity in the selected transformations and models [89,90].

We then used Theil-Sen estimator to estimate coefficients in the simple linear regressions. Theil-Sen
estimator is a traditional robust regression tool, which estimates the slope of the regression line by
choosing the median slope of lines through all pairs of sample data points [91,92]. It is an unbiased
estimator of the real regression slope, and is robust to up to 29% of samples being outlier [91]. The
refined models for LAI-EVI and LAI-EVI2 relationships (based on only surface reflectance data) were
used in the following evaluations and analysis.

2.4. Evaluation of the Global LAI-VI Relationships

The temporal mismatch between LAI measurement and satellite overpass and the different
methods used in LAI measurement are two potential error sources in the LAI and VI data respectively.
To assess the effects of these two potential measurement errors on the LAI-VI relationships, we analyzed
the regression residuals of the overall LAI-EVI relationship (including all crop types) and conducted an
ANOVA test with Welch’s correction on non-homogeneity of variances. The pairwise comparisons were
accomplished using Dunnett's Modified Tukey-Kramer pairwise multiple comparison test (α = 0.05),
which is suitable for unequal sample sizes and has no assumption of equal population variances.

Since we did not have an independent testing set with globally distributed samples, we adopted
a site-based evaluation procedure to evaluate the validity of the approach to build global LAI-VI
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relationships, and assess the universality of these relationships. In this analysis, we used four crop
types with large sample size: maize, soybean, wheat, and pasture. For each crop type, we used data
only from sites with at least 10 samples. Then for each crop and each site, we first fitted a model
using the method described in Section 2.3.2 and data from all other sites, and then calculated GOF
metrics of the model using data for the site of interest. We compared coefficients and GOF metrics of
models constructed using different sets of data. This analysis reveals the universality of the LAI-VI
relationships as well as the leverage each individual site has over the global relationships.

2.5. Preliminary Validation and Example Applications at Three Spatial Scales

We applied the LAI-VI relationships to remote sensing data at three different spatial
resolutions/scales. This served as a preliminary validation effort and as examples of potential
applications of our LAI-VI relationships for readers who may be interested in applying the relationships
in their own studies. Note that in this analysis, the reference LAI data, albeit modeled in nature,
were treated as reliable sources of LAI estimates with credible scientific basis as opposed to in situ
measurements that would provide direct evidence of the error and bias in our estimates.

2.5.1. Field Scale Application

We measured LAI of maize canopy weekly and obtained high spatial resolution imagery (0.8 m)
from an airborne sensor in two maize fields located in northwest of Deforest Wisconsin (43.27˝ N,
89.40˝ W), US. This site and LAI monitoring efforts are described in detail in [63,93].

During the experiment, multispectral images were collected using a 6-sensor Tetracam Multi
Camera Array (MCA) system (Tetracam Inc., Chatsworth, CA, USA) mounted on the underside of
a Cessna 3-passenger airplane. MCA sensors were centered at 450, 570, 620, 650, 670, and 860 nm
with a uniformly-averaged 10 nm band width. Images were collected on four dates during the 2012
growing season (5/25, 6/22, 7/30, 8/29) and eight dates during the 2013 growing season (6/4, 7/2,
7/24, 8/1, 8/13, 8/20, 9/5, 9/23) from ~1200 m (~4000 ft) above the ground surface, leading to a
ground instantaneous field of view of (GIFOV) of ~0.8 m. Each sensor produced a separate image;
individual images were co-registered using Tetracam’s Pixelwrench software and georeferenced in
ArcGIS 10 (ESRI, Redlands, CA, USA). To convert MCA images from DN to surface reflectance, we
used four control points at the study site which were present in each image: surface water, tarmac
road, concrete parking area, and healthy green grass. At least nine spectral reflectance measurements
at 1 nm resolution were collected for each of these control points using an ASD handheld spectrometer
(Analytical Spectral Devices, Inc., Boulder, CO, USA). These measurements were then averaged at
10 nm wavelengths intervals corresponding to each of the six MCA sensors. Spectrometer-derived
mean surface reflectance was linearly regressed to MCA-derived DN values to produce a DN-surface
reflectance relationship for each image. Two images (6/22/2012 and 6/4/2013) were discarded due to
poor fits between MCA and spectrometer data (R2 < 0.60). The retained images had a mean R2 of 0.72.
The relationships developed using linear regression were applied to convert the image DN values to
surface reflectance, which were then used to compute VIs.

The LAI measurements were made using a Li-Cor LAI-2200 (Li-Cor Biosciences, Lincoln, NE,
USA) plant canopy analyzer at approximately weekly intervals throughout the 2012 and 2013 growing
seasons. LAI measurements were taken as the average of 20 below- and 20 above-canopy readings, and
were collected under diffuse light conditions (sunrise, sunset, or full cloud cover). LAI measurements
were collected the same day as MCA image collection when possible; when LAI and MCA images
were not collected on the same day, LAI values were linearly interpolated between measurement dates
to estimate the LAI at the time of image collection.

Finally, local relationships between field measured LAI and each VI were established following
the same processes described in Section 2.3.2, and used to produce LAI maps for comparison with
maps produced using the global LAI-VI relationships.
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2.5.2. Local Scale Application

The second validation process was conducted using Landsat imagery acquired in the Central
Valley of California. The study area features one Landsat footprint, which has a heterogeneous
agricultural landscape with various crop types. The reference dataset was a LAI map obtained from the
Provisional Landsat LAI Products developed by the NASA Earth Exchange (NEX) program [39]. It was
produced from a Landsat ETM+ image acquired in July 2005 using the radiative transfer algorithm
adapted from the MODIS LAI product. We produced a LAI map using the global LAI-VI relationship
and the same Landsat ETM+ surface reflectance image in the NEX product. We chose to use the global
overall relationships only (i.e., not crop-specific) as no crop-type map was available in this area.

2.5.3. Regional Scale Application

The third application was implemented at 1 km resolution using MODIS data within the
northwestern corner of the state of Iowa (USA), a region spanning 15 counties. This area is primarily
comprised of maize and soybean fields. A crop map of this region for 2009 was extracted from the
Crop Data Layer (CDL), a crop type dataset derived from AWiFS data at 56m spatial resolution [94].
To be consistent with the MODIS images, the CDL map was aggregated to 1 km resolution using a
square-wave filter, and the resulting map shows maize and soybean cultivated area fractions for each
1 km pixel.

We used the MODIS Collection 5 Nadir BRDF-adjusted reflectance (NBAR) product
(MCD43A4) [95] to produce the LAI maps using the global LAI-VI relationships. The NBAR data were
produced as 8-day composite at 500m spatial resolution, but were aggregated to 1km resolution and a
16-day interval before LAI processing. Based on MODIS reflectance and the crop map, two sets of LAI
maps were produced: one based on the global overall LAI-VI relationship (i.e., not crop-specific), and
the other based on global LAI-VI relationships for maize and soybean. In the latter maps, LAI was
computed as a weighted average of maize and soybean LAI based on the fractions determined from
the crop map.

These maps were then compared to the reprocessed MODIS Collection 5 LAI products by the
Beijing Normal University Land-Atmosphere Interaction Research Group [96]. This LAI product is
an improved version of the original MODIS LAI product [97], which overcomes the issues of data
noise and gaps by applying a modified temporal/spatial filter. It has a 1km spatial and 8-day temporal
resolution, but was aggregated to 16-day. Besides comparing the LAI maps, we also constructed
and compared growing season LAI time-series for the two dominant crops in Iowa—maize and
soybean—using both global LAI-VI relationships and MODIS BNU LAI products. Since MODIS has
a coarse resolution of 1 km, which is larger than most of the soybean and maize fields, the LAI time
series used average values of only the pure maize or soybean pixels, which are defined as pixels with
more than 90% areas occupied by each crop.

3. Results

3.1. Description of the In-Situ LAI Data Set

The initial dataset contained 2,086 unique records of LAI from 31 sites located in 11 countries
(Figure 1; Table S1). A data record refers to a single observation of LAI or the average of all observations
within a Landsat pixel (30 m by 30 m) on a given date. Each record is associated with VIs derived from
the Landsat pixel as well as crop type, measurement method, date, and other ancillary information.
The LAI were measured mainly between 2000 and 2012.
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Figure 1. Location of in situ leaf area index (LAI) measurement sites. 

In the quality control process, 209 samples were removed according to rule one, 328 for rule two, 
50 for rule three, and another 40 for rule four (Table S1). Of the 40 outliers in rule four, 21 were maize, 
14 for wheat, 6 for rice, and 9 for pasture. There were no outliers for soybean and cotton. In rule two, 
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apparent abnormalities in the data. The Agro site was excluded because over 1/3 of maize 
measurements had unrealistically high LAI values (>8 m2/m2). The SMAPEx2 site was excluded 
because ancillary data showed that many of the LAI measurements were taken after crop maturity 
and contained a mix of brown and green LAI, while this study focuses only on green LAI. Finally, 
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Figure 1. Location of in situ leaf area index (LAI) measurement sites.

In the quality control process, 209 samples were removed according to rule one, 328 for rule
two, 50 for rule three, and another 40 for rule four (Table S1). Of the 40 outliers in rule four, 21 were
maize, 14 for wheat, 6 for rice, and 9 for pasture. There were no outliers for soybean and cotton. In
rule two, when each site was examined, we identified three sites (Agro, SMAPEx2, and SMEX02-WC)
with apparent abnormalities in the data. The Agro site was excluded because over 1/3 of maize
measurements had unrealistically high LAI values (>8 m2/m2). The SMAPEx2 site was excluded
because ancillary data showed that many of the LAI measurements were taken after crop maturity
and contained a mix of brown and green LAI, while this study focuses only on green LAI. Finally, the
SMEX02-WC site was excluded due to unreasonably high values of CIGreen compared to literature
reported values as well as the rest of the dataset [57,68,78,80,81]. Detailed information regarding these
three sites can be found in Supplementary Materials Section 2 (Figures S1–S5).

Our final quality-controlled dataset consists of a total of 1,459 LAI records from 15 different crop
types, including maize, soybean, wheat, rice, cotton, pasture, tuber crops, vegetables, barley, canola,
and sunflower. Six major crops (i.e., maize, soybean, wheat, rice, cotton, and pasture) occupied 77% of
the dataset (Table 2). The final dataset was drawn from five continents, but most of the observations
came from the US, Europe, and Australia (Table 2). Due to limited LAI measurements and frequent
clouds in tropical areas, there is only one site in South America and no data from either Africa or South
Asia, which explains the relatively small sample size for rice.

The distribution of LAI values in our dataset is positively skewed with more samples in the lower
range than the upper end (Figure 2). Each crop type has a full range of LAI values (from less than 0.12
to more than 5.5 m2/m2) which nevertheless distribute differently (Table 2; Figure 2). The distribution
of maize is approximately unimodal with a peak in the middle (~3 m2/m2), and the distribution for
pasture is positively skewed. For soybean, wheat, rice, and cotton, the distribution is not as clear or in
some cases multimodal.

In the dataset, the in situ LAI measurement method include (1) destructive harvesting and direct
determination of one-sided leaf area; (2) indirect optical method using the LAI2000 (Li-Cor, Lincoln,
NE, USA) or AccuPAR (Decagon Devices Inc., Pullman, WA, USA) instruments; and (3) indirect optical
method through analysis of Digital Hemispherical Photography (DHP), which approximates canopy
gap fraction from analysis of digital images obtained with a fish-eye lens. Overall, 73% of the LAI
observations were collected using the LAI2000 or AccuPAR, 16% were from direct harvesting, and 11%
were acquired with hemispheric photography, all of which were located in Europe (Table 2). Within
each measurement method, there is a full range of LAI with similar means and variance.
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Table 2. Statistics of leaf area index (LAI) dataset by crop type, measurement method, and region.

Count
LAI (m2/m2)

Mean Std. Min Max

Overall 1459 2.52 1.62 0.10 6.00
By crop types

Maize 366 3.08 1.51 0.12 5.98
Soybean 90 2.13 1.37 0.10 5.51
Wheat 261 2.78 1.62 0.10 6.00

Rice 44 3.35 1.86 0.12 5.98
Cotton 95 2.20 1.74 0.11 5.79
Pasture 263 1.97 1.51 0.10 5.95

By measurement methods
Destructive 235 2.88 1.73 0.10 5.98

LAI2000 692 2.16 1.47 0.10 5.98
AccuPAR 375 2.71 1.70 0.11 5.98

Hemispheric 157 3.15 1.52 0.10 6.00
By geographical region

US 501 2.60 1.73 0.10 5.98
Europe 668 2.90 1.56 0.10 6.00

Asia 14 2.90 1.59 0.30 5.98
Australia 272 1.41 0.98 0.10 4.84
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The full-range dataset results in 1784 in situ LAI records ranging from 0.002 to 8.45 m2/m2

(Table S3). The maximum LAI values for maize, wheat, and rice are up to 7.8 to 8.5 m2/m2, while for
soybean, cotton, and pasture, the peak LAI are below 7 m2/m2. Note that, unlike in the other version,
we included data from Agro site in the full-range dataset, as most of the LAI values above 7 m2/m2

were found in Agro.

3.2. Exploratory Analysis of the LAI-VI Relationships

3.2.1. Form and Shape of the Best-Fit-Functions

The best-fit-functions, constructed based on symbolic regression and LAD regression, allow
for initial assessment the LAI-VI relationships for each crop type and VI. We found that the best-fit
functions are all statistically significant, indicating that there is a monotonically increasing relationship
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between LAI and VI at a global scale (Figure 3), even with the presence of confounding variables and
measurement errors. All the best-fit functions have simple mathematical forms (i.e., linear, power,
exponential, or logarithm) with two or three coefficients, which allow easy applications. A complete
list of all best-fit-functions, coefficient confidence intervals, and GOF metrics can be found in Tables S4
and S5.
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Figure 3. Best-fit functions of global LAI-VI relationships based on in situ LAI and surface reflectance
based VIs (Simple Ratio (SR), Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation
Index (EVI), EVI2, and Green Chlorophyll Index (CIGreen)) for the overall dataset as well as different
crop types. Best-fit functions are plotted by solid red lines, and prediction intervals (95%) are presented
in dashed red lines. Note that all the curves are fitted in the form of LAI “ f pVIq, although in this
figure, LAI is plotted on the X axis instead of the Y axis to better address the saturation issue of the
normalized VIs (NDVI, EVI, and EVI2).

Generally, the majority of the LAI-VI relationships are non-linear. Relationships established using
ratio based VIs (i.e., SR and CIGreen) are concave curves bending towards the X (LAI) axis and described
by logarithmic and power-type functions. In contrast, relationships established using normalized VIs
(i.e., NDVI, EVI, and EVI2) exhibit convex curves bending towards the Y (VI) axis, typically with an



Remote Sens. 2016, 8, 597 11 of 29

exponential form (in some cases power), indicating saturation at high values of LAI. Saturation is
less common in relationships using EVI and EVI2 compared to NDVI, and in some cases EVI/EVI2
are linearly related to LAI, indicating an ability to resolve LAI differences over a wider range of
canopy conditions.

Both the mathematical form and the coefficient values of LAI-VI relationships change with crop
types (Figure 3; Table S4). For example, for NDVI, the best-fit function for wheat is linear while for
all other crops the relationship is exponential. Soybean, cotton, and pasture exhibit the same form of
equation, but their coefficients are substantially different. This leads to differing patterns of saturation
(or a horizontal asymptote in Figure 3 indicating an inability to differentiate between high values of
LAI) across crop types for NDVI. For instance, NDVI saturates at LAI 3 m2/m2 for maize and rice, at
4 m2/m2 for pasture, and 5 m2/m2 for cotton, while for soybean and wheat, the relationships are close
to a straight line.

3.2.2. GOF Metrics of the Best-Fit-Functions

Overall, the surface reflectance-based VIs explain more than 50% of the variance in observed LAI
(inferred from R2 values), with RMSE between 0.7–1.2 m2/m2 and MAE between 0.5–1.05 m2/m2

(Table S5). The median absolute residuals are between 0.3–0.9 m2/m2, and 95% of the absolute residuals
are below 2.5 m2/m2.

The goodness-of-fit varies across crop types and the choice of VI. The difference is greater between
crop types than between VIs for the same crop (Table S5), indicating that available ancillary data
regarding land cover should be used when applying a universal relationship at a local scale. For overall
and row crop relationships, the RMSE and MAE are ~1.1 m2/m2 and ~0.88 m2/m2 respectively. In the
six major crops, soybean has the lowest RMSE (~0.65 m2/m2) and MAE (~0.56 m2/m2), followed by
cotton (RMSE ~1 m2/m2 and MAE ~0.74 m2/m2). Maize and pasture have an intermediate range of
RMSE (~1 m2/m2) and MAE (~0.8 m2/m2). The goodness-of-fit for wheat and rice are weaker, with
RMSE at ~1.3 m2/m2 and MAE ~1 m2/m2. Within each crop type, there is a relatively small difference
in GOF between VIs. For crop-specific relationships, both EVI and EVI2 result in the lowest RMSE
and MAE for all crops except for cotton. For overall and row crop relationships, the difference in GOF
between VIs is negligible (<0.03 m2/m2 RMSE and MAE). In general, SR performed the worst, NDVI
and CIGreen performed similarly, and EVI and EVI2 performed the best. We note that EVI2, which does
not rely on the blue band to minimize the atmospheric effects, provides a comparable relationship to
EVI for most crops.

3.2.3. The Effect of Levels of Radiometric/Atmospheric Corrections

The radiometric/atmospheric corrections have significant effect on the GOF of LAI-VI
relationships (Figure 4). For all crop types except rice and pasture, ANOVA test shows that the absolute
errors are significantly different (p < 0.001) among relationships fitted using different radiometrically
corrected remote sensing data for all VIs. The errors of DN based relationships are significantly greater
than those of any other level of data based on the pair wise comparison. In many crops (i.e., overall, row
crop, maize, soybean, pasture), there is a decreasing trend in the MAE from radiance, TOA reflectance
to surface reflectance, but the differences are not statistically significant (except for maize). For some
crops, (e.g., wheat, rice, cotton), it is interesting to note that the error from radiance could be the lowest,
while that of surface reflectance is the highest, but these differences are also not statistically significant.

In sum, we found that any form of reflectance conversion is preferred over DN when computing
VIs, as the inclusion of sun-sensor geometry normalizes the illumination and viewing conditions and
provides physically meaningful observations that are comparable across sensors, times, and locations.
Since the best-fit-functions are affected by many factors beside the radiometric corrections on remote
sensing data, it is difficult to draw any general conclusions with regard to the difference among
radiance, TOA reflectance, and surface reflectance.
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Figure 4. Mean Absolute Error (MAE) (cross validation) of the best-fit functions for different crops
across levels of radiometric/atmospheric corrections. In the legend, RD presents for radiance, TOA is
the Top-Of-Atmosphere reflectance, and RF is the surface reflectance. Note that EVI and EVI2 are not
included in this figure, since these VIs can only be calculated from reflectance data.

3.2.4. The Best-Fit Functions Based on Full-Range Dataset

We also established best-fit-functions for each VI (only reflectance based) and each crop using
the full-range dataset (Tables S6 and S7). The relationship curves resemble those fitted based on the
truncated dataset (Figure 3 and Figure S6), while function forms and coefficient values are slightly
different (Tables S5 and S6). In Figure S6, for the overall, row crop, maize, and rice relationships,
most of the above 6 m2/m2 LAI values are always outside the confidence interval (dashed red line),
and the saturation issue is apparent in the NDVI, EVI, and EVI2 plots when LAI is above 6 m2/m2.
This means that VIs derived from reflectance are not sensitive to LAI when the canopy is very dense
(LAI > 6 m2/m2). Note that these findings are not entirely applicable to wheat (Figure S6), where the
additional samples ranging from 6 to 8.5 m2/m2 has expanded the relationship’s prediction range,
and linear or quasi-linear relationships were concluded for NDVI, EVI, and EVI2.

As for the GOF metrics, the additional samples in the full-range dataset have increased the RMSE
by 0.2–0.3 and MAE by 0.1–0.2 compared to the truncated dataset, as the LAI-VI relationships are
unable to provide reasonable predictions for large LAI values in the majority cases.

3.3. LAI-EVI and LAI-EVI2 Relationships Based on Theil-Sen Regression

From the diagnostic plots of the best-fit-functions established through symbolic regression, we
found that the residuals of some relationships show non-constant variances and/or non-linearity
patterns rendering the regression model inefficient (Figure S7). This is partly attributed to the presence
of errors in both LAI and VI observations. Therefore, we constructed rigorous statistical models of the
LAI-VI relationships that conform to the i.i.d (independent, identical distributed variable) assumption.
Since the relationships of EVI and EVI2 are the strongest, especially for crop-specific relationships,
and have reduced saturation problems compared to NDVI (Figure 4), we used only EVI and EVI2 to
establish the refined models for LAI estimation using Theil-Sen estimator.

The LAI-EVI and LAI-EVI2 relationships based on Theil-Sen regression are all statistically
significant and conform to the assumption of independent and identical distribution of errors and
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homoscedasticity of residuals, according to Box-Cox and Box-Tidewell Cook transformation as well as
the Weisberg test (Figure 5). The relationships have a RMSE around 0.7–1.1 m2/m2 and MAE between
0.5–0.9 m2/m2 (Table 3). Variability of GOF metrics is in accord with results from exploratory analysis,
where the overall, rowcrop, and wheat relationships give higher RMSE, and the soybean relationship
has the lowest error. The GOF metrics also suggest that EVI2 performs comparably to or better than
EVI in the prediction power across all crops (Table 3), proving that EVI2 can be used as a robust
estimator of LAI when data from the blue band is not available.
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Figure 5. LAI-EVI and LAI-EVI2 relationships based on Theil-Sen regression and the density
distributions of the measured and predicted LAI. The first and third columns show scatter plots
between LAI and EVI/EVI2 as well as the relationship (solid red line) and prediction interval (dashed
red line) based on Theil-Sen regression. The second and fourth columns show density distributions of
the measured (blue) and predicted (red) LAI based on EVI and EVI2 respectively.
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Table 3. LAI-EVI (Enhanced Vegetation Index) and LAI-EVI2 relationships (LAI “ f pVIq) based on data transformation and simple linear regression (SLR) with
Theil-Sen estimator. The confidence interval of the slope estimates was calculated using analytical solutions by Sen [92]. RMSE: root mean squared error; MAE: Mean
Absolute Error.

Crop
Type VI SLR Model

Coefficient (Confidence Interval)
Prediction Model

RMSE
(m2/m2)

MAE
(m2/m2)

Quantiles of Absolute Residuals (m2/m2)

a b 5% 25% 50% 75% 95%

Overall
EVI ?y “ ax` b 2.07 (1.97, 2.17) 0.47 y “ pax` bq2 1.13 0.89 0.06 0.33 0.70 1.38 2.24

EVI2 ?y “ a
?

x` b 2.92 (2.78, 3.06) ´0.43 y “
`

a
?

x` b
˘2 1.11 0.87 0.06 0.32 0.70 1.33 2.17

Row crop EVI ?y “ ax` b 2.16 (2.1, 2.32) 0.41 y “ pax` bq2 1.14 0.89 0.06 0.31 0.67 1.32 2.29
EVI2 ?y “ a

?
x` b 3.16 (3.01, 3.31) ´0.58 y “

`

a
?

x` b
˘2 1.12 0.86 0.06 0.30 0.67 1.28 2.22

Maize
EVI ?y “ ax` b 2.42 (2.21, 2.65) 0.34 y “ pax` bq2 1.01 0.81 0.07 0.33 0.72 1.15 1.98

EVI2 y
2
3 “ a

?
x` b 5.3 (4.89, 5.68) ´1.66 y “

`

a
?

x` b
˘

3
2 0.92 0.74 0.06 0.29 0.65 1.02 1.81

Soybean EVI ?y “ ax` b 2.53 (2.28, 2.76) 0.08 y “ pax` bq2 0.69 0.49 0.02 0.14 0.32 0.68 1.45
EVI2 ?y “ ax` b 2.77 (2.47, 3.03) 0.06 y “ pax` bq2 0.70 0.51 0.04 0.15 0.34 0.78 1.42

Wheat
EVI y

3
4 “ ax` b 4.24 (3.71,4.78) 0.22 y “ pax` bq

4
3 1.13 0.94 0.07 0.41 0.82 1.34 2.03

EVI2 y
3
4 “ ax

3
5 ` b 5.47 (4.81, 6.16) ´1.03 y “

´

ax
3
5 ` b

¯
4
3 1.13 0.94 0.12 0.41 0.87 1.37 2.12

Rice
EVI y

2
3 “ ax` b 4.27 (3.25, 5.23) ´0.05 y “ pax` bq

3
2 1.03 0.79 0.07 0.35 0.67 1.02 2.38

EVI2 y
3
4 “ ax` b 5.32 (4.08, 6.51) ´0.18 y “ pax` bq

4
3 1.02 0.78 0.06 0.34 0.70 1.06 2.35

Cotton
EVI 3

?y “ a 1
3?x ` b ´1.25 (-1.39, ´1.11) 2.97 y “

´

a 1
3?x ` b

¯3
0.91 0.73 0.05 0.25 0.55 1.12 1.62

EVI2 3
?y “ a 1

3?x ` b ´1.21 (´1.33, ´1.07) 2.95 y “
´

a 1
3?x ` b

¯3
0.93 0.76 0.04 0.33 0.64 1.16 1.61

Pasture
EVI y

3
4 “ ax2 ` b 2.84 (2.49, 3.20) 0.88 y “

`

ax2 ` b
˘

4
3 0.98 0.81 0.10 0.45 0.72 1.07 2.00

EVI2 y
3
4 “ ax

3
2 ` b 2.99 (2.6, 3.37) 0.72 y “

´

ax
3
2 ` b

¯
4
3 0.99 0.82 0.06 0.42 0.70 1.12 1.91
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Density distributions of predicted LAI generally match with those of measured LAI, especially for
soybean and rice, though some discrepancies exist (Figure 5). For example, the predicted distributions
capture multi-modal behavior well, but tend to exaggerate the amplitude of the modes (i.e., maize,
wheat, pasture). For cotton, the peaks and valleys of the predicted prediction do not match the
measured distribution, potentially due to the unbalanced sample. In addition, we again observe no
significant difference in the performance between EVI and EVI2.

We also provided LAI-EVI and LAI-EVI2 relationships based on Theil-Sen regression for the
full-range dataset (Table S8, Figure S8), and similar conclusions can be drawn as the best-fit-functions.
Again, we found that EVI and EVI2 can only provide reasonable estimations for the entire range of
LAI values for wheat, while for overall, row crop, and maize, EVI and EVI2 saturate when LAI is
above 6 m2/m2. As a result, for the following analysis and assessment, we only used the relationships
based on truncated dataset, and readers are advised to be cautious when interpreting the result to
avoid extrapolation.

3.4. Evaluation of the LAI-EVI/EVI2 Relationships

3.4.1. Analysis of the Errors from Temporal Mismatch and Measurement Methods

Overall, we found a significant effect of temporal mismatch on the LAI-EVI and LAI-EVI2
relationships based on results from the ANOVA test (Figure 6). The residuals for temporal mismatch
between 12–14 days are the greatest of all, although this is not statistically significant based on results
of the Tukey-Kramer test probably due to the unequal sample sizes. The residuals of the 0–3 day
group are statistically greater than that of the 4–7 days group for both EVI and EVI2, likely due to the
fact that the majority of samples fall in the 0–3 day group. Although sample sizes are much smaller
for larger temporal mismatch, there is still an increasing trend of the residuals starting from 4-day
temporal mismatch.

According to the ANOVA test, there is also an overall effect of LAI measurement methods on the
LAI-EVI and LAI-EVI2 relationships (Figure 6). Residuals from destructive sampling are significantly
greater than those from the optical methods, while there is no significant difference among the optical
methods. These findings support previously reported underestimation issues associated with optical
methods, which is mainly due to the assumption of randomly distributed foliage elements within the
canopy [14,17,98,99]. In fact, measurements of non-contact optical instruments made at a single angle
correspond to effective LAI, which can be corrected to true LAI based on the ratio of non-foliage area to
plant total area and foliage clumping index [100,101]. Nevertheless, such corrections are complicated
and usually made at each site based on site-specific conditions. The result here implies the potential
uncertainties in the global LAI-VI relationships brought by the inconsistency of measurement methods
and data correction procedures.

3.4.2. Site-Based Evaluation on Global Universality

The site-based evaluation result suggests that variation of coefficient values are minor among
models fitted with difference subsets of samples selected by leave-one-site-out method, as most of the
coefficient values are close to and distributed around the coefficient fitted using all samples (Figure 7).
This is expected, as the global LAI-VI relationships reflect an average condition of the constituent sites.
For some sites (i.e., Italy and Mead (maize); California, NAFE06, SMAPEx3, and SPARC (pasture);
and AGRISAR and Les Alpilles 1 (wheat)), the corresponding coefficients fitted using samples from
other sites are far from the global value as well as the rest of the leave-one-site-out models. These
sites tend to have the largest sample sizes, and therefore this difference reflects a large leverage on the
global relationships.

The RMSE, bias, and mean absolute percentage error (MAPE) values from leave-one-site-out
evaluation indicate how well models fitted with one set of pooled samples can be applied to an
independent site outside the training samples. Most RMSE values are <1.2 m2/m2, with more than
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half <1 m2/m2, bias values are between ˘1 m2/m2, and often ˘0.5 m2/m2 (Figure 7). The MAPE is
between 10% and 60%, with 2/3 of the sites below 40%. Since the LAI measures are relatively low
(<1 m2/m2) in a lot of sites, the MAPE values tend to be high. Only three crop-sites (maize-Italy,
wheat-AGRISAR, and wheat-Les Alpilles 1) have biases >1.5 m2/m2. Performance tends to be the
worst for wheat, which may be partly explained by the fact that wheat is the most geographically
diverse crop in our sample. The scatter plot in Figures 4 and 6 both confirm this point.

Across all crops, the small variation in coefficient values and relatively low RMSE values observed
in Figure 7 support the universality of the relationships and suggest that global LAI-VI relationships
can be applied to independent datasets with a certain degree of confidence. However, there is a
non-zero bias for each crop-site combination, albeit a small one in most cases. These biases could be
positive or negative with varied values centered on zero, which reflects the random error term in the
regression model of the global LAI-VI relationships; such error is inherent in the “one place, one time,
one equation” issue as a result of the diverse nature of local LAI-VI relationships.

Figure 8 visualizes the one place, one time, one equation issue in a more direct manner. In this
figure, we compared local LAI-EVI2 relationships of maize in four sites (with sample size greater than
30) as well as the global LAI-EVI2 model (Table 3). The trend of site-specific relationships are similar
to the global relationship, but each relationship has a unique shape and location in the LAI-EVI2 space,
leading to bias when using one curve in a different location. Taking the Italy site as an example, the
global and any other local relationships function would result in an underestimation of LAI, although
the local relationship itself is very strong (R2 = 0.85). This also explains the large RMSE for the Italy
site in Figure 8. This phenomenon is the source of bias when applying a global LAI-VI relationship to
a local site, or applying a local relationship from one place to another location.
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Figure 6. Boxplots of the absolute residuals summarized by temporal mismatch between LAI
observations and satellite image acquisition (first row) and residuals summarized by measurement
methods (second row) for the LAI-EVI and LAI-EVI2 relationships. The numbers in the EVI panel
are the sample sizes for each category. In the boxplot, two ends of the boxes correspond to the first
and third quartiles of the data, and the whiskers extend from the edges to the highest/lowest value
that is within 1.5 * IQR of the hinge, where IQR is the inter-quartile range. Data beyond the end of the
whiskers are plotted as points. The significance levels from ANOVA test (with Welch’s correction on
non-homogeneity of variances) are shown on the title of each panel. The significance codes represent:
*** <0.001; ** <0.01; * <0.05. Significantly different pairs (α = 0.05) identified by the pairwise comparisons
based on Dunnett's Modified Tukey-Kramer test are connected by lines. The red line indicates that the
mean of the left group is significantly larger than that of the right group.
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based on RMSE. Each site containing adequate samples (at least 10 samples) for a crop type is used 

Figure 7. The variation of coefficient values from site-based validation for crop types with sufficient
sample size: maize, soybean, wheat, and pasture. For each crop, the best model from Table 3 was used
based on RMSE. Each site containing adequate samples (at least 10 samples) for a crop type is used
once as a test site, while the rest sites serve in regression to obtain coefficient values. Coefficient values
are plotted with filled circles corresponding to the test site displayed on the X axis. The horizontal line
shows the value of coefficients (data from Table 3). The sample sizes, RMSE, and bias of each testing site
are displayed in tables under X axis. The short names for each site are used on X axis: AG: AGRISAR,
Ba: Barrax, Be: Beltsville, Ca: California, CE2: CEFLES2, Fu: Fundulea, It: Italy, Le: Les Alpilles 1,
Me: Mead, Mi: Missour, NA: NAFE06, SE3: SEN3EXP2009, SM3: SMAPEx3, SMA: SMEX02-IA, SMK:
SMEX03-OK, SP: SPARC.
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Figure 8. Local LAI-EVI2 relationships of maize for four major sites compared to the global maize
relationship. The thin colored lines are the best-fit functions for each site. The thick solid rose-colored
line refers to the global relationship, with dashed rose line being the prediction interval. Gray shaded
areas are the 95% confidence intervals.

3.5. Preliminary Validation and Example Applications

To further explore the applicability of global relationships to local sites, we conducted three
comparisons between estimations of global relationship and independent datasets at field to regional
scales outlined in Section 2.5.
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3.5.1. Field Scale

At field scale (two maize fields in Wisconsin), both the global overall LAI-VI relationships and
the global maize LAI-VI relationships agree well with the field measured LAI (RMSE ~1 m2/m2) and
accord with local LAI-VI relationships (Figure 9). The RMSE of both global relationships are also close
to that of the local relationship, meaning that the global models hold well in this validation site. The
MAPE of the local relationships are 39% and 36% respectively, while those of the global relationships
range from 31% to 39%. Note that the local relationships also have uncertainties from a couple of
sources, including LAI measurement, linear interpolation of LAI, as well as MAC sensor calibration,
and thus induces errors. In this case, the global relationships do perform well with only ~0.1 increase
in RMSE.
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Figure 9. Comparison between global overall, global maize LAI-VI relationships, and local LAI-VI
relationships for the maize fields in Wisconsin. The VIs were calculated based on images collected by
the air-borne sensor.

These relationships were also used to produce LAI maps, which gave very similar spatial
distribution of LAI and captured significant spatial variability in LAI associated with oxygen and water
stress (Figure 10a; stress regimes described in detail in [64]). The per-pixel differences between LAI
values derived from global and local relationships are within ˘0.5 m2/m2 (as shown by the histogram
in Figure 10a), which is ~10% of the observed range of LAI in the study area. The MAPE between the
global overall relationship and local relationship is 17%, and that of the global maize relationship is
5%. We find a slight shift in the histogram when applying the global overall relationship to this site
(~0.45 m2/m2), which indicates a small bias in the global overall relationship.

3.5.2. Local Scale

Local scale results were displayed in the same manner as the field scale case in Figure 10b. All
maps were generated from the same Landsat image, showing only a window of the study area in
California. The histograms were produced from 10,000 random samples extracted from the whole
study area. Although the landscape in this area is heterogeneous with various crop fields, maps
produced with the global relationships and the NEX method exhibit similar spatial distribution. A
figure of 86% of the LAI estimation from global relationships is within 1 m2/m2 difference from NEX
LAI. The MAPE of the global relationships is around 27%. The LAI generated from global relationships
were generally higher than the NEX LAI, as the histogram of differences is shifted by 0.4–0.5 right to
the zero point (Figure 10b).

Beside, we also used the SMEX02-WC data (not included in the model establishment) to validate
the global relationships. The SMEX02-WC contains 40 maize and 20 soybean LAI data collected in
Iowa, 2002. The RMSE for the LAI-EVI overall, maize, and soybean relationships are 0.69, 0.93, and
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0.67 respectively, while the MAPE are 30%, 28%, and 17% respectively. The RMSE for the LAI-EVI2
overall, maize, and soybean relationships are 0.76, 1.03, and 0.64, and the MAPE are 34%, 33%, and
19% respectively.Remote Sens. 2016, 8, x FOR PEER REVIEW 19 of 30 
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Figure 10. LAI maps generated using the global and local LAI-VI relationships for three example
applications. In each row, the leftmost map is the reference LAI data set. The second and third maps
were produced based on global LAI-VI relationships. Any LAI value greater than 6 m2/m2 is excluded
from this analysis to avoid extrapolation. The fourth figure in each column shows the histograms of the
difference between LAI maps based on global LAI-VI relationship and the reference map (estimated
LAI minus reference LAI). Row (a): Results of the field scale validation in Wisconsin based on LAI-EVI
relationships. The cross symbols indicate the location of LAI measurement points in the field. Row (b):
Local scale validation in California. The maps only show a window of the footprint to highlight spatial
details. The histogram of image difference was produced from a random sample of 100,000 points
placed on the entire Landsat footprint. Row (c): Regional scale validation results in Iowa using LAI-EVI
relationships. Both the reference and the map produced from this work used 16-day composite MODIS
product centered on 12 July 2009.

3.5.3. Regional Scale

In Figure 10c, LAI maps produced using global relationships display similar spatial distribution
to that of the BNU MODIS LAI: a quite homogeneous region occupied mainly by crop fields, with
very high LAI values located in the west part and low LAI values appearing around cities and along
rivers, where mixed pixels mainly occur. LAI estimated using global relationships were generally
higher than MODIS BNU LAI, with difference between 0 and 2.5 m2/m2. The MAPE between the
LAI estimated from global relationships and MODIS LAI is around 35%. Of the two maps of global
relationships, the LAI generated using global overall relationship is lower than that using global
crop-specific relationship (i.e., a weighted combination of maize and soybean LAI-VI relationships).

In this regional scale example, we performed an additional analysis by constructing crop-specific
LAI time series to further compare the two datasets (Figure 11). The phenological differences between
maize and soybean are well captured by both the global relationship and MODIS BNU LAI products:
maize was planted 1–2 weeks earlier than soybean. In particular, the soybean LAI time series based
on the global relationship agrees well with those of the MODIS BNU product. However, maize LAI
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predicted by the global relationship is higher than the BNU LAI. Typically, maize has a higher peak
LAI than soybean at the end of the vegetative stage. This phenomenon is captured by the global
LAI-VI relationship but not by the BNU LAI products, where the peak LAI of maize is even lower than
that of soybean. This suggests that LAI estimates from our global LAI-VI relationships might be closer
to reality than the BNU LAI products at this scale of analysis.
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Figure 11. LAI time series of pure maize and soybean pixels in the Iowa validation site. LAI estimated
by both the global EVI relationship and the BNU-LAI product are shown. Pure maize or soybean pixels
are those that have more than 90% area planted with maize or soybean respectively. The figure shows
the average value of all pure pixels. The smooth curves were generated from polynomial regression.

4. Discussion

4.1. Universality vs. Diversity

The global LAI dataset allowed us to analyze the universality and diversity of crop LAI-VI
relationships quantitatively. Regardless of crop types, field locations, and time, we found that there is
always a positive, monotonically increasing relationship between LAI and VIs, which explains more
than half of the field measured LAI. The site-based evaluation suggests that, at a global scale, LAI-VI
relationships provide an average estimate of LAI, while contributions from all other characteristics of
canopy, soil, and all other environmental interactions towards the relationship are treated as random
errors. Additionally, by applying the global relationships to remote sensing data of different spatial
resolutions at different spatial scales, we found the global relationships to be rather robust with small
discrepancies when compared to reference LAI data. To this end, the global LAI-VI relationships built
in this paper are universal with an uncertainty level at RMSE of ~1 m2/m2. Despite a certain level of
universality, the diversity and uniqueness of the site-specific LAI-VI relationships are real in nature.
Such diversity comes from a variety of sources, including crop type [57], biochemical properties of
the leaf/canopy [42,54,58], biophysical properties of the leaf/canopy [69], the optical properties of
the soil background, as well as the atmospheric scattering and absorption and solar-object-sensor
geometry [70]. These factors all contribute to the reflectance of crop canopy and thereafter VI. As a
result, each set of environmental conditions has yielded a unique local LAI-VI relationship that is
ideally applicable only under unique conditions. The diverse set of relationships between local LAI
and VI introduce systematic differences in the global LAI-VI relationship with bias up to 2 m2/m2

and percentage errors between 10% and 60% when applied to local scales. In the site-based evaluation
(Figure 7) and preliminary validation efforts (Figure 10), we show that such bias, or namely the
diversity of local LAI-VI relationships, is inherent in the random error term of the regression model for
global LAI-VI relationship.
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In tandem, these results indicate that the global relationships determined here represent a
powerful and useful tool for estimating LAI over large spatial scales with a predicted accuracy
of ~1 m2/m2. This is particularly valuable for global applications or data-sparse regions where in
situ LAI is unavailable or crop type is unknown. However, these relationships are unable to replace
local relationships where available, as the local relationships take into account site-specific properties
influencing the LAI-VI relationship.

4.2. Considerations in the Validation of the Global LAI-VI Relationships

As a preliminary validation effort, the three examples we show in Section 3.5 represent a small
sample intended to demonstrate the potential strengths and limitations of our global relationships to
the types of local analyses other researchers may conduct. In each of these examples, the difference
histograms all demonstrate some degree of bias between the global LAI-VI relationships and reference
LAI data (Figure 10). As indicated earlier, the reference data are modeled in nature, and therefore could
contain errors; thus, the discrepancy between our estimates and the reference data is not necessarily
“error”, and both our global LAI-VI relationships and the reference data may have contributed to the
observed bias.

Ideally, to validate the global relationships, we need to draw a random sample of croplands
across the globe, where we collect in-situ LAI measurements and satellite observations simultaneously.
In this case, the errors are expected to possess a Gaussian distribution centered at zero, assuming that
our global LAI dataset is statistically representative of the population. However, such comparison
is neither practical nor possible, as in situ LAI observations are rare even at local scales. Moreover,
in situ LAI were likely measured using different sampling schemes and instruments, rendering such
comparison even more challenging [2]. Nevertheless, the research community has made great efforts
in the validation of global satellite products with limited sources of ground truth data and various
quality control and inter-comparison techniques [100,102]. As more and more ground truth data are
made available, we will continue our endeavor in the validation of the global relationships.

4.3. Potential Issues Related to Data Quality and Consistency

There are also potential issues of the quality and consistency of the LAI and remote sensing
data in this study. For example, although we expended considerable effort to gather and compile a
globally representative dataset of LAI measurements and VI data, the sample size and their geographic
distribution are far from ideal. Most of the maize data are from the U.S., so major producers in Asia
(e.g., China) are underrepresented. The sample size of rice is small due to lack of data in major rice
producing nations such as India. Inclusion of additional LAI data from underrepresented areas and
crop types would undoubtedly strengthen the universality analysis of the relationships presented here.

The lack of data consistency is the most significant problem when pooling together in situ LAI
data from different experiments and sites, which is common in remote sensing inter-comparison and
validation work [103,104]. The inconsistency in measurement method is one of the potential issues. For
example, optical methods using transmittance to estimate green LAI is contested in the remote sensing
community [14,17,98,99]. In this paper, we show that the optical methods might yield underestimation
of LAI using a residual analysis after Theil-Sen regression. Note that such underestimation might be
attributed to many other factors besides the uncertainty in the optical methods. For example, in the
dataset, the average value of LAI measured destructively is greater than that of LAI2000 and AccuPAR
(Table 2). Moreover, since Theil-Sen regression is a robust method suppressing influences of outliers,
comparison of all residuals might be biased without considering outliers. In our global dataset, some
experiments/sites, such as the VALERI sites (Table S1) had applied rigorous calibration procedure
for optical methods considering clumping index, gap fraction, and leaf angle etc., which renders the
optically measured LAI more reliable and inter-comparable between different sites [19]. However, such
calibration effort is not always available across the globe. Therefore, our study represents a valuable
step towards understanding the consistency of different measurement methods at a global scale.
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Beyond measurement methods, there are many other issues of inconsistency in in situ LAI data,
such as the definition of LAI, sampling scheme, and design of sample plots, which all make it more
challenging to compare observed LAI from different experiments and sites and relate them to remote
sensing observations. Fortunately, great strides are being made by the remote sensing community to
standardize in situ measurements and protocols for robust validation of LAI [2,19]. One example is the
VALERI project, which consists of a number of sites representing different biomes in Europe and part
of Asia. This project provides robust and concurrent methodology in site selection, establishment of
elementary sampling unit (ESU), in situ measuring and calibration procedure, as well as spatial transfer
function to relate locally measured biophysical variables including LAI to high resolution satellite
images [19]. In addition, progress has been made towards proposing best practices in generating and
validating remote sensing LAI products by the Committee on Earth Observation Satellites (CEOS)
Working Group on Calibration and Validation (WGCV) Land Product Validation (LPV) sub-group [2].
This group provides a protocol of “good practices” in collection of in situ reference LAI. These efforts
are intended to help standardize in situ measurement and validation processes from a remote sensing
perspective and promote global synthesis and collaboration towards the understanding of remote
measurement of LAI from space.

Besides the LAI in situ measurements, remote sensing products also have quality issues. One
example is the mixed pixel problem, which is more common with coarse spatial resolution observations
(e.g., MODIS) than Landsat images [105,106]. We noticed that many LAI measurements were made
close to field edges and roads, due to accessibility. As a result, some measurements may correspond
to pixels that are a mixture of crop and non-crop signals. Another source of error is the effect of
Sun-sensor geometry on bidirectional surface reflectance [107–109]. For a study with a global scope
and a large temporal spanning, the variations in view-illumination geometry could vary significantly
from one site to another. We have considered this effect by applying MODIS NBAR product which
contains BRDF-corrected data in the validation case in Iowa. We did not apply BRDF-correction to the
Landsat data, since our analysis on the variation of Sun illumination geometry of the Landsat images
showed that the effect of BRDF is minimal (Supplementary Materials Section 6; Figures S9 and S10).
Additionally, the uncertainty in the radiometric/atmospheric corrections of the satellite images is also
a factor affecting data quality.

4.4. Concerns in the Model Prediction Power

All of the VIs are shown to have little sensitivity to LAI values above 6 m2/m2, resulting in severe
saturation issues in NDVI, EVI, and EVI2, for overall and crop-specific relationships except wheat. This
affects the prediction power of the LAI-VI relationships, as VIs or spectral reflectance might not be able
to detect any change in LAI for very dense canopies. Interestingly, unlike the other models, the wheat
crop LAI-VI relationships provide reasonable predictions over the full range (0–8.5 m2/m2), as peak
LAI above 7 m2/m2 is commonly found in various wheat growing locations around the world [36,65].
In this work, we present two versions of the LAI-VI relationships derived from full-range or truncated
sample, and consider both to be valid. Note that the relationships based on truncated samples have
a valid range up to 6 m2/m2, and such cut-off is not uncommon in satellite-derived LAI products.
For example, the CYCLOPES LAI product derived from SPOT-Vegetation has a valid LAI range of
0–6 m2/m2, as the algorithm relies on radiative transfer model simulations with certain LAI value
range [72,110]. The GEOV1 global LAI product has a limit up to 7 m2/m2 [111]. Readers are advised
to be aware of the differences in the two versions of relationships, and cautious should be exercised
when interpreting the results, and applying the models.

Different VIs also present differed sensitivity to across different LAI value ranges (within
0–6 m2/m2). Some (e.g., NDVI, EVI, and EVI2) are more sensitive to LAI before 2 or 3 m2/m2,
perhaps because they are more resistant to soil background, and others (e.g., SR, CIGreen) are more
sensitive after 3 m2/m2, since they have less saturation effect (e.g., Figure 3). Previous studies have
found improved predicting power by choosing VIs on different LAI value ranges according to



Remote Sens. 2016, 8, 597 23 of 29

sensitivity [66,112]. This is a potential solution to reduce the uncertainty of the global relationships
and deserve further investigations.

5. Conclusions

In this study, we developed a dataset containing spatiotemporally explicit in situ crop LAI
measurements gathered worldwide to assess the global universality of LAI-VI relationships. In the
exploratory analysis, we built best-fit functions between LAI observations and five vegetation indices
(SR, NDVI, EVI, EVI2, and CIGreen) generated from Landsat data to depict global LAI-VI relationships
for a number of crop types. Results reveal that the global LAI-VI relationships explain more than half of
the variance in field-measured LAI using only remotely sensed observations. The LAI-VI relationships
are crop specific and are most effective using EVI or EVI2 from surface reflectance. To account for
measurement errors from both LAI and VIs, we further refined the EVI and EVI2 models using power
transformations and Theil-Sen estimator and the final models have RMSE mostly below 1.0 m2/m2.
We provided three examples that applied the global LAI-EVI/EVI2 relationships to local to regional
spatial scales, and found them to be effective in generating LAI maps. Based on the preliminary
validation and site-based evaluation, we found that the LAI-VI relationships we built possess global
university, with random errors reflecting the diverse nature of agro-ecosystem landscapes.

The major contributions of this work include synthesizing a large number of in situ LAI
observations and vegetation indices from various locations and developing a set of globally applicable
statistical relationships. The simplicity of generating VI using remotely sensed images and applying
simple statistical relationships adds to the practical value of this research, especially when essential
variables needed for process-based methods are rarely present and hard to measure [27,113]. Moreover,
to the best of our knowledge, the work presented here is the first to compile a large global dataset
of crop LAI and VIs and analyze the universality and diversity of the LAI-VI relationships globally.
These findings not only support the CEOS Land Product Validation framework for the validation of
remote sensing LAI products but also contribute to a larger community of users that are interested in
producing LAI maps from remote sensing but do not have access to measured LAI data [57,93,105].
Moreover, as our analysis was based on Landsat images with 30 meter spatial resolution, the global
LAI-VI relationships support production of a large scale fine resolution LAI map which is essential
to agricultural applications, especially in regions where crop fields are relatively small. The ability
to produce LAI maps at this level provides potentials to assess additional biophysical variables and
processes including biomass, primary production (NPP), evapotranspiration, and crop yields, at
individual plot/field level, which is more suitable for decision making than aggregated values over a
large area. The easy accessibility, low cost, and the long historical coverage and continuity of Landsat
mission also render our findings useful to scientific, governmental, and commercial applications.
Finally, the analysis and findings here only apply to broadband VIs. As more and more medium to
high resolution sensors become available with additional narrow spectral bands, i.e., the red edge
band, there will be great opportunities of establishing efficient models for global LAI estimation with
various hyperspectral VIs [57,114,115].

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/8/7/597/s1,
Figure S1: Scatterplot of surface reflectance derived NDVI versus LAI measurements of the Agro Site (colored
by crop types), Figure S2: Boxplot of the CIGreen values of SMEX02-WC versus rest of the dataset, Figure S3:
Scatterplot of surface reflectance derived EVI versus LAI for SMAPEx2 (colored by crop type), Figure S4: Field
photos of two pasture plots in SMAPEx2, Figure S5: Field photos of two grain plots in SMAPEx2, Figure S6:
Best-fit functions of global LAI-VI relationships based on in situ LAI and surface reflectance based VIs (SR,
NDVI, EVI, EVI2, and CIGreen) for the full-range dataset, Figure S7: Residuals of the global overall LAI-VI
relationships (from surface reflectance) plotted against predicted LAI values, Figure S8: LAI-EVI and LAI-EVI2
relationships based on Theil-Sen regression and the density distributions of the measured and predicted LAI
for the full-range dataset, Figure S9: Distribution of the sun illumination angles of all the Landsat data used in
this study in a polar coordinate, Figure S10: The residuals from global LAI-EVI relationship plotted over sun
azimuth and zenith angles, Table S1: Summary of LAI measurement sites and records, Table S2: VIs used in
literatures that established LAI-VI relationships for crop (only broadband VIs are shown), Table S3: Statistics of
the full-range LAI dataset by crop type, measurement method, and region, Table S4: Best-fit functions for the
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LAI-VI relationships (LAI “ f pVIq) for major crops based on three levels of radiometric/atmospheric corrections,
Table S5: Goodness-Of-Fit (GOF) metrics of the global LAI-VI relationships (LAI “ f pVIq) for major crops based
on three levels of radiometric/atmospheric corrections, Table S6: Best-fit functions for the LAI-VI relationships
(LAI “ f pVIqq) for major crops based on surface reflectance using the dataset with a complete LAI data range,
Table S7: GOF metrics of the global LAI-VI relationships (LAI “ f pVIq) for major crops based on three levels of
radiometric/atmospheric corrections, Table S8: LAI-EVI and LAI-EVI2 relationships (LAI “ f pVIq) based on
data transformation and simple linear regression (SLR) with Theil-Sen estimator (the complete-range data).
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Author Contributions: Mutlu Özdoğan, Yanghui Kang and Miguel O. Román conceived the project.
Samuel C. Zipper, Jeff Walker, Suk Young Hong, Michael Marshall, Vincenzo Magliulo, José Moreno, Luis Alonso,
Akira Miyata, Bruce Kimball, and Steven P. Loheide II collected or provided in situ LAI data. Yanghui Kang and
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