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Abstract: When exploited in remote sensing analysis, a reliable change rule with transfer ability
can detect changes accurately and be applied widely. However, in practice, the complexity of land
cover changes makes it difficult to use only one change rule or change feature learned from a given
multi-temporal dataset to detect any other new target images without applying other learning
processes. In this study, we consider the design of an efficient change rule having transferability
to detect both binary and multi-class changes. The proposed method relies on an improved Long
Short-Term Memory (LSTM) model to acquire and record the change information of long-term
sequence remote sensing data. In particular, a core memory cell is utilized to learn the change rule
from the information concerning binary changes or multi-class changes. Three gates are utilized
to control the input, output and update of the LSTM model for optimization. In addition, the
learned rule can be applied to detect changes and transfer the change rule from one learned image to
another new target multi-temporal image. In this study, binary experiments, transfer experiments
and multi-class change experiments are exploited to demonstrate the superiority of our method.
Three contributions of this work can be summarized as follows: (1) the proposed method can learn
an effective change rule to provide reliable change information for multi-temporal images; (2) the
learned change rule has good transferability for detecting changes in new target images without
any extra learning process, and the new target images should have a multi-spectral distribution
similar to that of the training images; and (3) to the authors’ best knowledge, this is the first time
that deep learning in recurrent neural networks is exploited for change detection. In addition, under
the framework of the proposed method, changes can be detected under both binary detection and
multi-class change detection.

Keywords: change detection; LSTM model; transferability; multi-spectral image; recurrent neural network

1. Introduction

With the development of remote sensing, the dynamic observation of the Earth has led to a great
deal of available, detailed, accurate and up-to-date change information for use in learning about and
monitoring our planet [1]. Change detection is important for detecting dynamic changes of the Earth.
Change detection attempts to identify land cover differences in the same geographical area across
a period of time [2] and can be applied to various domains, including urban expansion [3], disaster
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monitoring [4], land cover map updating [5], forest degradation survey [6] and glacier melting [7].
In this context, various types of multi-temporal images are exploited to resolve the above problems.
Among them, multi-spectral data with sufficient spectra and fine spatial resolution provide a powerful
ability to detect changes.

In the literature, many algorithms have been designed for detecting changes, each with different
advantages. Generally, these methods can be divided into four categories as follows:

(1) Image algebra: To detect changes directly, image differencing and image ratios are widely used to
detect changes between multi-temporal images. Among them, image differencing (subtraction
rule) is a robust and efficient method for detecting changes, and Change Vector Analysis (CVA) [8]
represents its conceptual extension with an integrated theoretical framework, therein providing
good performance.

(2) Post-classification: Changed objects are acquired from independent classified multi-temporal
maps, and land cover changes can be easily identified from the separately-classified maps.
Therefore, numerous classification methods [9,10] have been proposed to improve change
detection accuracy. In particular, a novel change-detection-driven transfer learning approach [11]
was proposed to update land cover maps via the classification of image time series.

(3) Feature learning and transformation: In this category, new learned (transformed) or selected
features are utilized to distinguish changes, especially using a distance metric. Among
the change feature learning methods, physically-meaningful features and learned change
features both lead to a good performance and have been applied in various domains. As
physically-meaningful features, vegetation indices, forest canopy variables and water indices are
often extracted to identify changes in specific ground-object types [12,13]. For learned features
and transformations, various features or transformed feature spaces are learned to highlight the
change information to detect a changed region more easily than when using the original spectral
information of multi-temporal images, such as in Principal Component Analysis (PCA) [14],
Multivariate Alteration Detection (MAD) [15], subspace learning [16,17], sparse learning [18] and
slow features [19].

(4) Other advanced methods: Change detection can be formulated as a statistical hypothesis test
using physical models [20]. The metric learning method [21] is also an effective method of
detecting changes using well-learned distances. In addition, canonical correlation analysis [22,23]
and clustering methods [24,25] have been proposed and found to perform well in unsupervised
change detection tasks.

The above change detection methods all achieve good performances and make various
contributions. However, limitations also exist and should be resolved to better detect changes. For
multi-spectral images, all available spectral bands should be considered effectively to detect changes.
Moreover, the learned change information should be recorded and exploited for sequential time series
data with transferability. In addition, an integrated and independent change detection method can
be exploited to detect changes more widely and conveniently without the supplementary task of
threshold selection or classification at the final decision step.

To overcome the above limitations, we expect to design an integrated and independent change
rule in our method to detect changes with all available spectral information, and the change rule can
be transferred to new target multi-temporal images. Briefly, the effective change rule should have a
reliable capability for change information representation, and the learned change rule can be transferred
to new target images without any extra learning process, which demonstrates its transferability.
In addition, in this paper, transferability is restricted to new target multi-temporal images
whose spectral distributions are similar (the same number of spectral bands) to those of training
multi-temporal images. Recently, some researchers [11] have proposed a change-detection-driven
transfer leaning approach for updating land cover maps using classification, which has emphasized
the importance of transferability in change detection research. Therefore, it is important to design
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an integrated change rule for detecting changes directly with transfer capacity, where the transfer
capacity relies on a reliable capability in terms of the expression of the change information extraction
for sequential time series data. A Recurrent Neural Network (RNN) can be used to achieve the
above objectives. RNNs [26] are network models that use recurrent connections between their neural
activations at consecutive time steps; such models use hidden layers or memory cells to learn the
time-evolving states that model the underlying dynamics of the input sequence for sequential time
series data. RNN models have gained significant attention for solving many challenging problems
involving sequential time series data, especially Long Short-Term Memory (LSTM) models [27]. In an
RNN learning framework, learning an appropriate representation of the sequences is an important step
for achieving artificial intelligence. For change detection, it is important to have a reliable capability in
terms of the expression of change information extraction for detecting changes. Thus, RNN models
represent potential approaches for learning reliable difference information and providing memorability
for change detection in sequential time series remote sensing data.

In this paper, we propose a new change detection method named REFEREE (learning
a transferable change Rule From a recurrent neural network for change detection). The main idea of
the proposed approach is learning an efficient change rule with a reliable capability in terms of the
expression of difference information extraction for detecting changes. For the process of learning a
reliable change rule, REFEREE provides transferability with a memory function to detect changes in
an integrated change detection system. Therefore, REFEREE adapts LSTM models to resolve not only
bitemporal change problems, but also multi-class change detection problems (the definition can be
found in Section 2). In addition, REFEREE is the first method that exploits the RNN framework to learn
a “change rule” for the change detection task on remote sensing images; moreover, a specially-designed
LSTM model is tailored to represent the change information, which is not considered in traditional
RNN models, such as those in the literature [28,29].

The remainder of this paper is organized as follows. The experimental data and some definitions
concerning multi-class changes in this study are described in Section 2. The details of our method are
presented in Section 3. The experimental setup for the parameters and the experimental design are
described in Section 4. The experimental results and discussion are presented in Section 5. Section 6
concludes this paper.

2. Image Preparation

The performance of the proposed method is evaluated on three datasets. Among them,
two multi-spectral datasets were acquired by the Landsat 7 Enhanced Thematic Mapper Plus (ETM+)
sensor with six bands and a spatial resolution of 30 m. The last dataset was selected from images
obtained by the EO-1 Hyperion, which is the first civil hyperspectral sensor on-board the Earth
Observing One (EO-1) satellite and includes 242 spectral bands with a spatial resolution of 30 m. With
the restricted condition of the spectral distributions in the transfer experiments (more details can be
found in Section 4.3), only six bands, which are similar to the band range of the ETM sensor, were
selected from the EO-1 Hyperion images for evaluating the REFEREE model. Before using these data,
the digital numbers (DNs) of the original data can be converted into absolute radiance (i.e., all of
the datasets utilized in the experiments are normalized into a range of [0, 1]). Moreover, both the
experimental datasets and corresponding ground truth are acquired from the literature [19].

(1) Taizhou images: The first dataset consists of two images acquired for the city of Taizhou,
China, in March 2000 (T1) and February 2003 (T2), with a WGS-84 projection and a coordinate range of
31◦14’55.84 N–31◦27’39.26 N, 120◦02’24.38 E–121◦07’45.15 N. The two images are both 400× 400 pixels,
and the two images show changes mainly related to city expansion, as shown in Figure 1a,b, in Bands 4,
3 and 2. Figure 1c,d shows the labeled binary ground truth and multi-class ground truth, respectively.
Here, the multi-class changes contain unchanged regions and three classes of changed regions: city
expansion (bare soil, grassland or cultivated field to buildings or roads); changed soil (cultivated field
to bare soil); and changed water areas (no-water regions to water regions). Additionally, the multi-class



Remote Sens. 2016, 8, 506 4 of 22

changes are changes such that the change types can be certain, although the classes at different time
steps are not certain. Taking city expansion as an example, the class characterizing one pixel may be
bare soil, grassland or cultivated field at time T1, whereas the class of the same geographical pixel
may be a building or road at time T2. Then, we are unsure if the pixel changed from a certain class to
another label, whereas the change type of this pixel is certain to be city expansion. This is unsuitable
for traditional supervised classification-based change detection methods that learn change information
without land cover maps at different time steps.

（a） （b） （c） （d）

Figure 1. The pseudocolor images of Taizhou with RGB 432, acquired in (a) March 2000 and
(b) February 2003. The labeled ground truth of the Taizhou images: (c) binary ground-truth, where
unchanged areas are shown in gray, changed areas are shown in white and black indicates an unlabeled
region not used for testing; (d) ground-truth of multi-class changes, where unchanged areas are shown
in red, changed areas of city expansion are shown in green, changed soil areas are shown in orange,
changed water areas are shown in blue and gray represents unlabeled regions (more details can be
found in Section 4.3).

(2) Kunshan images: The second dataset includes two images acquired for the city of Kunshan,
China, in March 2000 (t1) and February 2003 (t2), with a WGS-84 projection and coordinate range of
32◦26’09.37 N–32◦32’27.61 N, 119◦50’31.67 E–119◦58’24.19 E. The two images are both 800× 800 pixels.
The pseudocolor Kunshan images are presented in Figure 2a,b. Figure 2c,d shows the labeled binary
ground truth and multi-class ground truth, respectively. The Kunshan images are more challenging
than the Taizhou data, because they are more complex in terms of not only city expansion, but
also farmland changes; additional details about multi-class definitions can be found in the above
Taizhou images.

（a） （b） （c） （ ）

Figure 2. The pseudocolor images in Kunshan with RGB 432, acquired in (a) March 2000 and
(b) February 2003. The labeled ground truth of the Kunshan images: (c) binary ground-truth, where
unchanged areas are shown in gray, changed areas are shown in white and black represents unlabeled
regions not used for testing; (d) ground-truth of multi-class changes, where unchanged areas are shown
in red, changed areas of city expansion are shown in blue, changed farmland areas are shown in green
and gray represents unlabeled regions (more details can be found in Section 4.3).

(3) Yancheng images: The third dataset includes two images acquired for the city of Yancheng,
China, in May 2006 (t1) and April 2007 (t2), with a WGS-84 projection and approximate coordinates



Remote Sens. 2016, 8, 506 5 of 22

of 33◦39’51.85 N, 120◦18’16.25 E. The two images, which are 450× 140 pixels, consist of only six spectral
bands (Bands 9, 15, 32, 55, 143 and 218 from the original EO-1 Hyperion images), and the selected
bands have spectral ranges similar to those of the ETM images. Figure 3a–c shows the Yancheng
images at two different time steps and the labeled binary ground truth, and the main change type is
farmland changes.

(a) (b) (c)

Figure 3. The images in Yancheng with RGB 432, acquired in (a) May 2006 and (b) April 2007; (c) The
labeled binary ground-truth, where unchanged areas are shown in black and changed areas are shown
in white.

3. Method

3.1. Our Proposed REFEREE Model

Figure 4 illustrates the main procedure of the REFEREE model. The input of the model includes
two pixel vectors from two different time steps, and the output is a label representing changes or
no changes. Applying REFEREE to all pixels over the whole images, a change map can be obtained.
To be specific, the flowchart of REFEREE can be summarized as follows: First, an original pixel vector
(6 spectral bands) of the T1 image is fed into the input layer. Then, the hidden layer (consisting of
LSTM units) receives the input and calculates the state information for the current input; it also restores
those state values in the meantime. Next, the corresponding pixel vector of the T2 image is input to the
hidden layer with the state information of T1 simultaneously, and the change information between
two pixel vectors can be learned by the current hidden layer. Finally, the REFEREE model can predict
the label of the changes or non-changes through the last decision layer based on the learned change
information in the hidden layer. Moreover, every orange circle of the hidden layer in Figure 4 denotes
an improved LSTM unit, and additional details about REFEREE are described below.

Let us consider a pair of multi-spectral images, XT1 and XT2 , acquired over the same geographical
area at two different times T1 and T2. Let Y = {(0, 1), (1, 0)}, where Y is a set of class labels for binary
change detection, in which y = (0, 1) denotes the status of the unchanged pixels and y = (1, 0) denotes
the changed pixels. For multi-class change tasks, we use one-hot coding [30] to represent the labels Y
of different change types.

In the recent literature on the RNN framework [31], recent advances in statistical machine learning
and deep learning [32] have yielded state-of-the-art results with powerful sequence models. In these
models, an input sequence in an “end-to-end” fashion is given for both training and inference, and
the models can maximize the probability of correctly-predicted results directly. Inspired by RNN
models in machine learning, we use a recurrent neural network to encode the multi-temporal image
input as a fixed-dimensional vector, and the fixed input can be decoded as the output value in the



Remote Sens. 2016, 8, 506 6 of 22

training process. During the training step, the change rule of REFEREE can be learned in context layers
with transferability.

Input Layer

Hidden Layer

Decision Layer

Recurrent connection

Recurrent Neural NetworkImages 

T1 Image

T2 Image

Pixel Pair  Qualitative Result

Change Map

1st

2nd

Time Sequence

Figure 4. The framework overview of the proposed REFEREE change detection model.

Thus, the probability of obtaining the correct predicted results can be maximized directly for
multi-temporal images XT1 and XT2 using the following formulation:

θ∗ = arg max
θ

∑
i

p(yi|x
T1
i , xT2

i ; θ) (1)

where θ is the parameter set of our model, xT1
i and xT2

i denote a pair of pixel vectors of the multi-spectral
images XT1 and XT2 and yi is the predicted label.

We input xT1
i and xT2

i into the model as time sequence data; thus, it is natural to model p(yi|x
T1
i , xT2

i )

with a recurrent neural network, where the change rule is expressed by a fixed-length hidden state
or memory ht. The memory is updated with a new pixel vector input using a non-linear function f ,
which can be described as:

ht+1 = f (ht, xt) (2)

The important advantage of a recurrent neural network is its ability to sense contextual
information when mapping the input sequence and output.

3.2. LSTM Hidden Unit and Forward Pass of the REFEREE Model

The choice of f is critical for vanishing and exploding gradient [33] issues, which are a common
challenge in designing and training a recurrent neural network. The LSTM model [27] is beneficial
for preventing the above problems and performs well when applied to many challenging problems
involving sequential time series data. Thus, in this paper, a special LSTM model is improved for the
recurrent hidden unit to address change detection for multi-temporal remote sensing data.

According to the characteristics of the change detection task, a detailed architecture of the LSTM
unit is designed, as shown in Figure 5. Here, REFEREE learns the reliable difference information in
a core memory cell using multi-temporal images, and the core memory cell is jointly modulated by
three gates: input, output and forget gates. These gates determine the amount of dynamic information
entering, leaving and updating the memory cell. In particular, the forget gate can update the internal
difference information of the core memory cell. The output, which exits from the core memory cell,
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shows a reliable capability in terms of the expression of difference information extraction. Moreover,
the core memory cell can recode and highlight the value of the binary changed samples or multi-class
changes in the update process to detect changes with transferability. Additional details about the three
gates are given below.

Figure 5. The structure of the LSTM unit in our REFEREEmodel, in which gray arrows indicate directed
connection, where the information will flow along this direction, and a gray dotted arrow indicates a
peephole connection. Additional details are available in the text.

The core of the LSTM unit is a memory cell c, which encodes the difference information about
the change rule. The behavior of the cell is controlled by three gates: input, output and forget gates.
The gates are layers that can either decide to keep the current cell state value if the gate is 1 or to clean
the memory from the gated layer if the gate is 0. Three gates are generally used to control the input,
output and update of the current cell state value in the memory cell. The output of the memory cell
contains the change information. The definition of the three gates, memory cell and final output are
described below.

Input node: This unit, which is labeled gt, is a node that responds to activation from the input
layer at the current time step T2 and from the hidden layer at the previous time step T1. The node
merges the information at two different times and inputs this information into the cell. This unit can
be formulated as follows:

g(T2) = φ(WgxxT2 + WghhT1 + bg) (3)

where Wgx and Wgh are coefficient matrices and bg is the bias vector of the input node. φ is the
activation function of the input node, the tanh function.

Gates are an important concept in LSTM. A gate is a sigmoidal unit that responds to activation
from the pixel vector of T2 images, as well as from the hidden layer at the T1 time step. All gates in
REFEREE are used to multiply the input to decide whether to pass or cut off the input value. In brief, if
the value of any gate is “one” (the gate is fully open), then all of the flow is passed through. In contrast,
if the value of the gate is “zero” (the gate is fully closed), the flow of the other input is cut off.

Input gate: The input gate is checked to decide whether an input should be read to the memory
cell. The value of the input gate multiplies the current time pixel vector and the output of the hidden
layer at the previous time step T1. The pixel vectors usually contain abundant information; however,
only parts of this information are beneficial for distinguishing changes or change types. Therefore,
the input gate can automatically select useful information and input it into memory cell c to learn the
change rule. The forward pass of the input gate is:

i(T2) = σ(WixxT2 + WihhT1 + bi) (4)
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where Wix and Wih are the coefficient matrices of the input gate and bi is the bias vector. The activation
function σ is a sigmoid function for the input gate.

Memory cell: The memory cell c facilitates information storage, in which information can be
stored in, written to and read from cell c. The cell makes decisions about what data to store and
when to allow reading, writing and erasure via open or closed gates. During the training process, the
memory cell c learns to obtain the best state that can highlight the pair of pixel vector changed samples.
At the heart of the memory cell c is the internal state node sc with linear activation, and the internal
state sc has a self-connected recurrent edge with a fixed unit weight. Moreover, the internal state sc can
learn and record important information across time steps because the edge of sc spans adjacent time
steps T1 and T2 with constant weight. In vector notation, the update for the cell state can be defined
as follows:

sT2 = gT2 � iT2 + sT1 (5)

where � denotes point-wise multiplication and sT1 is the previous state of the memory cell.
Forget gate: Although the memory cell can detect and store the difference information of

multi-temporal images, the stored information in memory cell c is redundant, and this part of the
redundant information may prevent the memory cell from learning the change rule effectively to some
extent. Therefore, we need to set a forget gate that can decide what information we need to throw
away from the cell’s internal state when a recurrent neural network is learning the change rule for
optimization. The inputs of the forget gate are the pixel vector of the T2 image and the calculated state
information of the hidden layer at the T1 time step. The output of the forget gate is a vector that can
gradually control what part of the information in the memory cell will remain from the point-wise
multiplication operation. For example, if the gate is fully closed (i.e., so-called “0”), that means to
completely discard the current information. If the gate is completely open (i.e., “1”), all of the current
information of the memory cell will remain. The state of the forget gate is determined by the training
procedure of the network. The forget gate provides a method by which the network can learn to flush
the contents of the internal state sc. The forward pass of the forget gate can be described as follows:

f(T2) = σ(W f xxT2 + W f hhT1 + b f ) (6)

where b f is the bias vector of the forget gate. W f x and W f h are the coefficient matrices.
The equation used to calculate the internal state on the forward pass for the forget gates is:

sT2 = gT2 � iT2 + fT2 � sT1 (7)

Output gate: The value ultimately produced by a memory cell is the value of the internal state sc

multiplied by the value of the output gate. The output gate decides what the unit will output, which is
a filtered version based on the cell state. To obtain a suitable output from our model, a sigmoid layer
is run first to decide what parts of the cell state the unit should output. Then, applying a non-linear
function to the cell state and multiplying it by the output of the sigmoid gate, we obtain the final
output, parts of which are relevant to the change detection task. The forward pass of the output gate is:

o(T2) = σ(WoxxT2 + WohhT1 + bo) (8)

where Wox and Woh are the coefficient matrices of the output gate and bo is the bias vector.
Additionally, we add some peephole connections to our proposed REFEREE model. The peephole

connections can pass from the internal state directly to the input, output and forget gates. The intuition
behind introducing the peephole connection can be captured by the following example. During the
training process, the network can capture some activation in the internal state sc after only inputting the
T1 pixel in the model, and then, the activation is incremented and updated in the internal state sc when
the T2 pixel vector is input. In this way, the internal state sc can trap the integral activation information
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from the T1 pixel vector and the T2 pixel vector. If there are changed pixels, the network will record
some difference information in the internal state, and the internal state will provide feedback to the
affected output gate. In this way, the internal state sc is the input of ot, and the output gate will offer
an optimized value for the final output of this model to detect changed samples more easily, which is
why the peephole connection is important to the REFEREE model.

The forward pass of an LSTM unit is defined as follows:
Input node:

g(T2) = φ(WgxxT2 + WghhT1 + bg) (9)

Input gate:
i(T2) = σ(WixxT2 + WihhT1 + WicsT1 + bi) (10)

where Wic is the coefficient matrix of the peephole connection that links the input gate and cell.
Forget gate:

f(T2) = σ(W f xxT2 + W f hhT1 + W f csT1 + b f ) (11)

where W f c is the peephole connection matrix of the forget gate and memory cell.
Output gate:

o(T2) = σ(WoxxT2 + WohhT1 + WocsT1 + bo) (12)

where Woc is the peephole connection matrix of the output gate and cell c.
Cell output:

sT2 = gT2 � iT2 + fT2 � sT1 (13)

LSTM output:
hT2 = φ(sT2)� oT2 (14)

To better understand the internal operation modes of a recurrent neural network, we unroll the
loop, as shown in Figure 6. Its chain-like nature reveals that the recurrent network is intimately related
to the sequence, and the natural architecture of a neural network is a promising way of addressing
change detection tasks for multi-temporal images.

Input T1 Input T2

Output T1 Output T2

Input t

Output t

Figure 6. An unrolled recurrent neural network.

3.3. Optimization

Suppose that we have a loss l that we wish to minimize at time step T2 and that the loss l depends
on the output of decision layer ŷ and the ground truth label y via a loss function f :

l = f (ŷT2 , y) (15)
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where f can be any differentiable loss function, such as the Euclidean loss:

l = f (ŷT2 , y) = ‖ŷT2 − y‖2 (16)

Our ultimate goal in this case is to use gradient descent to minimize the loss L over the two
images XT1 and XT2 :

L =
T2

∑
t=T1

l(t) (17)

We now work through the algebra to compute the loss gradient dL
dw , where w is a scalar parameter

of the model. Because the loss l = f (ŷT2 , y) only depends on the values of the decision layer ŷ, hidden
layer h and ground truth label y, we define the chain rule:

dL
dw

=
T2

∑
t=T1

N

∑
j=1

M

∑
i=1

dL
dŷj(t)

dŷj(t)
dhi(t)

dhi(t)
dw

(18)

where hi(t) is the scalar corresponding to the i-th hidden output of the memory cell, M is the total
number of memory cells, ŷj(t) is the j-th unit of the decision layer and N is the number of decision
layer units. Because the network propagates information forward in time, changing ŷj(t) and hi(t)
will not affect the loss prior to time t, which allows us to write:

dL
dŷj(t)

=
T2

∑
s=T1

dl(s)
dŷj(t)

=
T2

∑
s=t

dl(s)
dŷj(t)

(19)

For notational convenience, we introduce the variable L(t), which represents the cumulative loss
from time step t onward:

L(t) =
s=T2

∑
s=t

l(s) (20)

In this case, L(T1) is the loss for both images XT1 and XT2 , which allows us to rewrite Equation (19) as:

dL
dŷj(t)

=
T2

∑
s=t

dl(s)
dŷj(t)

=
dL(t)
dŷj(t)

(21)

We can now define the gradient calculation dL
dw as follows:

dL
dw

=
T2

∑
t=T1

N

∑
j=1

M

∑
i=1

dL(t)
dŷj(t)

dŷj(t)
dhi(t)

dhi(t)
dw

(22)

The computation of dhi(t)
dw and

dŷj(t)
dhi(t)

follows directly from the forward propagation equations.

The key question is how to compute dL(t)
dŷj(t)

. In this paper, we utilize back-propagation using the

time algorithm to resolve these issues. First, we can express the following recursion based on the
variable L(t):

L(t) =

{
l(t) + L(t + 1) t < T

l(t) t = T
(23)

Hence, given the activation h of an LSTM node at time step t, we have that:

dL(t)
dŷ(t)

=
dl(t)
dŷ(t)

+
dL(t + 1)

dŷ(t)
(24)
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The first term dl(t)
dŷ(t) is simply the element-wise derivative of the loss l(t) with respect to the

activations ŷ(t) at time step t. The second term dL(t+1)
dŷ(t) is the recurrent nature of LSTM, which shows

that we need the derivative information of the next node to compute the derivative information of
the current node. Because dL(t)

dŷ(t) for both times T1 and T2 is to be computed, we start by computing
dL(T2)
dŷ(T2)

= dl(T2)
dŷ(T2)

and work backward through the network.

4. Experimental Setup and Design

This section is structured as follows: (1) describing the competitors (comparison methods);
(2) tuning the parameters of the REFEREE model and competitors; and (3) arranging the whole
experimental design for the study of the sensitivity of REFEREE.

4.1. Competitors

In this paper, the results obtained using the REFEREE method are compared to those from several
other methods: (1) unsupervised Change Vector Analysis (CVA) [8], which is an effective method
for multi-spectral change detection tasks; (2) PCA [34], which is simple in computation and can
be applied to real-time applications; (3) Iteratively-Reweighted Multivariate Alteration Detection
(IRMAD) [15], which is a classical transformation change detection method for multi-spectral data;
(4) Supervised Slow Feature Analysis (SSFA) [19], which is one of the latest feature learning methods
for change detection; (5) Support Vector Machine (SVM) [35], which is effective for remote-sensing
image classification; (6) decision tree [36], which is a tree structure consisting of internal and terminal
nodes that process data to ultimately yield a classification; and (7) Convolutional Neural Network
(CNN) [37], which is a hierarchical architecture trained on large-scale datasets and that has shown
promising performance in classification and detection. Among these methods, CVA, PCA, IRMAD and
SSFA are used in binary experiments, and SVM, decision tree and CNN are compared to REFEREE
in multi-class experiments. Additionally, the proposed REFEREE method and other methods are
evaluated based on kappa coefficients, the Overall Accuracy (OA) value and the F-score.

4.2. Setup of Parameters

The REFEREE model is trained with the RMSpropalgorithm [38], and the suggested default
parameters are used for all of the following experiments. In REFEREE, we use a single-layer LSTM
of size 512 with sigmoid gate activations and tanh activation for hidden representations, where the
sigmoid gate activations and tanh activation are both default settings under the RNN framework. The
decision layer uses sigmoid activation and then outputs a two-dimensional vector for binary change
detection tasks and three- and four-dimensional vectors for Kunshan and Taizhou multi-class change
tasks. All weight matrices in our model and the bias vector are initialized from a uniform distribution,
and the values of these weight matrices and the bias vector are initialized in the range [−0.1, 0.1]. Then,
all of the weight matrices and bias vectors can be updated during learning processing. In addition, we
use dropout with a probability of 0.5 on the output of each LSTM to avoid overfitting.

Concerning the competitors, the threshold is an important parameter in the CVA, PCA, IRMAD
and SSFA methods, and k-means clustering [39] is selected for automatic threshold selection. In the
binary experiments, changes and non-changes can be regarded as a two-class classification problem [19].
Therefore, the number k in k-means clustering is two. For the SVM method, LibSVM [35] is selected to
evaluate the final multi-class changes, where the kernel is the radial basis function, the cost parameter is
100 and gamma is 0.01. For the decision tree method in this paper, the maximum tree count parameter
is 50, the minimum number of objects per leaf is two and the confidence factor for pruning is 0.1.
For the CNN method, the parameters (i.e., the weights in the convolutional and FC layers) are trained
with classic stochastic gradient descent based on the back-propagation algorithm [40].
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4.3. Experimental Design

To demonstrate the effectiveness of REFEREE, three experiments are designed in this paper:
binary experiments, transfer experiments and multi-class change experiments.

Binary experiments: We select some training samples from multi-temporal images to test the
change detection results derived from the remaining samples. The final results are represented in
terms of the average accuracy acquired from ten trials, which rely on ten initial randomly-selected
training samples from the T1 image and the corresponding initial samples from the T2 image.
Wu et al. [19] had labeled some test samples according to a detailed visual analysis of multi-temporal
images and some prior information, and these labeled samples are also used to quantitatively evaluate
the performance of REFEREE and its competitors. For each trial, additional details about the number
of training samples, testing samples and all labeled test samples are summarized in Table 1, where
units of un denote unchanged samples and units of c denote changed samples.

Table 1. The number of training/testing samples for binary experiments, transfer experiments and
multi-class change experiments on the Taizhou and Kunshan images (the units of un mean unchanged
samples and the units of c mean changed samples). Additional details on the change types and
multi-class definitions can be found in Section 2.

Labeled Samples Training Samples Testing Samples

Ta
iz

ho
u

binary 21,116 700
experiment (16,890un, 4226c) (500 un,200c) 20,416

200 (150un,50c)
transfer 21,116 400 (300un,1000c) 64,183

experiment (16,890un, 4226c) 600 (450un,150c) (Kunshan)

(T-K) 800 (600un,2000c) 63,000
(T-Y) 1000 (650un,250c) (Yancheng)

3172 (city change) 200 2922
multi-class 564 (soil change) 50 514
experiment 490 (water change) 50 440

16,890 (unchanged) 50 11890

K
un

sh
an

binary 64,183 1000
experiment (48,119un, 16,064c) (500un,500 c) 63183

200 (100un,100c)
transfer 64,183 400 (200un,200c) 21,116

experiment (48,119un, 16,064c) 600 (300un,300c) (Taizhou)

(K-T) 800 (400un,400c) 63,000
(K-Y) 1000 (500un,5000c) (Yancheng)

multi-class 9958 (city change) 500 9458
experiment 6506 (farmland change) 500 6006

48,119 (unchanged) 500 43,119

Ya
nc

he
ng

binary 63,000 500
experiment (44,723un, 18,277c) (250un,250 c) 63,000

200 (100un,100c)
transfer 63,000 400 (200un,200c) 21,116

experiment (44,723un, 18,277c) 600 (300un,300c) (Taizhou)

(Y-T) 800 (400un,400c) 64183
(Y-K) 1000 (500un,5000c) (Kunshan)

Transfer experiments: The training samples are selected from training multi-temporal images (A),
whereas the testing samples are selected from new target multi-temporal images (B, B 6=A) to test
whether the change rule learned from the training multi-temporal images (A) is suitable for new
multi-temporal images (B, B 6=A). This is defined as transferability. In this paper, training images
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and new target images should have similar multi-spectral distributions (the same number of spectral
bands). In the transfer experiments, the REFEREE method is only trained once on the training
images (A) and is applicable without further training on arbitrary new target images. Specifically, we
select a set number of training samples from the Taizhou images, and testing samples are selected
from all labeled Kunshan samples without any extra information and vice versa. Additionally, to
simulate challenging real-life training and transfer conditions, we provide results for a wide range of
training data size conditions. In many change detection situations, especially for supervised methods,
the training samples may not be sufficiently fine to detect changes over the whole remote sensing
data, and less training data will not result in good features for change detection. Therefore, REFEREE
is experimented with over a range of training data sizes. We randomly select 200, 400, 600, 800 and
1000 training samples from training images to test the performance on whole labeled test samples of
the other new images. The final results show the average accuracy acquired from ten trials performed
independently. Additional details about the number of training samples and testing samples can be
found in Table 1.

Multi-class change experiments: Regarding change detection as a classification task, we utilize
REFEREE with the input of pixel spectral information from two different time steps, and the output
is the encoded multi-class change information. Additional details about the definition of multi-class
change and change types are described in Section 2. To synthetically evaluate the performance of
REFEREE for multi-class change detection, the numbers of labeled samples, training samples and
testing samples are summarized in Table 1. The final results show the average accuracy acquired from
ten trials performed independently.

5. Results and Discussion

This section reports and discusses all of the results of the binary experiments, transfer experiments
and multi-class change experiments.

5.1. Results and Discussion of the Binary Experiments

Figures 7–9 show binary change maps and confidence level maps obtained by REFEREE on
the Taizhou images, the Kunshan images and the Yancheng images, respectively. The binary
change maps in Figures 7a,c, 8a,c and 9a clearly show the main changed regions in the labeled area.
Moreover, REFEREE also provides the confidence level of the detected changed samples, as shown
in Figures 7b,d, 8b,d and 9b. In the confidence level maps, the brighter the color is, the greater the
probability that the sample belongs to the changed sample. In contrast, a darker color indicates a
lower probability that the sample is a changed sample. For example, white in the confidence level
map indicates that the probability that the sample is a changed sample is one (i.e., 100 percentage
probability), whereas black indicates that the probability that the sample is a changed sample is
zero. A value between zero and one indicates a different probability or confidence level that the
sample is a changed sample. From the confidence level maps of the changed region, it can also be
found that changed regions almost all have a highlighted value, whereas unchanged regions are
very dark. The confidence values spread mostly over the two terminal values (zero and one), and
the intermediate values are limited. Therefore, it can be concluded that the REFEREE method can
distinguish the changed and unchanged regions directly with the reliable difference learning ability in
the core memory cell.

Table 2 summarizes the kappa coefficients and OA values using all of the methods on the
two experimental datasets of the labeled samples, and the highest accuracy is obtained by REFEREE.
The classical approaches CVA, PCA, IRMAD and SSFA all achieve a good performance, especially
the SSFA method, which achieves the best performance for single-band analysis [19]. However, for
a real-life remote sensing analysis process, we prefer to use all of the spectral information to detect
changes with high accuracy rather than attempt using each band and select the best-performing band
to detect changes. This is because it is very difficult to test and select suitable bands from a very large
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remote sensing dataset individually. Here, REFEREE uses all available spectral bands and yields the
best performance among all methods.
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Figure 7. The thematic maps obtained from REFEREE with the Taizhou images: (a) binary change
map of the whole images, where black indicates unchanged regions and white indicates changed
regions; (b) confidence level map of the whole Taizhou image, where the color bar is described in
the text; (c) binary change map of the labeled samples, where white indicates changed regions, gray
indicates unchanged regions and black indicates unlabeled regions; (d) confidence level map of the
labeled samples.
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Figure 8. The thematic maps obtained using REFEREE for the Kunshan images: (a) binary change map
of the whole images, where black indicates non-changes and white indicates changes; (b) confidence
level map of the whole Kunshan images, where the color bar is described in the text; (c) binary change
map of labeled samples, where white indicates changed regions, gray indicates unchanged regions and
black indicates unlabeled regions; (d) confidence level map of the labeled samples.

 

 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

（a） （b）

Figure 9. The thematic maps obtained using REFEREE for the Yancheng images: (a) binary change map
of the whole images, where black indicates non-changes and white indicates changes; (b) confidence
level map of the whole Kunshan images, where the color bar is described in the text.
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Table 2. The kappa coefficients for the state-of-the-art methods on the two experimental datasets. CVA,
Change Vector Analysis; IRMAD, Iteratively-Reweighted Multivariate Alteration Detection; SSFA,
Supervised Slow Feature Analysis.

TaiZhou KunShan Yancheng

KAPPA OA KAPPA OA KAPPA OA

CVA 0.3755 0.6982 0.4011 0.7160 0.7907 0.8722
PCA 0.5413 0.7419 0.633 0.7741 0.8174 0.9025

IRMAD 0.7942 0.9133 0.87 0.9397 0.6973 0.8352
SSFA 0.8229 0.9454 0.9361 0.9763 0.9032 0.9516

REFEREE 0.9477 0.9777 0.9573 0.9837 0.9563 0.9828

5.2. Results and Discussion of the Transfer Experiments

An efficient change rule should have robust transferability. In this experimental part, REFEREE is
applied to the transfer experiments, and the results show that REFEREE has remarkable transferability.
From Section 5.1, it can be seen that REFEREE yields a good performance on the Taizhou images (T),
Kunshan images (K) and Yancheng images (Y), with a reliable change learning ability in the binary
experiments. If the learned change rule used by REFEREE is stable and robust, it should yield efficient
transferability for new target images. Therefore, the transfer experimental results are presented and
discussed in this subsection.

Six transfer experiments, the T-K, T-Y, K-T, K-Y, Y-T and Y-K transfer experiments, are designed
with cross-validation over three images in this section. Here, T denotes Taizhou images, K denotes
Kunshan images and Y denotes Yancehng images. Specifically, for the K-T transfer experiments, the
training samples are selected from the Kunshan images, whereas the testing samples are all of the
labeled Taizhou samples. Similarly, in the T-K transfer experiments, the training samples are selected
from the Taizhou images, and the testing samples are all of the labeled Kunshan samples. By that
analogy, the K-Y, T-Y, Y-T and Y-K transfer experiments can be understood clearly.

Additionally, to simulate challenging real-world training conditions, we provide results for a wide
range of training dataset size conditions. We report the results over a range of training numbers (N) to
test the final transfer results. For example, an N value of 200 (N = 200) indicates that only 200 training
samples (100 unchanged samples and 100 changed samples) are selected from the training images
(Taizhou or Kunshan) to test all labeled test samples in the new target images (Kunshan or Taizhou).
Similarly, an N value of 1000 (N = 1000) indicates that 1000 training samples (500 unchanged samples
and 500 changed samples) are used in the transfer experiments.

Table 3 summarizes the transfer results over five training data sizes in six transfer experiments.
Moreover, five indices are used to provide a quantitative analysis of the change detection results:
Overall Accuracy (OA), False Positives (FPs), False Negatives (FNs), Overall Error (OE) and
Kappacoefficients [41]. Generally, the different training data sizes available yield different results. We
prefer a very high performance with a small number of training samples rather than a large number
of samples in deep learning. The proposed method can be used widely. Note that, from Table 3,
REFEREE can yield a good performance in all transfer experiments over the five training data size
ranges. For all transfer experiments, the OE value is stable and even shows some slight downward
trend with increasing number of training samples, which indicates that REFEREE can also offer a good
performance with small training data sizes in the transfer experiments. Moreover, compared to the
FN values of the training data sizes, the FP values are much smaller, which means that REFEREE can
detect almost all changed samples directly. In particular, it can be found that the K-T, K-Y and T-Y
transfer experiments yield better results than the T-K, Y-K and Y-T transfer experiments; in particular,
the FP values in the K-T, T-Y and K-Y experiments are higher than those in the T-K, Y-T and Y-K
experiments. The reason for this is related to the complexity of land cover changes in the training steps,
which means that the Kunshan images present more complex changes than do the Taizhou images
and Yancheng images. In addition, REFEREE can learn a more stable change rule from the Kunshan
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images than from the Taizhou and Yancheng images. Additional details about the complexity of land
cover changes in the Taizhou, Kunshan and Yancehng images are described in Section 2. Moreover,
the K-T and K-Y experiments performed well and also demonstrate the above results. Although
there exists some error in the final detected changes, all false alarm rates were low in the transfer
experiments, which means that REFEREE can offer a robust change rule for detecting changes in
transfer experiments via training with complex changed samples. In summary, REFEREE can achieve a
good performance in all transfer experiments, and small training samples are also effective at yielding
a good performance by REFEREE.

Table 3. The transfer experiment results for five training samples in the T-K and K-T experiments. OE,
Overall Error.

OA Kappa FP FN OE

T-
K

N = 200 0.8652 0.5870 326 8613 8939
N = 400 0.8579 0.5574 202 9223 9425
N = 600 0.8717 0.6122 428 8083 8511
N = 800 0.8652 0.6028 1236 7705 8941
N = 1000 0.8693 0.6009 270 8398 8668

T-
Y

N = 200 0.9508 0.8852 286 2816 3102
N = 400 0.9694 0.9265 651 1275 1926
N = 600 0.9653 0.9178 356 1828 2184
N = 800 0.9724 0.9335 629 1110 1739
N = 1000 0.9721 0.9334 323 1437 1760

K
-T

N = 200 0.9243 0.7116 15 1772 1787
N = 400 0.9506 0.8428 279 808 1087
N = 600 0.9536 0.7931 387 1030 1417
N = 800 0.9481 0.8341 279 863 1141
N = 1000 0.9508 0.8363 23 1060 1083

K
-Y

N = 200 0.9592 0.9032 251 2052 2303
N = 400 0.9701 0.9227 824 1058 1882
N = 600 0.9675 0.9227 364 1684 2048
N = 800 0.9712 0.9310 481 1334 1815
N = 1000 0.9741 0.9379 383 1251 1634

Y-
T

N = 200 0.7637 0.4326 1223 2982 3205
N = 400 0.7984 0.4638 1210 1815 3025
N = 600 0.8894 0.6559 1094 1342 2436
N = 800 0.8942 0.7100 1230 918 2148
N = 1000 0.8939 0.6993 1113 1223 2336

Y-
K

N = 200 0.7189 0.2760 9164 9479 18,643
N = 400 0.7689 0.3125 4240 9706 13,946
N = 600 0.7932 0.5152 9607 4245 13,852
N = 800 0.8336 0.4883 1301 9737 11,038
N = 1000 0.8428 0.5571 606 8823 9429

Figures 10–12 present the binary change maps and confidence level maps of the K-T, T-K and
T-Y transfer experiments, respectively, over a range of training samples. Moreover, binary change
maps and confidence level maps of the K-Y, T-Y and T-K transfer experiments can be found in the
Supplementary Material. All of the binary change maps clearly show that the main changed regions
are detected from new target images, and all binary maps demonstrate that more of the changed area
can be detected from the testing samples with increasing training data size. The confidence level maps
also show that REFEREE can highlight almost all of the changed samples for all five training data sizes,
and the unchanged samples appear darker in the confidence level maps with increasing training data
sizes. This indicates that REFEREE can highlight the difference information of the changed samples
and repress the unchanged information in a more stable manner with increasing training data size.



Remote Sens. 2016, 8, 506 17 of 22

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0. 9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0. 9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0. 9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0. 9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0. 9

1

Figure 10. Transfer results for different range numbers of the Kunshan training samples for testing all
of the labeled Taizhou images.
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Figure 11. Transfer results for different range numbers of the Taizhou training samples for testing all of
the labeled Kunshan images.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 12. Transfer results for different range numbers of the Taizhou training samples for testing all of
the labeled Yancheng images.
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Considering the above results and discussion, the REFEREE method is a promising method for
transfer learning. The core memory cell has a robust ability to record the difference information from
multi-temporal images, and the recorded information can be used for other new target multi-temporal
images without utilizing an extra learning process. Moreover, if the training samples contain complex
changes, the performance of REFEREE increases and becomes more stable.

5.3. Results and Discussion of the Multi-Class Change Experiments

To better assess the effectiveness of the REFEREE method in more detail, a more complex situation
in which multi-class changes are present in the experimental data is considered and tested in this study.
Similar to the binary experiments, several samples are selected as training samples, and the remaining
labeled samples are selected as testing samples with different class changes. Additional details about
the multi-class change definitions and change types can be found in Section 2.

Figure 13 shows the multi-class change results of the Taizhou images and provides the confidence
level maps of different class changes and unchanged types. Figure 13a–d presents the confidence
level maps of the city expansion, soil change, water change and unchanged samples. The brighter
the color is, the larger the probability that the sample belongs to the corresponding change types. For
example, white in the confidence level map indicates that the probability that the sample belongs to the
corresponding change type is one (i.e., 100 percent), whereas pure black indicates that the probability
that the sample belongs to the corresponding change type is zero; unlabeled samples are also indicated
in pure black. By analyzing Figure 13a–d, it can be observed that all of the changed regions (city
expansion, soil change and water change) and the unchanged region are highlighted in their own
confidence level maps, thus demonstrating that REFEREE is effective at detecting different change
types. Moreover, the final change type result map (Figure 13e) acquired by REFEREE shows that
the changed region is almost always detected, although some error is observed in terms of detecting
unchanged samples. Although some false detections are observed, REFEREE can yield a high OA
value of 0.9537 and a kappa coefficient of 0.8689 on the Taizhou images. Moreover, each change class
also achieved a high overall accuracy, as shown in Table 4.
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Figure 13. Multi-class change results for the Taizhou images: (a) confidence level map of the city
expansion; (b) confidence level map of the soil change; (c) confidence level map of the water change;
(d) confidence level map of an unchanged region; (e) changed map detected by REFEREE; and
(f) ground truth, where the unchanged areas are shown in red, the changed region of the city expansion
is shown in green, the changed soil region is shown in orange and the changed water areas are shown
in blue. Additional details about the color bar can be found in the text.
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Table 4. The overall accuracy, kappa coefficients and F-score obtained using the REFEREE method and
competitors on two experimental datasets with multi-class changes, where (C) indicates a changed
type; additional information about change types can be found in Section 2. CNN, Convolutional
Neural Network.

OA Kappa F-score

Unchanged City (C) Water (C) Soil (C) Farmland (C)

Ta
iz

ho
u REFEREE 0.95 0.8689 0.9788 0.7887 0.8749 0.7524 /

CNN 0.9235 0.8063 0.9675 0.6679 0.8721 0.5521 /
SVM 0.8391 0.6758 0.8717 0.5203 0.8326 0.3558 /

Decision tree 0.7113 0.5221 0.8701 0.6403 0.7496 0.3558 /

K
un

sh
an REFEREE 0.9587 0.8988 0.9432 0.9735 / / 0.8750

CNN 0.9336 0.8413 0.8844 0.9559 / / 0.8491
SVM 0.8024 0.6654 0.6830 0.8762 / / 0.3743

Decision tree 0.6979 0.4844 0.6642 0.7913 / / 0.1542

The experimental results on the Kunshan images also demonstrate that REFEREE has a stable
and efficient ability to detect multi-class changes. Figure 14 shows the multi-class change results on
the Kunshan images. Figure 14a–c presents the confidence level maps of the city expansion, farmland
change and unchanged samples. By analyzing the above confidence level maps and overall accuracy,
it can be found that both the changed samples with different change types and the unchanged samples
are almost always highlighted and detected in their own confidence level map. In addition, the final
change result map (Figure 14d) shows that almost all changed regions with different change types and
the unchanged region are recognized.
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Figure 14. Multi-class change results of the Kunshan images: (a) confidence level map of the city
expansion; (b) confidence level map of the farmland change; (c) confidence level map of an unchanged
region; (d) changed map detected by REFEREE; and (e) ground truth, where the unchanged areas are
shown in red, the changed region of the city expansion is shown in blue and the changed farmland
region is shown in green. Additional details can be found in the text.

Table 4 reports the quantitative assessment based on the overall accuracy, kappa value and
F-score for the REFEREE, CNN, SVM and decision tree methods. In Table 4, unchanged indicates the
unchanged region (class), and (C) indicates changed classes. Specifically, city (C) indicates the changed
type of city expansion; water (C) indicates a non-water region changing to water; soil (C) indicates
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cultivated field or grassland (or any non-bare soil class) changing to bare soil; and farmland (C)
indicates farmland changes. Additional details on the changed types can be found in Section 2. The
SVM and decision tree-based change detection methods performed well in the multi-class change
detection experiments in terms of the OA, kappa and F-score values. However, the CNN-based change
detection method and REFEREE both achieved higher OA, kappa and F-score values. The REFEREE
method produced the best quantitative assessment in terms of all three indices, which means that
our learned model is an effective way of learning change information based on multi-class changes.
In particular, concerning the F-score, for soil (C) and farmland (C), REFEREE achieved a 40% higher
F-score than did the SVM and decision tree methods. In addition, CNN also represents a promising
way to learn features and perform classification using artificial neural networks, and our model can
perform slightly better than the CNN method in terms of all quantitative assessment indices.

Regarding change detection as a classification task, we utilize REFEREE with pixels from two
different time steps as input and the encoded change information as output. As demonstrated by
the above experiments, the REFEREE method achieves a good performance in not only the binary
experiments, but also the multi-class change experiments.

6. Conclusions

In this paper, a new change detection algorithm named REFEREE that can detect not only binary
changes with stable transferability, but also multi-class changes has been proposed. By introducing and
improving the basic RNN framework with the LSTM model, the proposed REFEREE algorithm can
provide a stable change rule for detecting changes from multi-temporal remote sensing data. Compared
to other state-of-the-art algorithms, the superiority of REFEREE mainly depends on learning a stable
and transferable change rule by recording the difference information or multi-class changes in a core
memory cell. In addition, as demonstrated by the experimental results in this paper, the superiority of
REFEREE can be summarized through three main contributions as follows: (1) REFEREE can learn a
stable change rule, and the core memory can record the reliable difference information; (2) compared
to other state-of-the-art algorithms, REFEREE can detect not only binary changes, but also multi-class
changes for multi-temporal images; (3) the REFEREE method also has good transferability for detecting
changes in new target images without any extra learning process. The new target images should have
multi-spectral distributions similar (the same number of spectral bands) to those of the training images
in this paper.

As demonstrated in this paper, REFEREE is robust and stable when detecting both binary and
multi-class changed samples. However, the method still suffers from various issues. For example,
a small number of unchanged samples is mistaken as changed samples; this issue should be resolved
in future work to render REFEREE more effective. We will attempt to improve the REFEREE method
to be able to detect a new changed type when the relevant training samples do not exist.
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