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Abstract: The fine-mode fraction (FMF) of aerosol optical depth (AOD) is a key optical parameter
that represents the proportion of fine particles relative to total aerosols in the atmosphere. However,
in comparison to ground-based measurements, the FMF is still difficult to retrieve from satellite
observations, as attempted by a Moderate-resolution Imaging Spectroradiometer (MODIS) algorithm.
In this paper, we introduce the retrieval of FMF based on Polarization and Anisotropy of Reflectances
for Atmospheric Science coupled with Observations from a Lidar (PARASOL) data. This method
takes advantage of the coincident multi-angle intensity and polarization measurements from a
single satellite platform. In our method, we use intensity measurements to retrieve the total
AOD and polarization measurements to retrieve the fine-mode AOD. The FMF is then calculated
as the ratio of the retrieved fine-mode AOD to the total AOD. The important processes in our
method include the estimation of the surface intensity and polarized reflectance by using two
semi-empirical models, and the building of two sets of aerosol retrieval lookup tables for the intensity
and polarized measurements via the 6SV radiative transfer code. We apply this method to East Asia,
and comparisons of the retrieved FMFs for the Beijing, Xianghe and Seoul_SNU sites with those of the
Aerosol Robotic Network (AERONET) ground-based observations produce correlation coefficients
(R2) of 0.838, 0.818, and 0.877, respectively. However, the comparison results are relatively poor
(R2 = 0.537) in low-AOD areas, such as the Osaka site, due to the low signal-to-noise ratio of the
satellite observations.

Keywords: multi-angular remote sensing; polarized remote sensing; aerosol optical depth; fine-mode
fraction; PARASOL

1. Introduction

Atmospheric aerosols play an important role in the global climate and environmental changes.
They alter the radiation balance of the atmosphere, resulting in circulatory changes [1,2], and cause
atmospheric pollution, which has an important influence on the biosphere. Atmospheric aerosols have
become a prevalent research topic in numerous science fields.

In recent years, with the development of satellite-based remote sensing technologies, the method
of retrieving the first parameter to reflect the optical properties of aerosols—aerosol optical depth
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(AOD)—has become more and more mature, and the retrieval algorithms of AOD have been developed
based on many satellite platforms. For example, the AOD product that is retrieved by the dense
dark vegetation (DDV) method of the Moderate-resolution Imaging Spectroradiometer (MODIS)
platform [3,4] has been widely used in atmospheric and environmental studies. However, the use of
this single parameter is insufficient to estimate the anthropogenic aerosol content and to understand
the influence of human effects on climate change and air pollution.

The aerosol fine-mode fraction (FMF) is defined as [5]

FMF “
τf

τf ` τc
(1)

where τf is the aerosol fine-mode optical depth and τc is the aerosol coarse-mode optical depth. Since
most anthropogenic aerosols are fine-mode aerosols [6], the FMF effectively reflects the anthropogenic
aerosol content. Additionally, it has a significant impact on the study of climate change and regional
atmospheric pollution, and can further provide a way to estimate the human contributions to aerosol
emissions. Consequently, this aerosol parameter is very important. According to its definition,
to retrieve FMF, one needs to know the fine-mode AOD and the total AOD. Traditional radiometric
intensity measurements can be used to retrieve total AOD by assuming a spectral aerosol model and
removing the contribution of surface reflectance from the reflectance at the top of atmosphere (TOA).
However, because the aerosol radiation contribution to the intensity signal is a mixture of fine- and
coarse-mode aerosols, it is hard to distinguish the radiation contribution of the fine-mode aerosols from
the coarse-mode aerosols when the actual aerosol size distribution is unknown. Moreover, the aerosol
retrieval solution over land is strongly influenced by assumptions about spectral reflectance of the
surface, which differs considerably from aerosol retrievals over the ocean. Thus, fine-mode aerosols
over land are hard to quantify using a single intensity measurement, which has led to the low accuracy
of FMF retrievals from instruments such as MODIS [7,8].

With the launch of sensors that have the ability to detect polarized light, such as the Polarization
and Directionality of Earth’s Reflectance (POLDER) and Polarization and Anisotropy of Reflectances
for Atmospheric Science coupled with Observations from a Lidar (PARASOL) instruments, polarized
passive radiometric remote sensing provides a new research dimension in the field of aerosol retrieval.
Because the polarization signal received by the sensor mainly comes from the radiation contribution of
fine-mode aerosols, and the coarse-mode aerosols provide a negligible contribution, PARASOL data
can be directly used in a fine-mode AOD operational algorithm over land [9,10]. Relevant validation
work has shown that the retrieved fine-mode AODs are comparable to ground-based measurement
data [11,12], which illustrates the validity of the PARASOL fine-mode AOD operational algorithm.

Therefore, if we could retrieve the total AOD and fine-mode AOD precisely, we could easily
calculate FMF in theory. However, if we want to use MODIS and POLDER/PARASOL data to
retrieve the two parameters individually, a series of problems may occur, such as the spatial location
matching of the data from the two different platforms, the spatial resolution matching of the two
different AOD products, the conversion of AOD at the different wavelengths, and the matching of data
obtained at different observation times. Any approximate treatment of these problems could generate
errors that would affect the accuracy of the retrieved FMF. On the other hand, we can avoid these
problems by using the PARASOL platform because it inherently measures the intensity and polarized
signal synchronously.

In this paper, we present a new method to retrieve FMF based on PARASOL. Our study considers
East Asia, and especially China, as the study area because this region has a serious air pollution
problem. The AOD retrieval, the estimation method of surface intensity and polarized reflectance,
the determination of the aerosol model parameters, and the data processing flow are presented in
Section 2. The study of dust and haze cases using our retrieval method and a comparison with the
FMF derived from MODIS are presented in Section 3. Based on ground-based data from four Aerosol
Robotic Network (AERONET) sites in East Asia, validation of the retrieval results produced by our
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method are also presented in that section. Some discussion of our retrieval method is presented in
Section 4. A summary of the full text is given in Section 5.

2. Methodology

The PARASOL instrument was developed by the Centre National d’Etudes Spatiales (CNES) in
partnership with industrial contractors. PARASOL was launched in December 2004 as part of the
A-Train. It has the ability to detect intensity and polarized radiation from multi-angular observations.
Table 1 provides the sensor parameters of PARASOL [13].

Table 1. Sensor parameters of PARASOL (Polarization and Anisotropy of Reflectances for Atmospheric
Science coupled with Observations from a Lidar) [13].

PARASOL
Band

Central Wavelength
(nm)

Band Width
(nm) Polarized Spatial Resolution

(km)
Scanning
Directions

443 443.9 13.5 No

6 (at nadir) 16

490 491.5 16.5 Yes
565 563.9 15.5 No
670 669.9 15 Yes
763 762.8 11 No
765 762.5 38 No
865 863.4 33.5 Yes
910 906.9 21 No

1020 1019.4 17 No

The flow chart of this study is presented in Figure 1. We employ the Second Simulation of a
Satellite Signal in the Solar Spectrum, Vector version (6SV, version 2.1) radiative transfer code [14,15],
which is the vector version of 6S, to construct a lookup table (LUT) for aerosol retrieval [16]. The aerosol
model, geometry, and band parameters are the inputs of 6SV. The intensity measurement, polarized
measurement, and cloud mask data are extracted from the PARASOL Level 1 data by Interactive Data
Language (IDL). Pixels marked as clouds are not processed. The intensity data and polarized data
are used to retrieve total AOD and fine-mode AOD, respectively. Two semi-empirical reflectance
estimation models with normalized differential vegetation index (NDVI) values as the function and the
LUT are applied to the AOD retrieval. Finally, the FMF can be calculated as the ratio of the retrieved
fine-mode AOD to the total AOD.
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2.1. Retrieval Method

The key function of our method is the retrieval of the total AOD and fine-mode AOD based on
intensity and polarization measurements, respectively, in order to calculate the FMF. Our method is
divided into two parts, thereby differentiating our work from the study of Cheng et al. [17]. Cheng et al.
assume that the TOA reflectance is composed of the contributions of the atmosphere and surface
radiation and that the atmosphere reflectance is the weighted average of a pure fine- and coarse-mode
with the same optical depth, such that the FMF can be determined by the minimum residual error
between the calculated and the observed TOA reflectance.

In our study, for the intensity measurement, the TOA reflectance can be expressed as [18]

ρTOApµs, µv, ϕq “ ρ0pµs, µv, ϕq `
ρspµs, µv, ϕqTpµsq¨ Tpµvq

r1´ ρspµs, µv, ϕqSs
(2)

where the ρTOApµs, µv, ϕq is the TOA reflectance; µs and µv are the cosine of the solar zenith
angle and the view zenith angle, respectively; ϕ is the relative azimuth angle; ρ0pµs, µv, ϕq is the
equivalent reflectance of atmospheric path radiation; ρspµs, µv, ϕq is the surface intensity reflectance;
Tpµsq and Tpµvq are the total transmittance parameters; and S is the atmospheric backscatter ratio.
The terms ρ0pµs, µv, ϕq, Tpµsq, Tpµvq and S are functions of the total AOD, which can be extracted from
the radiative transfer code. This model can also be applied to many other satellite platforms besides
MODIS, such as PARASOL and HJ-1 [19,20].

For the polarization measurement, the partially-polarized light is assumed to be linearly polarized,
and the polarized radiance can be expressed as

Lpol “
a

Q2 `U2 (3)

where Lpol is the polarized radiance, Q and U are the second and third Stokes parameter, respectively.
The polarized radiance can be converted to polarized reflectance by

Rpol “
πLpol

F0µs
(4)

where Rpol is the polarized reflectance, F0 is the mean value of solar-apparent emissivity. The TOA
polarized reflectance can then be expressed as [9]

RTOA
pol “ Ratm

pol ` Rsur f
pol ¨ e

p´Mτm´Mcτaq (5)

where RTOA
pol is the TOA polarized reflectance, Ratm

pol is the atmospheric contribution, which consists of
two parts, the aerosols and the atmospheric molecules, and can be calculated by the radiative transfer
code. Rsur f

pol is the surface polarized reflectance, M is the air mass, τm is the molecular optical depth, τa

is the fine-mode AOD, and c accounts for the large forward scattering of the aerosol. We set c = 0.5 in
our study according to the study of Deuze et al. [9].

The TOA radiation signal can be regarded as the combined contribution of the atmosphere and
surface, regardless of the intensity or polarized measurements. Thus, we use Equations (2) and (5) to
retrieve the total AOD and fine-mode AOD, respectively, and the main method used for the aerosol
retrieval from the satellite data involves estimating the surface reflectance and constructing a lookup
table, which is mainly determined by the aerosol model to ascertain the AOD that corresponds with
the atmospheric contribution. The estimation method of the surface intensity and polarized reflectance
is stated in Section 2.2, and detailed aerosol model parameters are presented in Section 2.3.

Unlike single-angle observations, the greatest advantage of multi-angular remote sensing is
the ability to select an optimal aerosol model according to the variations in the aerosol scattering
characteristics of different angles. This is a process that accumulates residual error between the
calculated and observed radiation signal of the multi-angular data. According Deuzé et al., the method
of determining the optimal aerosol model for polarized measurement can be expressed as [9]
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ηpol “

g

f

f

e

1
2N

ÿ

λ0,λ1

ÿ

j

”

Rcal
p pλ, Θjq ´ Rmeas

p pλ, Θjq
ı2

(6)

where ηpol is the residual error of the polarized measurement; N is the number of observation angles;
Rcal

p is the calculated polarized reflectance, which corresponds to the aerosol model and the observation
angle; Rmeas

p is the polarized reflectance of corresponding observation angle received by the satellite;
and λ0 and λ1 are the 670 nm and 865 nm bands, respectively, on PARASOL. Equation (6) is related to
Equation (5). Therefore, there are several sets of aerosol models and AODs pending determination at
the end of the fine-mode AOD retrieval process, and the lowest ηpol distinguishes the optimal aerosol
model and AOD.

For the intensity measurement, the method to determine the optimal aerosol model in our study
is similar to the polarized measurement. The only modification involves changing the polarized
reflectance into intensity reflectance, ρTOApλ, Θjq, as follows:

ηint “

g

f

f

e

1
2N

ÿ

λ0,λ1

ÿ

j

“

ρcal
TOApλ, Θjq ´ ρmeas

TOApλ, Θjq
‰2 (7)

This equation is related to Equation (2). Finally, the FMF can be calculated as the ratio of the
retrieved fine-mode AOD to the total AOD for the corresponding optimal aerosol model.

2.2. The Estimation of Surface Intensity and Polarized Reflectance

According to Equations (2) and (5), underestimation of the surface intensity and polarized
reflectance will lead to overestimation of the AOD and vice versa. Thus, the estimation of the surface
intensity and polarized reflectance is one of the key steps in the AOD retrieval. The DDV method is
a classic algorithm for estimating the surface reflectance. The main idea of the DDV method is that
the surface reflectance in band 1 (0.62–0.67 µm) and band 3 (0.46–0.48 µm) of MODIS are linearly
correlated with the TOA reflectance in band 7 (2.10–2.15 µm) for dense vegetation areas and dark soil
areas (ρTOA

2.1µm ă 0.25) and that band 7 is less susceptible to the effects of atmospheric aerosols [3,4].
However, there is no 2.1 µm band for PARASOL. Therefore, one cannot use this classic method to
estimate surface reflectance.

In our study, the surface intensity reflectance is estimated for PARASOL by using the
semi-empirical surface reflectance model [21]. This model assumes that the reflectance of a mixed pixel
is made up of green vegetation and bare soil and uses the NDVI in the estimation as follows:

NDVI “
ρnir ´ ρred
ρnir ` ρred

(8)

ρ
Mixing
Sur f pλq “ ω¨ pNDVI¨ ρVegpλq ` p1´ NDVIq¨ ρSoilpλqq (9)

where ρnir is the reflectance of the near-infrared band; ρred is the reflectance of the red band; ρ
Mixing
Sur f pλq

is the surface reflectance of the mixed pixel, which corresponds to the wavelength; ρVegpλq and ρSoilpλq

are the spectral reflectances of the green vegetation and bare soil, which can be obtained from the
spectrum library; and ω is the empirical weighting factor. The two equations correspond to the term
ρspµs, µv, ϕq in Equation (2).

The surface polarized reflectance can be estimated by using the semi-empirical model introduced
by Nadal and Breon, assuming that it does not vary with wavelength [22]:

Rsur f
pol “ ρ¨ r1´ ep´β

Fppαq
µs`µv qs (10)

where Rsur f
pol is the surface polarized reflectance, Fppαq is the Fresnel scattering coefficient, and ρ and

β are empirical weighting factors that can be determined by the surface type and NDVI (Table 2).
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This equation defines the term Rsur f
pol in Equation (5). The surface type can be obtained from the MODIS

land cover type products.

Table 2. Detailed parameters of the Nadal and Breon model [22]. ρ and β are empirical parameters
that correspond to various surface types and NDVI values.

Surface Type NDVI ρ*100 β

Forest
0–0.15 0.70 120

0.15–0.3 0.75 125
ě0.3 0.65 120

Shrublands
0–0.15 1.50 90

0.15–0.3 0.95 120
ě0.3 0.70 140

Low vegetation
0–0.15 1.30 90

0.15–0.3 0.95 90
ě0.3 0.75 130

Desert
0–0.15 2.50 45
ě0.15 2.50 45

2.3. Aerosol Model

Because atmospheric radiation in the intensity signal comprises the contributions of fine and
coarse particles, the fine- and coarse-mode parameters should be included in the aerosol model when
building the lookup table for intensity measurements. The polarized measurements are used for the
fine-mode AOD retrieval in this study. Because we now suppose that the polarized radiation signal
received by the satellite only includes the contribution of fine particles [9,10], the aerosol polarized
reflectance in the lookup table should be determined completely by the fine-mode parameters. This is
the part as the process in which the polarized measurement is different from the intensity measurement.

By measuring the light of the sun and sky, a series of aerosol optical properties, such as the
particle size distribution and complex refractive index, can be obtained through ground-based
observations [23–25]. These parameters are important for determining the aerosol model and building
the lookup table. Therefore, numerous studies use ground-based data in their work.

In our study, we use previous synthetic research results for the settings of the aerosol models for
the intensity measurements [26,27]. The aerosol models used in the study of Li et al. [27] have shown
good application results in Northern China, which is an area of concern. The models in the study
of Lee and Kim [26] also show good application results over East Asia. Thus, we incorporate their
results into our study. Their work also shows that the aerosol models exhibit a bimodal log-normal
size distribution, as follows [28]:

dN
dr
“

N0,Coarse
?

2πσn,Coarse
exp

«

´
plnr´ lnrn,Coarseq

2

2pσn,Coarseq
2

ff

`
N0,Fine

?
2πσn,Fine

exp

«

´
plnr´ lnrn,Fineq

2

2pσn,Fineq
2

ff

(11)

where N0 is the number of particles per cross section of the atmospheric column, rn is the modal radius,
σn is the standard deviation of lnrn, and Coarse and Fine refer to the coarse- and fine-mode, respectively.

In the study by Lee and Kim, the aerosol models are volume particle size distribution. However,
in the study of Li et al., the aerosol models are number particle size distributions. In our study, we
unify them into a number particle size distribution using [29]

rn “ rvexpp´3σ2q (12)

V0 “
4N0π

3
r3

nexpp
9σ2

2
q (13)
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where rn is the modal radius of the number distribution, rv is the volume modal radius, σ is the
standard deviation of the natural logarithm of the radius for the volume distribution, and V0 is the
column volume of the particles per cross section of atmospheric column.

The aerosol model parameters used for the intensity measurements are presented in Table 3.

Table 3. The parameters of aerosol models for intensity measurement [26,27]. mr is the real part of
the complex refractive index, mi is the imaginary part of the complex refractive index, and C is the
percentage density of fine particles by number. The different classes show different aerosol scattering
properties. The ρ0pµs, µv, ϕq, Tpµsq, Tpµvq , and S values that correspond to these classes, which guarantee
the optimal aerosol model can be distinguished by Equation (7), are mainly determined by C.

Class
Parameters

mr mi rn, Fine σn, Fine rn, Coarse σn, Coarse C

1 1.483 0.0078 0.1089 0.535 0.9801 0.568 0.05
2 1.5465 0.0130 0.1202 0.6135 0.9724 0.6022 0.13
3 1.485 0.0088 0.0939 0.531 0.9826 0.583 0.20
4 1.537 0.0023 0.0659 0.619 0.9618 0.531 0.43
5 1.5393 0.0129 0.0845 0.6157 0.8287 0.6126 0.53
6 1.528 0.0148 0.0839 0.5406 0.7476 0.6281 0.60
7 1.468 0.0102 0.0896 0.504 0.9269 0.618 0.76
8 1.482 0.009 0.0902 0.474 0.6229 0.656 0.82
9 1.4853 0.0095 0.095 0.5246 0.7958 0.6451 0.90
10 1.5465 0.013 0.1202 0.6135 0.9724 0.6022 0.99

For polarized measurements, because the official fine-mode AOD retrieval algorithm over land
of PARASOL exhibits the necessary application results [11,12], we use the fine-mode parameters
directly [10].

2.4. Data Processing

To run the 6SV code, in addition to the aerosol model parameters, other lookup table parameters,
such as observation geometry and wavelength parameters, are also needed, and these parameters are
presented in Table 4.

Table 4. The input parameters of the lookup table for 6SV.

Parameters Value

Sensor band PARASOL 670 nm, 865 nm
Solar zenith angle 0˝–88˝, interval 4˝

View zenith angle 0˝–88˝, interval 4˝

Relative azimuth angle 0˝–180˝, interval 5˝

AOD at 550 nm 0.01, 0.1, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0
Aerosol model Stated in Section 2.3

The total and fine-mode AOD retrieval flow chart is presented in Figure 2.
For the retrieval of total AOD, according to the established lookup table of the AOD retrieval,

we obtain the observation geometry parameters of the pixels from the satellite data files and then
obtain the corresponding values that were close to (or equal to) the values in the lookup table. We then
input the atmospheric parameters that correspond to the geometry parameters into Equation (2) to
obtain the two closest sets of the atmospheric parameters and AOD values. Then, we perform a linear
interpolation of the atmospheric parameters according to the AOD and put these new parameters into
Equation (2) again to perform a comparison with the TOA reflectance. We derive the AOD whose
calculated TOA reflectance is closest to the observed TOA reflectance and define it as the AOD that
corresponds to the observation angle of the pixel. By repeating the above process, we invert the AOD
of all the clear pixels of the multi-angle and multi-aerosol models. Finally, we use Equation (7) to
determine the optimal aerosol model of each pixel and average the AOD for the multiple angles that
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correspond to the optimal aerosol model. Consequently, the averaged AOD of all the available angles
is the final retrieval result.

For the retrieval of fine-mode AOD, in the range 80˝ < Θ < 120˝ (where Θ is the scattering angle),
the polarized signals given by the coarse-mode aerosols are negligible [9]. We thus assume that these
signals only come from fine particles. We only employ the data with scattering angles that are in that
range. The other retrieval workflows are similar to the total AOD retrieval processes.

Remote Sens. 2016, 8, 417 8 of 19 

 

signals only come from fine particles. We only employ the data with scattering angles that are in that 
range. The other retrieval workflows are similar to the total AOD retrieval processes. 

PARASOL  
Level 1 Data

Intensity 
Data i

Polarized 
Data i

Solar Zenith 
Angle i

View Zenith 
Angle i

Relative 
Azimuth 
Angle i

Data 
Type

Clear
80°<Θ<120°

Search The 
Geometry

Intensity 
LUT j

Polarized 
LUT j

Search The 
Geometry

Clear

New
Intensity 

LUT

New
Polarized 

LUT

Equation (2) Equation (5)
Surface 

Intensity 
Reflectance

Surface 
Polarized 

Reflectance

Total AOD Fine-mode 
AODEquation (7) Equation (6)

 

For i=1,N do begin

For j=1,M do begin

Polarized DataIntensity Data

 
Figure 2. The total and fine-mode AOD retrieval flow chart. 

Finally, after the fine-mode AOD and total AOD have been retrieved, the ratio of the two is the 
required FMF. The spatial resolution of the retrieval results is the same as the original PARASOL data 
(6 km at nadir). 

For the validation portion of the retrieval result, because the AERONET-measured AOD has a 
high accuracy of 0.01 in the visible and near-infrared bands [30], we employ the AERONET ground-
based data, which includes the Beijing (39.977°N, 116.381°E), Xianghe (39.754°N, 116.962°E), 
Seoul_SNU (37.458°N, 126.951°E), and Osaka sites (34.651°N, 135.591°E) for comparison with the 
retrieval results of East Asia over the entire annual cycle of 2012. These ground-based sites have a 
long time series of observation data and are run stably, thereby guaranteeing the quality of the 
validation data. The number of the validations is only 30–40 per site because some of the PARASOL 
data were affected by the cloud cover (especially the Osaka and Seoul_SNU sites), some time periods 
are missing from the AERONET data (especially Beijing and Xianghe sites) in 2012, and the revisit 
cycle of PARASOL is two days. The temporal and spatial threshold of the validation is ±30 min and 
25 km, respectively [11], and we use the equation below to convert the ground-based AOD to the 
data at the corresponding wavelength [31]:  ߬(ߣ) = (଴ߣ)߬ · ߣ଴ߣ) )ఈ (14) 

where λ is the wavelength, ߬(ߣ)  is the AOD of the corresponding wavelength, and ߙ  is the 
Angstrom exponent. 

Figure 2. The total and fine-mode AOD retrieval flow chart.

Finally, after the fine-mode AOD and total AOD have been retrieved, the ratio of the two is the
required FMF. The spatial resolution of the retrieval results is the same as the original PARASOL data
(6 km at nadir).

For the validation portion of the retrieval result, because the AERONET-measured AOD has a high
accuracy of 0.01 in the visible and near-infrared bands [30], we employ the AERONET ground-based
data, which includes the Beijing (39.977˝N, 116.381˝E), Xianghe (39.754˝N, 116.962˝E), Seoul_SNU
(37.458˝N, 126.951˝E), and Osaka sites (34.651˝N, 135.591˝E) for comparison with the retrieval results
of East Asia over the entire annual cycle of 2012. These ground-based sites have a long time series
of observation data and are run stably, thereby guaranteeing the quality of the validation data.
The number of the validations is only 30–40 per site because some of the PARASOL data were affected
by the cloud cover (especially the Osaka and Seoul_SNU sites), some time periods are missing from
the AERONET data (especially Beijing and Xianghe sites) in 2012, and the revisit cycle of PARASOL is
two days. The temporal and spatial threshold of the validation is ˘30 min and 25 km, respectively [11],
and we use the equation below to convert the ground-based AOD to the data at the corresponding
wavelength [31]:

τpλq “ τpλ0q¨ p
λ0

λ
qα (14)
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where λ is the wavelength, τpλq is the AOD of the corresponding wavelength, and α is the
Angstrom exponent.

The FMF validation data are the result of the Spectral Deconvolution Algorithm (SDA)
method [32,33], which is consistent with the results from Dubovik and King [23,34]. However,
this method may have some retrieval bias that is caused by the cirrus clouds [35].

3. Results and Validation

3.1. Case Study over North China

We use cases over North China to evaluate the performance of our method. From Figure 3, most
areas are covered with aerosols in the true-color image taken on 28 April 2012. The values of total
AOD are mostly greater than 0.8. However, the values of the fine-mode AOD in most areas range
from 0.2 to 0.6. The values of FMF in most areas are less than 0.4, which represents the dominance of
coarse-mode aerosols.
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From Figure 4, most areas are covered with aerosols in the true-color image taken on 5 October
2013. The air quality was very poor that day, and the PM2.5 concentrations at 9:00 AM had reached
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272 µg/m3. The values of the total AOD are greater than 0.6 and in most regions are over 0.8.
Meanwhile, the values of the fine-mode AOD increase as the AOD increases. The values of FMF in
most areas of Beijing, Tianjin, and Hebei are greater than 0.8, which represents the dominance of the
fine-mode aerosols.
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Figure 4. The retrieval results of PARASOL for 5 October 2013. (a) is a true-color image, and (b),
(c), and (d) are the retrieval results of the total AOD (865 nm), fine-mode AOD (865 nm), and FMF
(865 nm), respectively.

3.2. The Comparison of the FMF Retrieval Results with MODIS

We also compared the FMF retrieved using our method with the MODIS FMF product. The FMF
retrieval algorithm of MODIS assumes that the TOA reflectance is the weighted sum of the spectral
reflectance from a combination of fine- and coarse-dominated aerosol models and that the retrieved
FMFs are discrete values from 0.0 to 1.0 (with an interval of 0.1). However, the MODIS FMF product
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shows a low correlation with the AERONET FMF product [36], and MODIS finds this parameter
difficult to retrieve over land [8]. The spatial resolution of the MODIS FMF product used in this study
is 10 km.

Figure 5 shows the comparison of the dust case. The retrieved FMF of our method provides
much more detail than those from MODIS, and the retrieved extent is also wider than that of MODIS.
The reason for the low retrieval extent in MODIS is mainly because of the applicability of the DDV
method. However, the FMF values of the MODIS product are quite different than our result. As a
result of the MODIS FMF value being discrete, most values are equal to 0.0, which means that there are
no fine-mode particles. However, in our results, the FMF values in the same area as that of the MODIS
data mainly range from 0.2–0.4. According to the AERONET measurement data, the FMF values in
Beijing and Xianghe site are 0.225 and 0.227, respectively. The corresponding MODIS results are both
0.0, whereas the corresponding results of our method are 0.286 and 0.277, which are considerably
better than the MODIS results.
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Figure 5. The comparison of the FMF retrieval results of PARASOL and MODIS FMF products for
28 April 2012. (a) is the FMF result of this work; and (b) is the FMF result of MODIS. MODIS refers to
Moderate-resolution Imaging Spectroradiometer.

Figure 6 shows the comparison of an urban haze case. The two FMF retrieval results have some of
the same spatial distribution features. However, some differences remain. Most FMF values are equal
to 0.0 and 1.0 in the MODIS results. However, our results provide more precise values. The AERONET
FMF results of the Beijing_RADI and Xianghe sites on 5 October 2013 are 0.763 and 0.918, respectively.
The corresponding MODIS results are both 1.0, but the corresponding results of our method are 0.722
and 0.927, respectively, which are very close to the ground-based measurement data results and better
than the MODIS results. In addition, the extent of the retrieved FMF of our method is larger than that
of MODIS.

Figure 7 shows the comparisons between the two retrieved FMF results and the AERONET FMF
results for the Beijing and Xianghe sites in 2012. Because of the limitations of the DDV method, there
are nearly no MODIS FMF data available in winter over North China, resulting in a total of only 42
validation points. The comparison of the retrieved PARASOL FMF with AERONET ground-based data
produces a high correlation R2 of 0.854. However, the comparison of the MODIS FMF and AERONET
measurements only produces a R2 of 0.418, and many MODIS FMFs in the comparison are equal to 0.0,
which suggests that the MODIS FMF has a lower correlation with the AERONET FMF.
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The retrieved FMFs of our method versus the AERONET FMFs are shown in Figure 8. As a result of 
the uncertainty in the aerosol model, surface intensity and polarized reflectance estimation, and satellite 
observations, the total AOD may be less than the fine-mode AOD, making the FMF greater than 1.0. We 
consider this situation to be a failure and use ‘Sfrac’ to present the successful fraction of the retrieved FMF. 
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Figure 6. The comparison of the FMF retrieval results of PARASOL and MODIS FMF products for 5
October 2013. (a) is the FMF result of this work, and (b) is the FMF result of MODIS.

As shown in Figure 7, MODIS FMFs are constant values from 0.0 to 1.0, but the AERONET and
our FMFs are continuous. Additionally, there is almost no similarity between our FMFs and the
MODIS FMFs. A related study has revealed that the MODIS FMF is not recommended for PM2.5

retrieval [37], and the scatterplot shows a high R2 between the AERONET FMFs and our FMFs, which
suggests that our results are comparable to the AERONET FMFs and that our method could provide
a new way to retrieve FMFs. Thus, our method has the potential for application in atmospheric
environmental studies.
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3.3. Validation against AERONET

The retrieved FMFs of our method versus the AERONET FMFs are shown in Figure 8. As a
result of the uncertainty in the aerosol model, surface intensity and polarized reflectance estimation,
and satellite observations, the total AOD may be less than the fine-mode AOD, making the FMF greater
than 1.0. We consider this situation to be a failure and use ‘Sfrac’ to present the successful fraction of
the retrieved FMF.
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Figure 8. (a–l) The validation results of the Beijing, Xianghe, Seoul_SNU, and Osaka sites. (a), (e), and (i) are the validation results of the PARASOL total AOD (AODt), fine-
mode AOD (AODf) and FMF of the Beijing site, respectively. (b), (f), and (j) are the validation results of the PARASOL AODt, AODf and FMF of the Xianghe site, 
respectively. (c), (g), and (k) are the validation results of the PARASOL AODt, AODf and FMF of the Seoul_SNU site, respectively. (d), (h), and (l) are the validation results 
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Figure 8. (a–l) The validation results of the Beijing, Xianghe, Seoul_SNU, and Osaka sites. (a), (e), and (i) are the validation results of the PARASOL total AOD (AODt),
fine-mode AOD (AODf) and FMF of the Beijing site, respectively. (b), (f), and (j) are the validation results of the PARASOL AODt, AODf and FMF of the Xianghe site,
respectively. (c), (g), and (k) are the validation results of the PARASOL AODt, AODf and FMF of the Seoul_SNU site, respectively. (d), (h), and (l) are the validation
results of the PARASOL AODt, AODf, and FMF of the Osaka site, respectively.
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As shown in the validation results, for Beijing (the first column in Figure 8), the R2 values of the
total AOD, fine-mode AOD, and FMF are all greater than 0.8; the corresponding root mean square
error (RMSE) values are 0.107, 0.082, and 0.097, respectively; and the Sfrac is 88.571%. For Xianghe
(the second column in Figure 8), the R2 values of the total AOD, fine-mode AOD, and FMF are all
greater than 0.8; the corresponding RMSE values are 0.115, 0.095, and 0.131, respectively, and the Sfrac
is 90.323%. For Seoul_SNU (the third column in Figure 8), the R2 value of the total AOD is 0.785,
which is slightly lower than the two sites above, but the R2 values of the fine-mode AOD and FMF are
both greater than 0.8. The corresponding RMSE values are 0.069, 0.037, and 0.079, respectively, and
the Sfrac is 92.5%. However, because the total AOD and fine-mode AOD values for Osaka (the fourth
column in Figure 8) are much lower than the three sites above, the relative error is much higher, as it
is hard to detect weak aerosol signals in satellite observations. Thus, the FMF retrieval result is not
optimal for Osaka. The R2 values of the three parameters are 0.775, 0.647, and 0.537, with RMSE values
of 0.035, 0.035, and 0.136, respectively. However, the total mean absolute error (AE) and relative error
(RE) of the retrieved FMF are 0.091 and 19.33%, respectively, which suggest that our method is able to
meet most general demands of atmospheric environmental monitoring.

4. Discussion

4.1. The Estimation of Surface/Surface Polarized Reflectance

First, the surface intensity and polarized reflectance estimation models are semi-empirical in this
study, and the two models use NDVI as a parameter. However, the NDVI value is easily affected
by atmospheric aerosols. When the AOD is high, the NDVI values decrease sharply [38]. This leads
to the overestimation of the surface intensity and polarized reflectance, and the AOD results will be
underestimated. Moreover, changes in the total AOD and fine-mode AOD values, which correspond
to the overestimation of the surface intensity and polarized reflectance, are not synchronous, and the
effect on the FMF retrieval is uncertain. To solve this problem, we use the Aerosol Free vegetation
Index (AFRI) to build an estimation model, but the semi-empirical model usually has a regional
limitation. For example, ω, which is used in the estimation of surface intensity reflectance and obtained
by the regression analysis based on the AERONET measurements, is 0.45 over east China; however,
it is 0.35 over Osaka if we want to obtain a comparable result. Thus, the empirical parameter of this
surface reflectance estimation model varies with the study area and is still not obtained from satellite
observation directly, even if we replace NDVI with AFRI. Establishing a reflectance estimation model that
is not affected by the atmospheric conditions and can be widely used in the world is a goal of future work.

4.2. The Retrieval Method of FMF

The FMF retrieval method in this study uses both the intensity and polarized measurements to
retrieve FMF, and the retrieval results are comparable to AERONET ground-based observation data.
However, our method may lead to the fine-mode AOD being greater than the total AOD, leading to
the failure of the FMF retrieval. According to the validation results in Section 3.3, the failure ratio is
approximately 10%. Lowering the failure ratio is also a goal of future work we wish to perform.

4.3. The Retrieval Accuracy of AOD and FMF

According to the validation results in Section 3.3, this study is similar to other studies in the sense
that the retrieval precision of the low-AOD area is poor. The main cause of this phenomenon is that,
when the AOD is low, the aerosol information received by the satellite is very weak, and the estimation
of the surface reflectance is quite difficult. To solve this problem, we need not only a precise surface
reflectance estimation method but also an accurate aerosol model. Any error caused by the two factors
could increase the relative error and lead to error propagation. Thus, the question of how to improve
the retrieval accuracy over low-AOD areas is a considerable challenge for satellite remote sensing
in general.
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4.4. Error Estimation

According to the absolute error transfer formula, the absolute error of the FMF following
Equation (15) can be written as

∆FMF “
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ˇ

ˇ

ˇ
¨∆AOD f `

ˇ

ˇ

ˇ
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ˇ

ˇ
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ˇ
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ˇ
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(15)

where ∆FMF is the absolute error of the retrieved FMF, AOD f is the fine-mode AOD, ∆AOD f is the
mean retrieval absolute error of AOD f , AODt is the total AOD, and ∆AODt is the mean retrieval
absolute error of ∆AODt.

According to the relative error transfer formula, the relative errors of the FMF following
Equation (16) can be written as
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where ∆FMF
FMF ˆ 100% is the relative error of the retrieved FMF.

From Equations (15) and (16), we know that the total AOD and fine-mode AOD retrieved in this
study can affect the performance of the FMF retrieval method, and the absolute and relative errors of
the retrieved FMF decreases with increasing fine-mode and total AODs. This suggests that our FMF
retrieval method is more reliable when the AOD is high.

According to the validation in Section 3.3, the total ∆AOD f and ∆AODt at the four sites are
0.059 and 0.040, respectively. We also analyzed the total mean AOD f and AODt of the AERONET
ground-based data in 2012 at those sites, the corresponding statistics are 0.307 and 0.413, respectively.
Incorporating these values into Equations (15) and (16), we calculate that the total mean ∆FMF and
∆FMF
FMF ˆ 100% are, in theory, 0.206% and 27.67%, respectively.

5. Conclusions

In this study, we used multi-angle intensity and polarization measurements from the PARASOL
instrument to retrieve total AOD and fine-mode AOD via the lookup table approach. We then
performed retrievals of FMF over East Asia. During the retrieval process, two semi-empirical
models were used to estimate the surface intensity and polarized reflectance, and two sets of aerosol
retrieval lookup tables for intensity and polarized measurements were built using the 6SV radiative
transfer code.

Compared with the MODIS FMF product, the FMF retrieval results of our method could provide
much more detail and a higher accuracy. The comparisons of FMF retrieval results with AERONET
ground-based measurement data produced high correlations for the Beijing, Xianghe, and Seoul_SNU
sites, with corresponding R2 values for the retrieved FMFs of 0.834, 0.818, and 0.877, respectively.
However, note that the R2 value of the retrieved FMF for the Osaka site is only 0.537, which is due to
the low signal-to-noise ratio of the satellite observation due to a much lower aerosol load.

Compared with the statistically optimized retrieval algorithm [39], our method is easier to
implement and is more efficient. This method can be applied in atmospheric environmental studies
and can contribute significantly to the estimation of anthropogenic aerosol contents and fine particulate
matter concentrations [37,40]. Additionally, the satellite-derived aerosol parameters are used for Data
Assimilation (DA) in many studies [41–44], and our work has implications beyond diagnosing air
quality. Because the FMF can constrain the AOD, assimilating FMF and AOD retrievals is better than
assimilating only the MODIS AOD and could improve the aerosol forecast results. Therefore, relevant
studies could benefit from our method.
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Our FMF retrieval method uses coincident multi-angle intensity and polarization measurements
to retrieve total AOD and fine-mode AOD, and the FMF can be calculated as the ratio of the retrieved
fine-mode AOD to the total AOD. This differs from traditional FMF retrieval methods, such as the
MODIS implementation. Although our method provides a new solution to obtain FMF and could
obtain comparable retrieval results, it still has some shortcomings, such as the lack of a universal
reflectance estimation model, the failure of FMF retrievals when the fine-mode AOD is greater than
the total AOD, and the low retrieval accuracy over low-AOD areas. These three problems will be the
focus of future work and are important for optimizing our method.
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