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Abstract: Alpine swamp meadow on the Tibetan Plateau is among the most sensitive areas to climate
change. Accurate quantification of the GPP in alpine swamp meadow can benefit our understanding
of the global carbon cycle. The 8-day MODerate resolution Imaging Spectroradiometer (MODIS) gross
primary production (GPP) products (GPP_MOD) provide a pathway to estimate GPP in this remote
ecosystem. However, the accuracy of the GPP_MOD estimation in this representative alpine swamp
meadow is still unknown. Here five years GPP_MOD was validated using GPP derived from the eddy
covariance flux measurements (GPP_EC) from 2009 to 2013. Our results indicated that the GPP_EC
was strongly underestimated by GPP_MOD with a daily mean less than 40% of EC measurements.
To reduce this error, the ground meteorological and vegetation leaf area index (LAIG) measurements
were used to revise the key inputs, the maximum light use efficiency (εmax) and the fractional
photosynthetically active radiation (FPARM) in the MOD17 algorithm. Using two approaches to
determine the site-specific εmax value, we suggested that the suitable εmax was about 1.61 g C MJ´1

for this alpine swamp meadow which was considerably larger than the default 0.68 g C MJ´1 for
grassland. The FPARM underestimated 22.2% of the actual FPAR (FPARG) simulated from the LAIG

during the whole study period. Model comparisons showed that the large inaccuracies of GPP_MOD
were mainly caused by the underestimation of the εmax and followed by that of the undervalued
FPAR. However, the DAO meteorology data in the MOD17 algorithm did not exert a significant
affection in the MODIS GPP underestimations. Therefore, site-specific optimized parameters inputs,
especially the εmax and FPARG, are necessary to improve the performance of the MOD17 algorithm
in GPP estimation, in which the calibrated MOD17A2 algorithm (GPP_MODR3) could explain 91.6%
of GPP_EC variance for the alpine swamp meadow.

Keywords: alpine swamp meadow; MOD17A2 algorithm; eddy covariance (EC); light use efficiency
(LUE); gross primary production (GPP); Tibetan Plateau

1. Introduction

Alpine swamp meadows cover about 50,000 km2 of the Qinghai-Tibetan plateau, and hold
the highest soil organic carbon content among all the plateau ecosystems in the world [1].
One reason for this is the low temperature and water-logged ambient circumstance caused a relative
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moderate decomposition rates [2]. Another more important reason is the most effectively productive
capacity in this ecosystem [1,3]. Gross primary production (GPP), a key component for carbon fixation
through vegetative photosynthesis in carbon biogeochemical cycle between the biosphere and the
atmosphere [4–6], represents the productive capacity of ecosystem [7]. Besides, the alpine swamp
meadow is always considered as a symbol of global change [8]. Therefore, accurate quantification of
the GPP in alpine swamp meadow can benefit our understanding of the global carbon cycle.

MODerate resolution Imaging Spectroradiometer (MODIS) GPP algorithm, based on the light use
efficiency (LUE) model [9], provides a pathway to document the logical spatial patterns and temporal
variabilities of GPP across a diverse range of biomes and climate regimes [7,10,11]. The LUE model
assumes that GPP of well-watered and fertilized crops is linearly related to the amount of solar energy
they absorbed (APAR) which could be calculated from the PAR and the fraction of PAR absorbed
(FPAR) by vegetation [7,12]. Consequently, in the last few decades, the LUE approach has been used to
estimate GPP at various spatial and temporal scales [7,13–15]. However, significant discrepancies were
often found between this approach and other terrestrial ecosystems models [16]. Therefore, we need to
effectively validate these products to establish their utility in regional and global GPP estimation [17],
which is full of challenge because of the large uncertainties in parameters inputs of the maximum LUE
(εmax) and FPAR in different ecosystems [18,19].

Eddy covariance (EC) technique is the most efficient micrometeorological method to observe CO2

exchange between the biosphere and the atmosphere [20,21] thus is increasingly used for ecosystem
model calibration and validation [22–24]. Recent many researches tend to concentrate on the evaluation
and validation of MODIS GPP products (GPP_MOD) using GPP partitioned from the net ecosystem
CO2 exchange (NEE) of EC measurements [10,17,19,25–35]. Most studies suggested that GPP_MOD
were able to capture seasonal and spatial GPP patterns across biomes except croplands because of
human disturbances [30,31]. However, the accuracy of GPP_MOD varied with different ecosystem and
spatial-temporal scale [17,28,29]. For example, Turner et al. (2006) proposed that GPP_MOD tended
to be overestimated at low productivity site, in contrast, that tended to be underestimated in high
productivity sites. Zhang et al. (2008) revealed that GPP_MOD accounted for 1/2–2/3 of GPP_EC
for the alpine meadow, but only about 1/5–1/3 for the cropland. He et al. (2012) demonstrated
GPP_MOD was seriously underestimated in the forest ecosystems of East Asia, especially at northern
sites. Verma et al. (2014 and 2015) concluded that GPP_MOD had a low confidence to track inter-annual
GPP variation patterns despite of their better performances in intra-annual GPP patterns. Tang et al.
(2015) discovered that the current MODIS product works more significantly for deciduous broadleaf
forest and mixed forest, less for evergreen needle leaf forest, and least for evergreen broadleaf forest.
Overall, all of these studies mainly attributed the discrepancies between GPP_MOD and GPP_EC to
the quality of different upstream inputs. Further, with the vigorous development of international flux
networks [36,37], they appealed that the next efforts should have a site-specific refinement of MOD17
parameters inputs, especially the εmax and FPAR, which directly affected GPP estimation based on the
LUE model [11,38,39]. Then many tower-based site-level validation studies on GPP_MOD increasingly
arise in recent years [25,27,32,34,38,40,41]. However, the validation of GPP_MOD estimation in alpine
swamp meadow is still absent.

Lhasa River Basin is one typical area dominated by alpine swamp on the central Tibetan Plateau [8]
and the dominant (65.45%) wetland landscape types is Kobresia littledalei swamp meadow [42]. Our EC
flux tower was established at Damxung, a county located at the Lhasa River Basin, surrounded by
more than 30 high mountains (>6000 m a.s.l) and a dense river networks, which provided favorable
conditions for development of alpine wetlands due to a constant water supply from abundant snow
melt in growing season [43]. 26% of the area was alpine wetland, of which has the largest patches area
(~15.7ˆ 103 hm2) of the K. littledalei-B. sinocompressus swamp meadow [8]. Therefore, EC measurements
in this alpine swamp provided the representative and effective insitu data for validation and revision
of the MOD17 GPP products. Based on five years MODIS data products and GPP_EC measurements
from 2009 to 2013, the main objectives of our study are: (1) to evaluate the validity of GPP_MOD in
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temporal patterns and absolute amounts; (2) to quantify the uncertainty sources of GPP_MOD caused
by inaccurate parameters inputs in the MOD17 algorithm; (3) to identify the optimized parameters
inputs in the MOD17 algorithm for this alpine swamp meadow.

2. Materials and Methods

2.1. Site Description

The experimental site is a typical alpine K. littledalei-B. sinocompressus swamp meadow
(30˝28108.5011N, 91˝03144.5011E, elevation 4286 m) that is located at Majilukuo village, approximately
5 km from the Damxung county, Tibet Autonomous Region. The local area is categorized as plateau
monsoon climate with characteristics of strong radiation, low air temperature, and short cool summers.
Climatic records from 1963 to 2008 show that the average annual air temperature is 1.8 ˝C, with coldest
monthly mean of ´9.1 ˝C in January and the warmest of 11.1 ˝C in July. Average annual precipitation
is 475.6 mm, over 90% of which concentrated between May and September. Flat terrain (less than
2 degree-slope) and different microtopographies, hummocks (0.1–0.2 m above the ground) and hollows
(0.1–0.3 m below the ground) with similar proportions (about 50% each), covered in this wetland. The
dominant species (Over 90%) are K. littledalei in hummocks and B. sinocompressus in hollows, and the
canopy heights are 35–45 cm and 20–30 cm, respectively. Other genera, such as Potentilla, Pteridophyta,
and Pedicularis mixed in hummocks. The soil is gravelly sandy loam, and often is called alpine swamp
meadow soil [44]. Water depth is about 10–45 cm during growth season from May to September. In
general, this alpine swamp becomes frozen at the beginning of November and gradually thaws in the
following March.

2.2. Ground Measurements

EC flux measurements were conducted at a height of 2.0 m in the central of a fetch of at least
200 m in all directions by open-path EC method from 12 May 2009 to 31 August 2013. The EC system
consisted of one three-dimensional sonic anemometer (Model CSAT3, Campbell Scientific Inc., Logan,
UT, USA) and an open-path fast-response infrared gas analyzer (IRGA, Model LI7500, LI-Cor Inc.,
Lincoln, NE, USA), which provides a digital output of fluctuations in three wind components, sonic
temperature, water vapor, and CO2 density at a rate of 10 Hz. Calculations were carried out for each
30 min period by a data-logger (Model CR1000, Campbell Scientific Inc.). Calibrations of CO2 and
H2O flux were performed annually.

Standard meteorological and soil parameters were measured using an array of sensors. A Li-cor
quantum sensor (Model LI190SB, LI-Cor) was mounted at a height of 1.5 m with the EC system to
measure photosynthetically active radiation (PAR). The radiation balance of solar and far-infrared
radiation was measured by a Net Radiometer (Model CNR1, Kipp & Zonen, Utrecht, The Netherlands)
at a height of 2 m, providing total solar radiation (SR), reflected solar radiation (SRR), far-infrared
radiation (LR), and reflected far-infrared radiation (LRR), to allow calculation of net radiation (Rn).
Air temperature (Ta) and relative humidity (RHa) were measured with shielded and aspirated sensors
(Model HMP45C, Vaisala, Finland) at 2 m (Ta2/RHa2). Vapor pressure deficit (VPD) was calculated
as the difference between the saturation and actual vapor pressures at the given temperature based
on the measured relative humidity and air temperature. Soil temperature at depths of 5 cm was
measured with the thermocouple sensor (Model 107-L, Campbell Scientific Inc.). All channels from
meteorological sensors were recorded as 30 min averages with a data-logger (Model CR10X and
AM25T, Campbell Scientific Inc.). The data were retrieved by a laptop computer every three weeks.

The vegetation leaf area index (LAIG) was regularly measured by a leaf area meter (Model AM200,
ADC BioScientific Ltd., Hertfordshire, UK) approximately every two weeks during the growing season
(May to September). Five sampling quadrants (0.5 m ˆ 0.5 m) were randomly measured both in
hummocks and hollows, the biomass samples were oven-dried at 65 ˝C till that the weight did not
change and then recorded.
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2.3. MODIS Data Products

MODIS collection 5.1 land products are available from the Land Processes DAAC [45]. Using
the flux tower position (30˝28108.5011N, 91˝03144.5011E) as the center pixel, we extracted the MODIS
LAI/FPAR (LAIM/FPARM) from MOD15A2 and GPP (GPP_MOD) products from MOD17A2 at 1 km
spatial resolution and 8-day time step from 1 January 2009 to 31 December 2013 [45]. Here we didn’t
use the MODIS collection 6 land products because we have no access, so far, to these data at our site.
Thus, we used the MOD17A2 Collection 5.1 that is more complete and accessible to our study area.
The GPP_MOD (Kg C day´1) were calculated from the MOD17A2 algorithm [11] based on a light
energy use efficiency (LUE) model (Equation (1)) [7,11,46].

GPP “ εˆ APAR (1)

where ε is the PAR conversion efficiency (Kg C MJ´1) [47]. The two parameters for Tmin and the
two parameters for VPD are used to calculate the scalars that attenuate εmax to produce the final ε
(Equation (2)) [11].

ε “ εmax ˆ Tmin_scalarˆVPD_scalar (2)

where the value of εmax is obtained from the Biome Properties Look-Up Table (BPLUT) [7,11]. The
attenuation scalars (Tmin_scalar and VPD_scalar) are simple linear ramp functions of the daily
minimum air temperature (Tmin) and daytime average VPD (Equations (3) and (4)), which range from
0 to 1 [23,48].
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where Tmin and VPD are obtained from the NASA Data Assimilation Office (DAO)dataset [49].
APAR is the absorbed PAR (MJ m´2 day´1) by vegetation canopy, which can be calculated as

Equation (5).
APAR “ FPARˆ PAR (5)

where FPAR is the fraction of absorbed PAR by vegetation canopy, and derived from the MOD15A2
product (FPARM). PAR is PAR incident on the vegetative surface, which estimated from incident
shortwave radiation (SWRad, provided in the DAO dataset) as Equation (6).

PAR “ 0.45ˆ SWRad (6)

2.4. EC-Based GPP Estimation

EC flux data processing and gap filling procedure were carried out according to the ChinaFLUX
method [37,50]. Here we only give a brief description. Data processing included the despiking to
exclude extreme abnormal observations [50], coordinate rotation to eliminate anomalies resulting
from tilt of the anemometer [51,52], air density corrections to correct density fluctuations induced by
temperature and water vapor (WPL corrections) [53–55], outlier rejection to filter data uncertainty
(|NEE| > 3 mg CO2 m´2 s´1) [56,57], and friction velocity threshold (u*) corrections to correct the
underestimate flux in weak turbulence [50,58].

Due to sensor failures, unsuitable weather conditions, and data processing above, EC flux
observational data generate discontinuous gaps [59]. We need to fill them in order to contrast with
MODIS data products. Linear interpolation was used to fill the small gaps (less than 2 h). For the gaps
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more than 2 h, two nonlinear empirical models were separately applied for daytime and nighttime
data [50]. The daytime (Rn > 10 W m´2) CO2 fluxes were estimated using the Michaelis-Menten
equation [59,60].

NEE “ ´
aˆ Amaxˆ PAR
aˆ PAR` Amax

` Re (7)

where NEE (µmol CO2 m´2 s´1) and Re (µmol CO2 m´2 s´1) are the day time net ecosystem exchange
and ecosystem respiration, respectively. Pmax (µmol CO2 m´2 s´1) is the maximum ecosystem
photosynthesis rate, and α (µmol CO2 µmol photons´1) is the apparent quantum yield and the
maximum light use efficiency, which are taken as indicators of plant photosynthetic capacity [57,60].

The nighttime missing NEE data (Re) were filled with the exponential relationship between Re
and soil temperature at 5 cm due to GPP is assumed to be zero during the night [61,62].

Re “ aˆ epbˆTs5q (8)

where Re (µmol CO2 m´2 s´1) is nighttime ecosystem respiration. Ts5 (˝C) is the soil temperature at
5 cm. a (The reference respiration when Ts5 = 0 ˝C) and b are the regression parameters.

The gap-filled daytime NEE were partitioned into EC-based GPP (GPP_EC) as CO2 assimilation
and Re as CO2 emission [57,63].

GPP_EC “ Re´ NEE (9)

2.5. FPAR Estimation

FPAR, the fraction of absorbed PAR by vegetation canopy, can also be calculated using the LAIG

measurements based on the Beer-Lambert law (FPARG) as Equation (10) [16] except for the direct
acquisition from FPARM.

FPARG “ 0.95ˆ p1´ expp´kˆ LAIMGqq (10)

where k is the light extinction coefficient with a value of 0.5 for herbaceous crops in this study [25,64].
The LAIG is discontinuous that is only available in measurement days, while the LAIM is consecutive
an 8-day time step. To document a consecutive LAIMG, a linear regression between the LAIG and the
LAIM was trained.

2.6. εmax Estimation

εmax, the maximum light use efficiency, is 0.68 g C MJ´1 in the default (collection 5.1, hereafter the
same) MOD17A2 algorithm for grassland biome [11]. However, wide variation in εmax is reasonable
because both vegetation types and suboptimal climatic conditions have potential impact on it [11,25]. In
this study, we determined the εmax values using two approaches. One is the MOD17A2 algorithm based
on LAIG and EC_GPP measurements data [25]. In brief, we only used the LAIG in measurement days
to calculate FPARG in Equation (10). Actually, all parameters, APARG, Tmin_scalar, and VPD_scalar,
could be directly estimated from the existing ground measurement data, PAR, Tmin, and VPD in
the MOD17A2 algorithm as mentioned above, respectively. Therefore, the εmax value for this alpine
wetland ecosystem is the linear regression slope between the EC_GPP and the multiplicative of two
attenuation scalars (Tmin_scalar and VPD_scalar) in the LAIG measurement days [4,25].

Another is using light response curve derived from the Michaelis-Menten equation based on EC
measurement data [59,60]. As Equation (7) illustrated, the α (µmol CO2 µmol photons´1) can be taken
as the maximum light use efficiency (εmax, g C MJ´1) [57,60] just after unit conversion [65].

εmax “ λˆMcˆ α (11)

where λ is the conversion ratio with9 value of 4.43 because 1 J energy of PAR is equivalent to 4.43 µmol
quantum [65]. Mc (12 g mol´1) is the molar quantity of carbon. Therefore, we extracted the daytime
NEE and PAR observational data in growing season from 2009 to 2012 to estimate the εmax values.
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2.7. Revised GPP Estimation

Based on the MOD17A2 algorithm and ground measurements, we introduced four approaches in
revising GPP_MOD (GPP_MODR1, GPP_MODR2, GPP_MODR3, and GPP_MODR4) according to
parameters selection (Table 1). As EC is the most direct and efficient micrometeorological method to
research carbon dynamics between the biosphere and the atmosphere [20], in this study, the 8 days
composited GPP_EC was used to determine the fitting capacity of the four revised GPP models.

Table 1. Parameterization schemes for estimating gross primary production (GPP) in this alpine
wetland based on the MOD17A2 algorithm.

GPP * εmax
†

(g C MJ´1)
Tmin_max *

(˝C)
Tmin_min *

(˝C)
VPDmax *

(Kpa)
VPDmin *

(Kpa) FPAR * Meteorology
Data

GPP_MOD 0.68 12.02 ´8.00 3.50 0.65 FPARM DAO ‡

GPP_MODR1 0.68 12.02 ´8.00 3.50 0.65 FPARM
Ground

measurements

GPP_MODR2 0.68 12.02 ´8.00 3.50 0.65 FPARG
Ground

measurements

GPP_MODR3 1.61
(1.33–1.80) † 12.02 ´8.00 3.50 0.65 FPARG

Ground
measurements

GPP_MODR4 1.61
(1.33–1.80) † 12.02 ´8.00 3.50 0.65 FPARM

Ground
measurements

* GPP list represents the diverse GPP values from different models based on the MOD17A2 algorithm according
to data source showed in this table; * Tmin_max, Tmin_min, VPDmax, and VPDmin are the upper limit, the
lower of daily minimum temperature, the upper, and the lower of daily minimum vapor pressure difference,
respectively. All of them are extracted from the Biome Properties Look-Up Table (BPLUT) in grassland biome;
* FPAR is the fraction of absorbed PAR by vegetation canopy from the MOD15A2 product (FPARM) and
estimation based on ground measurements (FPARG); † The εmax is the maximum light use efficiency. The default
of the collection 5.1 MOD17A2 algorithm for grassland is 0.68 g C MJ´1. Based on ground measurements, the
mean εmax value for this alpine wetland we calculated using two methods is 1.61, which ranges from 1.33 to
1.80 due to the vegetation condition in different observational years; ‡ DAO is the NASA Data Assimilation
Office, which provided the meteorology data for the MODIS data product.

2.8. Statistical Analysis

All daily and annual-scale GPP estimations derived from diverse methods, GPP_EC, GPP_MOD,
GPP_MODR1, GPP_MODR2, GPP_MODR3, and GPP_MODR4, passed the normality (Shapiro-Wilk
test) and homogeneity of variance test (Bartlett test) (p > 0.05). Thus, we employed the one-way
analysis of variance (ANOVA) and Tukey’s honest significant difference (HSD) to investigate GPP
estimations differences among those different methods and among temporal series at α = 0.05. In
this study, we employed the linear regression analysis and the following two indices, RMSE and RPE
(Equations (12) and (13)), to adequately compare the performance of MODIS-based GPP with GPP_EC.

RMSE “

g

f

f

f

e

n
ř

i“1
pxi ´ yiq

2

n
(12)

RPE “ p
y´ x

x
q ˆ 100% (13)

where the xi are the GPP_EC data, the yi are the MODIS-based GPP estimations depending on different
parameterization schemes (Table 1), and x and y are the averages of corresponding data, respectively.
The n is the number of samples. The root mean square error (RMSE) is used to measure the bias from
the simulated data compared to tower measurements. The relative predictive error (RPE) is used to
quantify the percentage of mean difference between MODIS-based GPP estimations and GPP_EC,
which provides the direct effectiveness (underestimation as negative, or overestimation as positive)
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in predicted values compared to measured values [27]. All statistical and modeling procedures were
performed in the R statistical computing package (Version 3.2.0).

3. Results

3.1. Ground Measurements and Parameters Estimation

All ground measurements data were integrated into 8-day time step for the comparability in
temporal resolution with the MODIS data products (Figure 1). Daily Tmin, range from ´20.4 ˝C
to 8.9 ˝C, which was much lower than the default upper limit (Tmin_max, 12.02 ˝C) in the BPLUT
(Table 1 and Figure 1a). In general, VPD fluctuated around 0.15 ˘ 0.10 (mean ˘ SD) Kpa except for a
few measurement days accessible to the VPDmin (0.65 Kpa) (Table 1 and Figure 1b). The supreme PAR
appeared on July and August (DOY120-240) that the seasonal average could reach 18.6 ˘ 4.2 µmol
photons´1 m´2 day´1 (equal to 4.2 ˘ 0.9 MJ m´2 day´1) (Figure 1c).
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Figure 1. Seasonal variation of ground meteorological measurements data and the FPAR from 2009 to
2013. All data are integrated into 8-day time step and showed with the first day of each 8-day interval,
the error bars in (a) and (b) are standard deviation for corresponding mean values. (a), Tmin is the
daily minimum temperature; (b), VPD is the daily vapor pressure deficit; (c), PAR is photosynthetically
active radiation; (d), the consecutive LAIMG is derived from linear regression between ground LAIG

measurements and MODIS LAI (LAIM) in LAIG measurement days (n = 23); (e), FPARM is directly
obtained from MODIS products, while FPARG is calculated from LAIG in e based on Beer-Lambert law.

The consecutive LAIMG was stimulated from the linear regression between the consecutive 8-day
time step LAIM and field measurement LAI (LAIG) in measurement days (LAIMG = 2.33 ˆ LAIM ´ 0.23,
R2 = 0.84, p < 0.001, n = 23) (Figure 1d). The LAIM underestimated the vegetation condition in this
alpine swamp meadow by an average 39.2% except a few days during the non-growing season. The
LAIMG reached its maximum on the August with multi-years average 5.99 m2 m´2 (˘0.64 SD) from
2009 to 2012 (Figure 1d). As Figure 1e illustrated, the FPARM also generally underestimated the
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FPARG by an average 22.2% during the whole study period. Seasonal FPAR trend was similar to LAI
(Figure 1d,e).

The MOD17A2 algorithm carried out an integrated εmax estimation of 1.78 g C MJ´1 for this
alpine wetland from 2009 to 2013 (R2 = 0.78, p < 0.01, n = 23). Alternatively, the light response curve
derived from the Michaelis-Menten equation provided annual-scale εmax estimation for 1.70, 1.80,
1.33, and 1.59 g C MJ´1 from 2009 to 2012, respectively (Figure 2a–d and Table 1). Two εmax estimate
methods failed to generate significant difference in εmax values (paired t-test, t0.025 = 2.2, df = 4,
p = 0.1) during study period. Therefore, we assumed the εmax value in 2013 was 1.78 g C MJ´1 when
calculated GPP_MODR3 and GPP_MODR4 (Table 1).
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(µmol CO2 m´2 s´1) is the maximum ecosystem photosynthesis rate. α (µmol CO2 µmol photons´1) is
the maximum light use efficiency.

3.2. Seasonal-Scale Contrast of GPP Estimations

Seasonal variation of the field GPP measurement (GPP_EC) and five MODIS-based GPP
estimations (GPP_MOD, GPP_MODR1, GPP_MODR2, GPP_MODR3, and GPP_MODR4) showed
similar tendency but with different quantities in all observational years, especially in growing season
(Figure 3a–e). GPP_EC was generally greater than any other GPP estimation from the MOD17A2
algorithm, which indicated that all MODIS-based GPP estimations in this site were underestimated
in predicting GPP. GPP_MODR3 got the closest agreement with GPP_EC estimation, GPP_MODR4
took the second place, and the rest MODIS-based GPP estimations (GPP_MOD, GPP_MODR1, and
GPP_MODR2) strongly underestimated GPP in this alpine wetland with corresponding values less
than half of GPP_EC estimation (Figure 3).

In growing season, statistical results showed that the mean GPP estimation from the same method,
either the EC-based or the MODIS-based, had no significant differences (p > 0.1) amid different
observational years (Table 2). However, diverse estimation methods significantly affected the mean
GPP values (p < 0.01) in all observational years (Table 2). In contrast, the GPP_MOD and GPP_MODR1
showed the worst underestimation (less than 35% of GPP_EC), and the GPP_MODR2 came the second
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(about 40% of GPP_EC). There also existed a significant underestimation (about 64% of GPP_EC)
from the GPP_MODR4 despite of significant promotion compared to the former MODIS-based GPP
estimation. However, GPP_MODR3 did not show significant difference with GPP_EC (Table 2) thus
provided an instrumental approach in daily GPP estimation for this alpine wetland.Remote Sens. 2016, 8, 592 9 of 18 
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showed in the first day.

Table 2. GPP estimation differences among diverse estimation methods and inter-annual differences
during growing season in different years *.

2009 (n = 19) 2010 (n = 18) 2011 (n = 19) 2012 (n = 19) All (n = 75)

GPP_EC 46.91 (˘24.45) Da 45.60 (˘19.41) Ca 37.93 (˘20.52) Ca 40.89 (˘20.50) Ca 40.74 (˘22.39) C
GPP_MOD 13.62 (˘8.91) Aa 13.90 (˘9.91) Aa 13.75 (˘8.49) Aa 14.17 (˘9.67) Aa 13.86 (˘9.06) A

GPP_MODR1 10.88 (˘4.84) Aa 10.18 (˘4.79) Aa 11.47 (˘5.09) Aa 11.66 (˘4.65) Aa 10.06 (˘4.78) A
GPP_MODR2 15.94 (˘6.55) ABa 15.40 (˘5.83) ABa 16.18 (˘6.65) Aa 16.49 (˘6.12) ABa 16.01 (˘6.19) A
GPP_MODR3 39.84 (˘16.39) CDa 40.77 (˘15.43) Ca 31.65 (˘13.00) BCa 38.56 (˘14.31) Ca 37.67(˘14.96) C
GPP_MODR4 27.21 (˘12.11) BCa 26.95 (˘12.69) Ba 22.43 (˘9.96) ABa 27.26 (˘10.86) BCa 25.99 (˘11.46) B

* GPP estimation methods are similar to Table 1. Data is the mean (˘1 standard deviation) of 8 days composited
GPP estimations. * All raw data of this table passed the normality (Shapiro-Wilk test) and homogeneity of
variance test (Bartlett test) (p > 0.05). Statistical analysis is based on the 95% family-wise confidence level
(α = 0.05). Rows with the same lowercase indicate no significant difference in different years (p > 0.1), and
columns with the different uppercase indicate that a significant difference exist among diverse GPP estimation
methods (p < 0.01).

The significant linear regression between EC-based GPP estimation (GPP_EC) and MODIS-based
GPP estimation indicated that temporal variation of GPP could be well explained by MODIS-based GPP
estimation (R2 > 0.83, p < 0.0001, n = 190) (Figure 4). However, the absolute magnitudes of GPP were
undervalued with a attenuation coefficient (slope in the Figure 4) range from 13.0% (GPP_MODR3)
even to 75.0% (GPP_MODR1) depending on the methodology we used (Table 1). In contrast with
the GPP_MOD estimation, GPP_MODR1 reduced the capacity in the GPP estimation about 10.0%
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of GPP_EC (Figure 4). However, the GPP_MODR2, GPP_MODR3, and GPP_MODR4 improved the
accuracy of the GPP estimations by 3.0%, 53.0%, and 25.0%, respectively. Therefore, GPP_MODR3
presented a superior performance in daily GPP estimation compared to other MODIS-based models
(Table 2, Figures 3 and 4).
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Figure 4. Linear regression between EC-based GPP estimation (GPP_EC) and MODIS-based GPP
estimation. GPP estimations based on the MOD17A2 algorithm are showed in Table 1. (a), GPP_MOD;
(b), GPP_MODR1; (c), GPP_MODR2; (d), GPP_MODR3; (e), GPP_MODR4. Data are the 8 days
composited GPP values. The solid lines are the regression curves, the coverages are 95% confidence
interval of linear regressions. Dash lines are the 1:1 reference lines.

3.3. Annual-Scale Contrast of GPP Estimations

Annual GPP_EC in this alpine wetland was range from the minimum 755.02 g C m´2 in 2011
to the maximum 901.37 g C m´2 in 2010 (Figure 5a). The GPP_MOD had strong underestimation in
annual GPP accumulation that was only 27.98% in 2010 to 34.69% in 2011 of GPP_EC measurements.
The GPP_MODR1 not only had no improvement in GPP estimation but showed a slight decrease
with mean 6.6% of GPP_EC compared with GPP_MOD (Figure 5b). The GPP_MODR1 improved 7.2%
predictive capacity compared to the GPP_MOD, actually the impact was not significant (Figure 5b).
In contrast with the GPP_MOD, the GPP_MODR4 had a significant, 31.3% of GPP_EC, promotion
in GPP estimation, but there still existed significant difference between GPP_MODR4 and GPP_EC
(Figure 5b). Statistical results showed that there was no significant difference between GPP_MODR3
and GPP_EC, which indicated that the GPP_MODR3 was the most instrumental estimation methods
in annual GPP accumulation.
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Figure 5. Inter-annual GPP variations from the field GPP measurement (GPP_EC) and five
MODIS-based GPP estimations (GPP_MOD, GPP_MODR1, GPP_MODR2, GPP_MODR3, and
GPP_MODR4) (a) and the difference among different estimation methods (b). The error bars in
b are the standard deviation of the mean annual GPP estimation from 2009 to 2012. The bar with the
same lowercase indicates no significant difference among diverse GPP estimation methods (p > 0.05).

4. Discussion

This study utilized the MOD17A2 algorithm and tower-based ground measurements to reconcile
MODIS default GPP estimation (GPP_MOD) in four GPP estimation models, GPP_MODR1 to
GPP_MODR4, depending on the diverse parameterization schemes (Table 1). We assessed the
performance of these models on GPP estimations as compared to in situ flux tower GPP (GPP_EC).

4.1. Impacts of Meteorology Data on GPP Estimations

In this study, GPP_MOD strongly underestimated (68.0%) daily mean GPP compared to GPP_EC
(Table 3 and Figure 5). The difference between GPP_MOD and the GPP_MODR1 was only the
meteorology data inputs in GPP estimations (Table 1). Unexpectedly, ground meteorology data
(Tmin, VPD, and PAR) used in GPP_MODR1 generated a slightly higher underestimation (RPE of
73.0%) with mean daily RMSE of 2.8 g C m´2 than the default DAO data with mean daily RMSE of
´2.47 g C m´2 that caused 6.6% of less integrated estimations in annual mean GPP (Table 2 and
Figure 5). Bulks of previous studies demonstrated that the DAO meteorology data was coarse in the
GPP algorithm [25–27,66] that stems from the inaccurate observations on three meteorological factors of
Tmin, VPD, and net surface solar radiation [33,67,68]. Turner et al. (2003) concluded that the VPD and
minimum temperature data in the DAO performs well when compared to flux tower measurements
whereas PAR has a large positive bias, which might be a reason for the deteriorate of GPP_MODR1.
However, similar to Zhang et al. (2008), our study also revealed that the coarse meteorology data in
the MOD17 algorithm did not exert a significant affection in the MODIS GPP products.
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Table 3. Performances of MODIS-based GPP estimations methods on daily GPP estimations as
compared to the insitu flux tower GPP (GPP_EC).

Methods *

RMSE (g C m´2) † RPE (%) †

2009
(n = 46)

2010
(n = 45)

2011
(n = 46)

2012
(n = 45) Mean 2009 2010 2011 2012 Mean

GPP_MOD 2.90 2.59 2.14 2.26 2.47 ´70.4 ´72.0 ´63.7 ´65.7 ´68.0
GPP_MODR1 3.24 2.97 2.41 2.59 2.80 ´75.1 ´77.5 ´69.3 ´70.0 ´73.0
GPP_MODR2 2.84 2.55 2.04 2.21 2.41 ´63.8 ´66.4 ´56.7 ´57.8 ´61.2
GPP_MODR3 1.30 0.95 0.97 0.86 1.02 ´9.4 ´11.3 ´15.4 ´1.4 ´9.4
GPP_MODR4 2.01 1.75 1.55 1.37 1.67 ´37.9 ´40.4 ´39.9 ´29.9 ´37.0

* The MODIS-based GPP estimation methods are similar to Table 1; † The RMSE and RPE are the root mean
square error and the relative predictive error between MODIS-based daily GPP estimations and GPP_EC,
respectively. The negative RPE represents the underestimation of MODIS-based daily GPP estimations compared
to GPP_EC.

4.2. Impacts of εmax on GPP Estimations

The default εmax value for grassland in the BPLUT was less than half of the optimized εmax

estimations from field observations in this specific biome (Table 1). Validations in parameters of LUE
model in most recent studies revealed that the realistic εmax values were undervalued in the MODIS
default GPP algorithms [12,25,27,34] with a few exceptions [26], which emphasized the urgent need
to reconcile the optimized εmax for more extensive biomes [17,29,35,38,69]. The global look-up table
of εmax in the MOD17A2 GPP algorithm is hard to satisfy all vegetation properties due to various
biomes with complex climatic, soil types, and associated stand structures and ages [25,28]. Actually,
these uncertainties in εmax estimations might also attribute to the practice that LUE is alterable against
different cloudiness, generally highest on overcast days and decreases on clear sky days [17], whereas
the overcast conditions are not considered in the MOD17 default εmax list and they are assumed to
change only with vegetation types [11]. Optimized εmax inputs directly caused that no significant
difference was existed between GPP_MODR3 and GPP_EC in daily and annual GPP estimations
(Figure 5b and Table 2), which indicated that GPP_MODR3 was an alternative estimation method
to evaluate seasonal and annual GPP on this alpine wetland on the Tibetan Plateau. Contrast to
GPP_MOD, GPP_MODR3 improved approximately 60% of RPE in the agreements of the model
for the insitu flux tower GPP with the lowest RMSE from ´0.86 to ´1.3 g C m´2 (Table 3 and
Figure 6). Therefore, refinements of MOD17 εmax may be beneficial to have a more agreeable fit
between GPP_EC and MODIS products because optimized εmax inputs directly improve the LUE
model for GPP estimation [11,38,39].

4.3. Impacts of FPAR on GPP Estimations

FPAR is an important input variable in light use efficiency model that directly modulates the
essential energy source input to photosynthetic systems [9,13,16]. However, FPARM often produce
misleading signals in GPP estimations due to the contamination by atmospheric characteristics [28,70].
Thus, compared with FPARM among diverse seasons and different spatial biomes, realistic ground
FPARG could be either undervalued [34,71], overvalued [25,29,72], or had a closest agreement [17,34].
In this study, 22.2% (20.4% in 2011 to 23.8% in 2010) of the FPARG derived from ground LAIMG

was underestimated by the FPARM (Figure 1d,e). A near study in an alpine meadow, however,
demonstrated that the MODIS-based FPAR was about 14.70% higher than the FPARG, which could
be attributed that the vegetation canopies in alpine meadow was much less than in this alpine
wetland [25,71,73].
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Figure 6. Performances of gross primary production (GPP) estimation models based on the MOD17A2
algorithm compared to in situ flux tower GPP (GPP_EC). The parameterization schemes of these
models are showed in Table 1. The positive percentages indicate the improvement of relative predictive
error (RPE) between MODIS-based daily GPP estimations and GPP_EC and vice versa. The solid
arrows represent algorithm improvements while dashed arrows represent algorithm deterioration.
Both the thickness of the arrow and the intensity of the color in model boxes, which are proportional
to the percentages above, represent the degree of the model performances changes. The “Low εmax”
represents default εmax value for grassland in MODIS product, while the “High εmax” represents the
natural εmax estimations form ground measurements. The “FPAR:εmax” in the central dashed ellipse
shows the interaction of FPAR and εmax in GPP estimation models in this alpine swamp.

The improving performance of FPARG inputs, instead of FPARM, into GPP estimation model
was different at distinct εmax levels (Figure 6 and Table 3). With the default εmax inputs, although
GPP_MODR2 improved the agreement of GPP_MODR1 in daily GPP estimation by 11.8% of RPE with
0.38 g C m´2 decrease in RMSE, the promoting effects was still not significant (Table 3). Nevertheless,
when we used the optimized εmax values from our estimation for this specific ecosystem, the effect
of the introduction of FPARG (GPP_MODR3) instead of FPARM (GPP_MODR4) would generate an
appreciable close to GPP_EC estimation by 27.6% of RPE with 0.58 g C m´2 decrease in RMSE (Table 3).
Therefore, the discrepancies of FPAR changes in GPP estimation models among two distinct εmax

levels implied that 15.8% of RPE would be related to the interaction of FPAR and εmax (FPAR:εmax)
in GPP estimation models in this alpine swamp [74] (Figure 6). In addition, we also found the
same discrepancies (15.8% of RPE) of εmax caused changes in GPP estimation models among two
distinct FPAR levels through comparing changes of GPP estimation models from GPP_MODR1 to
GPP_MODR4 (36.0% of RPE) and from GPP_MODR2 to GPP_MODR3 (51.8% of RPE) (Figure 6 and
Table 3), which confirmed that the FPAR:εmax caused 15.8% of RPE in GPP estimation based on the
MOD17A2 algorithm compared to in insitu flux tower GPP (GPP_EC) in this alpine swamp meadow.

4.4. Algorithm Evaluation and Uncertainty

In this study, we found the revised MODIS GPP algorithms inordinately improved the GPP
estimation quality except for the GPP_MODR1, in which the order of model improvements showed
revised εmax (+36.0% of RPE) > FPAR:εmax (+15.8% of RPE) > FPARG (+11.8% of RPE) > meteorology
data (´5% of RPE) through the comparisons of model performances (Figures 3–6 and Tables 1–3). Our
results coincided with a comparative study in the forest ecosystems of the East Asia that demonstrated
the errors of MODIS GPP were mainly caused by uncertainties in εmax and followed by those in FPAR
and meteorological data [26]. Meanwhile, many studies pointed out that the improper parameterization
of light use efficiency was the most significant limitation of the MOD17 algorithm [14,38,39]. Over an
irrigated cropland and an alpine meadow ecosystem, research also confirmed that the underestimation
of εmax was the main reason, and the followed was undervalued LAI-caused FPAR, for the considerable
underestimation of GPP calculated using the MOD17 algorithm [34]. However, researches in a tropical
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savanna show that the main reason for the differences between MODIS and tower derived GPP is FPAR,
followed by LUE and meteorological inputs [27]. This could be attributed to the different upstream
inputs across multiple biomes, artificially high values of MODIS FPAR at low productivity site and
relatively low default εmax values at high productivity sites [17], in the LUE estimation procedure [28].

Although GPP_MODR3 predicted the seasonal and annual GPP patterns well and could be treated
as an alternative GPP estimation method on this alpine swamp, an approximate 10% of RPE offset
in daily GPP estimations still existed (Figures 3–5 and Table 3). Three kinds of reasons could explain
this offset and the lager offsets in other MODIS-based GPP estimation models in this study. One is the
parameter inputs in MOD17A2 algorithm [34]. First, many relevant researches proposed that the VPD
only represents part of the atmospheric evaporative demand but is not entirely representative indicator
of water availability condition thus it does not adequately reflect the observational GPP [25,26,35].
Therefore, they advised that soil moisture [17], remote water index [4,15], or precipitation [25] should
be added as a stress factor in the MOD17 algorithm to improve GPP simulation [26]. However, in
this study, the alpine swamp is waterlogged during the growing season thus the water limitation
should not be the main reason for underestimation of MODIS-based GPP. Second, different cloudiness
regulated the εmax value changes due to the change of solar radiation intensity, especially the diffuse
radiation [75], which have direct or indirect influences on GPP estimation [17]. Moreover, previous
studies suggested that light use efficiency should be different between sunlit and shaded leaf due to
the distinct acceptance of direct and diffuse radiation [26,35]. Whereas we assumed a constant εmax

value for this alpine swamp throughout the year, it also may be a reason for the current offsets in
MODIS-based GPP estimation.

Another is the uncertainties in temporal-spatial matching between MODIS-based and ground
measurements [19]. In the DAO with a spatial resolution of 1˝ ˆ 1.25˝ is hard to perfectly match
a 1 km pixel of MODIS products, which may cause large inaccuracies in GPP estimation at spatial
scales [19,28]. Besides, the footprint of GPP_EC is not the regular geographical pixel what the MODIS
products provide, which implied the inconformity in GPP estimation [29]. In addition, MODIS
products outputs an average LAIM with an 8-day time step while LAIG reflects the specific vegetation
state in the measurement day, thus the errors of temporal match is also inevitable due to the vegetation
activity [11].

The rest is the estimation errors of GPP_EC themselves. The EC measurement exist
certain uncertainties caused by instrument malfunction, rainfall, dew formation, and human
disturbances [76,77]. Additionally, both the gap filling and NEE partitioning are based on the
assumption that the relationship between ecosystem respiration and temperature is similar in all
day, daytime and nighttime [57,59,63,78], which may actually produce GPP_EC estimation error [21].

5. Conclusions

In this study, tower-based measurements were used to validate and improve the MODIS-based
GPP products in an alpine swamp on the central Tibetan Plateau. Our results indicated that the MOD17
GPP strongly underestimated GPP_EC with a daily mean less than 40% of EC measurements. The
large inaccuracies of MODIS GPP were mainly caused by the underestimation of εmax and followed
by that of FPAR. The interaction of FPAR:εmax also affected the GPP estimation. We suggested that
the suitable εmax for this alpine swamp was about 1.61 g C MJ´1 which was considerably larger than
the default 0.68 g C MJ´1 for grassland. The FPARM underestimated 22.2% of the FPARG during
the whole study period. However, the DAO meteorology data in the MOD17 algorithm did not
exert a significant affection in the MODIS GPP underestimations. Therefore, site-specific optimized
parameters inputs, especially εmax and FPARG, are necessary to improve the performance of MOD17
algorithm in GPP estimation, in which the calibrated MOD17A2 algorithm (GPP_MODR3) could
explain 91.6% of GPP_EC variance for the alpine swamp meadow. Our results not only improved
the accuracy of the site-specific MODIS GPP estimation greatly, but provide a simple approach to
quantify GPP more accurately in other similar alpine swamp meadow on the Tibetan Plateau whose
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field observation was still scanty despite of their extensive lands area and significant position in the
winter rangeland for the local livestock.
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