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Abstract: Plane segmentation is an important step in feature extraction and 3D modeling from light
detection and ranging (LiDAR) point cloud. The accuracy and speed of plane segmentation are
two issues difficult to balance, particularly when dealing with a massive point cloud with millions of
points. A fast and easy-to-implement algorithm of plane segmentation based on cross-line element
growth (CLEG) is proposed in this study. The point cloud is converted into grid data. The points
are segmented into line segments with the Douglas-Peucker algorithm. Each point is then assigned
to a cross-line element (CLE) obtained by segmenting the points in the cross-directions. A CLE
determines one plane, and this is the rationale of the algorithm. CLE growth and point growth
are combined after selecting the seed CLE to obtain the segmented facets. The CLEG algorithm
is validated by comparing it with popular methods, such as RANSAC, 3D Hough transformation,
principal component analysis (PCA), iterative PCA, and a state-of-the-art global optimization-based
algorithm. Experiments indicate that the CLEG algorithm runs much faster than the other algorithms.
The method can produce accurate segmentation at a speed of 6 s per 3 million points. The proposed
method also exhibits good accuracy.

Keywords: cross-line elements; plane segmentation; airborne LiDAR point cloud; line segmentation;
fast segmentation

1. Introduction

To segment a light detection and ranging (LiDAR) point cloud is to partition the points into
different groups with homogeneous properties, such as height, density, and normality. Using plane
segmentation to extract facets from a point cloud is important in object classification, building
extraction, and roof reconstruction. The main methods of plane segmentation are generally categorized
as edge detection, profile line analysis, point clustering, model fitting, region growth and optimization.

Edge detection methods [1,2] convert a point cloud into a digital surface model (DSM).
Edge detection of the raster DSM is then implemented for segmentation, the quality of which depends
on the edge detection operator.

Methods based on profile line analysis employ scan line analysis to identify planes [3].
Proper selection of the scan line direction is essential in these methods [4]. The profiles in one or
more directions are utilized to segment the data in order to detect man-made structures (i.e., bridges
and buildings) from the LiDAR point cloud [5–7]. These methods are usually effective and fast.
However, using profile information for accurate plane segmentation remains insufficiently explored.
The algorithm design, quality and performance assessment compared with existing methods need to
be comprehensively investigated.
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Methods based on point clustering, including octree-based clustering [8,9], K-means clustering [10–12],
fuzzy clustering [13,14] and mean shift [15–17], cluster the point cloud into point groups by using
similarity measurements, such as distance between points and point density. These methods can
produce stable results but may lead to over-segmentation or under-segmentation because of the
improper clustering algorithm setup (e.g., parameters of the kernel width and the minimum point
number of a valid region in mean shift segmentation) [18].

Methods based on model fitting attempt to solve the plane equation by fitting local points with
the presupposed model. Random sample consensus (RANSAC) [19], Hough transform [20], and tensor
voting [21] are popular algorithms in this category. RANSAC can outperform methods based on
normal vector consistency and outline segmentation [22]. Normal driven RANSAC is an accelerated
version of the original RANSAC [23]. The limitation of RANSAC is that the neighborhood of points
located on the same plane is not fully considered. The algorithm selects planes with the maximum
number of support points in each iteration, which may not be correct. Several improved algorithms
have been developed for these problems [24,25]. 3D Hough transform is a voting-based algorithm
of plane extraction in 3D Hough space (θ, φ, ρ). The disadvantage of this method is that the voting
operation in the 3D Hough space is usually slow; the same problem is encountered in selecting support
points [26]. Many methods (e.g., random Hough transformation) have been proposed to speed up
Hough transformation [27]. Tensor voting obtains 3D normal vector field based on discrete points, by
which the maximum tendency is utilized to extract characteristic regions [28,29]. The drawback of the
tensor voting method is the dependency on selecting the parameter of the range of influence [28].

Methods based on region growth select seed points or regions as the original patches and cluster
the points subordinated to the same patch [30–34]. These methods can also be integrated with model
fitting methods. These methods ensure that the points on the same plane are in the neighborhood; they
are faster than model fitting methods when the point number is large [35]. The normal vectors of points
in the region of growth can be computed through principal component analysis (PCA). The region of
growth similar to the image region of growth is then utilized to extract planes [36]. An iterative PCA
is developed to estimate local planarity [37]. Region growth methods usually rely on the choice of
seed points. The computation of the normal vectors becomes unstable when noise points exist or the
supporting points are not properly selected. In addition, these methods may lead to over-segmentation
or under-segmentation in the surface intersection region and noisy areas [38].

Optimization-based methods are inspired by image segmentation that uses a graph to represent
data elements (e.g., pixels or super pixels) with connected nodes. The segmentation can be
modeled as an optimization problem to determine the best graph cut [39–41]. The frequently used
graph cut algorithms are minimum spanning tree [42], normalized cut [43,44] and Graphcuts [38].
Other optimization methods, such as level set, are also utilized to segment planes [45]. A recent study
has shown that using Graphcuts to optimize the initial segmentation [38] significantly improves the
initial over-segmentation and eliminates the cross-planes. The limitation of this method is that the
result relies on the initial segmentation, and the speed is low because of its iterative optimization
operation [46].

Developing a fast, accurate, and easy-to-implement segmentation algorithm is still necessary to
address the various scenarios involving massive point numbers, noisy and complex object contexts.

This paper presents a new segmentation method based on cross-line elements growth (CLEG).
This method combines profile analysis, model fitting and region growth. The point cloud is converted
into a grid index data structure. The Douglas-Peucker algorithm [47] is subsequently utilized in
four directions to extract the cross-line elements (CLEs). CLE can determine a plane, and this is the
rationale of the proposed method. The final facets can be obtained after selecting the seed CLEs and
combining CLE growth and point growth. Comparison of CLEG with other popular methods, such
as RANSAC [19], 3D Hough transformation [27], PCA [36], iterative PCA [37] and a state-of-the-art
global optimization-based algorithm [38], shows that the proposed algorithm runs much faster than
them and produces stable and accurate results. The remainder of the paper is structured as follows.
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Section 2 formulates the proposed segmentation method. Section 3 describes the test data and presents
the experimental analysis. Section 4 provides the conclusion.

2. Plane Segmentation Using Cross-Line Elements

In general, a good plane segmentation algorithm has to address some key issues: (1) how to
accurately measure local planarity with proper selection of support points for these measurements;
(2) how to properly group all spatially adjacent points belonging to one facet; (3) how to efficiently
deal with large-scale data. The existing methods, such as model fitting, clustering, region growth
and global optimization, have more or less room to improve in these aspects, as presented in the
introduction. In this study, aiming at solving these problems, a cross-line element growth (CLEG)
method is proposed to segment point cloud accurately and efficiently.

The workflow of the CLEG algorithm is shown in Figure 1; the red lines in the segmentation
result are the seed CLEs, and the white points are the gross noise points.

The pseudo-code is listed to describe the principle of the algorithm:

CLEG(points, label)
Grids=StoringPointsInGrid(points);
directions = horizon, vertical, upper right, lower right;
for each direction

LineSegmentation=DouglasPeucker(Grids);
end for
for each grid

if CLE crossing the grid is stable
Add grid to seeds;

end if
end for
Sort(seeds);
for each seed

if not labeled
GetPlanFunction(CLE);
CLEbasedgrowth(label);
Pointbasedgrowth(label);

end if
end for
End

A CLE is defined as two cross-lines at a cross-point in two directions. In one direction, the
cross-line is determined by two planes, i.e., the candidate plane and one special plane (e.g., ZOY
plane, plane 1, plane 2, and ZOX plane in Figure 1). The directions of the cross-lines are relative to the
equation of the candidate plane. The cross-line is determined by the candidate plane and ZOY plane,
for example; Equation (1) is the function of the candidate plane, and Equation (2) is the function of
ZOY plane.

a ¨ x` b ¨ y` c ¨ z` d “ 0 (1)

y “ e (2)

The direction vector of the cross-line is then (c, 0, ´a). Similarly, the direction vector of the
cross-line determined by the candidate plane and the plane 1 is (´c, c, b ´ a); the direction vector of the
cross-line determined by the candidate plane and the plane 2 is (c, c, ´a ´ b); and the direction vector
of the cross-line determined by the candidate plane and ZOX plane is (0, c, ´b). Therefore, a CLE can
determine the plane model.
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In 3D space, two intersected straight lines passing the cross-point determine the plane model.
In other words, a point and the normal vector formed by the intersected lines are the basic elements
in plane detection, which is the rationale of CLEG-based plane segmentation. The CLEG algorithm
has the following advantages: (1) the CLEs can be easily and quickly extracted in the profile space;
(2) a CLE contains rich information, such as rough plane model and facet size; which can further help
in finding better seeds and measurements for the growth of CLEs and points; (3) pre-segmenting the
point cloud into CLEs eliminates the problem of selecting support points in clustering and model fitting
methods [25], which leads to a more accurate and stable segmentation; and (4) the CLE extraction and
growth operation are efficient in terms of computational cost, thereby making it suitable for use when
dealing with a massive number of points.
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Figure 1. Workflow of plane segmentation using cross-line elements.

2.1. Line Segmentation

The seed CLE is derived by first converting the point cloud into a grid index data structure based
on ground sample distance (GSD), which can be obtained from the average point density. The grid
index data structure is utilized to improve the efficiency of data inquiry. More than one point may
exist in each grid. Some grids may also be null, as shown in Figure 1 (i.e., 2D Grid Index).

An extended line segmentation of scanning line segmentation [7] is employed to segment the
profiles in four directions (i.e., vertical, horizontal, upper right, and lower right). The angle between
the split line segment and the horizon direction is calculated by using the Douglas-Peucker algorithm
(Figure 1) [47]. The tolerance is ε. The difference between the original Douglas-Peucker algorithm
and the proposed method is that the angles between the line segments and the horizontal plane are
calculated simultaneously (denoted by α in Figure 1). The angles are important in the subsequent steps
in seed selection and growth. The length and angle of each grid in each direction is then obtained, as
shown in Figure 2. The black points are the uncolored points because more than one point may exist in
one grid, and only the highest point is colored. Each grid is crossed by line segments and defined as
a cross-point after using the Douglas-Peucker algorithm in four directions.
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Figure 2. Line segmentation in four directions.

The length of a line segment becomes relevant to the surface roughness of the region after line
segmentation. The lines are much longer on large planes (e.g., ground and roof) and shorter in regions
with a significant height difference (e.g., tree area). A valid CLE is defined as the cross-line whose
length is longer than threshold l at a cross-point in two directions. All the lines crossing the cross-point
may be longer than the threshold. The two longer lines indicate the principal directions. The facets are
obtained by using the CLEs to select the seed and region growth.

2.2. Selection of Seed CLEs for Growth

A coarse-to-fine strategy is employed to extract prior large planes and guarantee the segmentation
quality and stability. The seed CLE is selected based on estimations of the plane property. The seed
CLE should satisfy the following conditions.

1. Each line of the seed CLE is longer than the minimum length threshold l.
2. The cross-point of the seed CLE should not be the end points of the line segments to ensure the

stability of the seed CLE. A false seed CLE is shown in Figure 1. The red cross denotes the false
selection of the seed cross-line element.

3. The variance between the angle (i.e., α in Figure 1) of the cross-point and those of the neighbor
points should be small. Figure 3 shows red lines, which denote the seed CLE and the red point,
which represents the cross-point. The ZOY plane is the segmentation direction and nb1 nb2 . . .
nb8 are the neighbors of the cross-point. The α0, α1 . . . α9 variance should be smaller than the
threshold and should extend to the four directions to ensure the stability of the seed CLE. Several
false seed CLEs could be found in the tree areas if the condition is not applied. The variance in
the rough areas can be large because the angles can vary significantly even if the lines of CLE are
longer than l.
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Figure 3. Seed CLE and neighbors of the cross-point.

The cross-points that meet the aforementioned conditions are sorted by using the length of the
CLE. The seed cross-points of the CLE are then processed in order.

The points on the CLE may not be on the same plane when the seed CLE is selected. Figure 4
shows the CLE, which is represented by red lines. The CLE should be checked as valid.
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Figure 4. Points on CLE may not be on a plane.

The characteristic of the line intersect with the plane indicates that the angles between the parallel
lines and the plane are equal. Accordingly, α1, α2, α3, β1, β2, β3 represent the angles of the line segments
(Figure 5). The condition that α1 = α2 = α3 and β1 = β2 = β3 should be satisfied when the plane is
perfect. The valid seed CLE should also satisfy the condition that the difference between the angles
of the point on CLE and that of the cross-point is sufficiently small. A threshold of ∆α is utilized in
this study. Figure 4 shows that the points on the blue plane do not satisfy the condition. ∆α can be
obtained adaptively.

∆α “ arctanp
d
l
q (3)

In Equation (3), d is the threshold of point to plane distance. l is the minimum line length threshold.
The region growth is the employed to obtain the points of the entire plane after the seed CLEs

are extracted.
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Figure 5. Cross-line element and its characteristic.

2.3. Region Growth

Region growth includes CLE growth and point element growth. Using CLE growth can improve
the stability of region growth and accelerate the process.

The disadvantage of the conventional region growth method is the process of obtaining seed
points and the reliable similarity measurement of region growth. Researches sometimes use the
minimum number of points as the indicator of a valid plane. However, this method may not be stable
because of the complex point distribution at tree and noisy areas.

Similar to PCA, the angle limitation is added in the region growth. Subsequently, the angles are
more stable than those in the PCA because calculating the angles does not depend on the neighboring
relationship. The angles can also be correctly calculated at the edge of the plane, as shown in
Figure 1 (i.e., Douglas-Peucker). The angle limitation is that the angles on the horizontal plane
of the two principal directions of each candidate point are nearly equal to those of the seed cross-point.
The red point in Figure 6 denotes the cross-point. α0 and β0 are the angles of CLE in the two principal
directions. The angles of the lines crossing the candidate point in the two principal directions should
be nearly equal to the cross-point seed when dealing with region growth.
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Figure 6. Cross-point of CLE.

Combining CLE growth and point growth can ensure the stability of the region growth.
The sequence of adding points in the model fitting procedure influences the results of the region
growth. The points on CLE are more stable and have more information than those on the short lines.
Therefore, the points on CLE are processed first to ensure the stability of the region growth. The next
seed is then processed if no line is added in the CLE growth. The valid seed CLEs are used to calculate
the plane function after the stable CLE is obtained.

2.3.1. CLE Growth

After obtaining the seed CLEs, CLE growth is utilized to calculate the principal direction lines
which are not the cross-lines of the seed CLE at each seed point and to check whether the candidate
CLE is on the plane. This seed CLE is omitted if no CLE is added because the seed CLE is unstable.
In Figure 7, the red lines are the seed CLE. The blue and yellow lines are to be grown in step one of
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CLE growth. The blue lines on the plane are to be added. The yellow lines are not on the plane. A more
stable plane function is obtained thereafter.

Remote Sens. 2016, 8, 383 8 of 26 

 

In Figure 7, the red lines are the seed CLE. The blue and yellow lines are to be grown in step one of 
CLE growth. The blue lines on the plane are to be added. The yellow lines are not on the plane. A 
more stable plane function is obtained thereafter. 

 
Figure 7. Step one of CLE growth. 

All the directions of CLE growth are subsequently employed. The CLE growth principle is 
similar to that of point growth. The only difference is that the elements are crossing lines. Only the 
end points of the crossing lines are used in the measurement procedure to analyze whether the 
crossing lines are on the plane or not. 

2.3.2. Point Growth 

After CLE growth, some points may be ignored because of noises. The distance of the point to 
the plane is measured in processing of the point growth. The angles of the lines crossing the candidate 
points on the two principal directions should be nearly equal to those of the seed cross-point. As 
shown in Figure 6, 0α  and 0β  of the candidate points should be nearly equal to those of the seed 
cross-point; otherwise, the length of the line segment is small. 

3. Experimental Analysis 

3.1. Test Data 

The LiDAR point clouds of three different regions are utilized to validate the proposed method. 
The regions are the Vaihingen area in Germany [48], Wuhan and Guangzhou in China. The 
description of the datasets is listed in Table 1. 

The comparison test consists of roof and area segmentation. 

Table 1. Descriptions of test data. 

Site Vaihingen Wuhan Guangzhou 
Total area size 2,320,000 m2 127,636,898 m2 60,115,494 m2 
Point density 4 points/m2 8 points/m2 6 points/m2 

Roof type Mostly gable roof 
with a large slope 

Flat roof and gable 
roof 

Flat and gable roofs with a 
small slope 

Scene type Urban area with 
little trees 

Urban area with many 
trees 

Urban area with many trees 

Feature The roofs are simple The roofs are complex The slope of the roof is small 
Used points 3,911,955 2,374,018 15,597,504 
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All the directions of CLE growth are subsequently employed. The CLE growth principle is similar
to that of point growth. The only difference is that the elements are crossing lines. Only the end points
of the crossing lines are used in the measurement procedure to analyze whether the crossing lines are
on the plane or not.

2.3.2. Point Growth

After CLE growth, some points may be ignored because of noises. The distance of the point to the
plane is measured in processing of the point growth. The angles of the lines crossing the candidate
points on the two principal directions should be nearly equal to those of the seed cross-point. As shown
in Figure 6, α0 and β0 of the candidate points should be nearly equal to those of the seed cross-point;
otherwise, the length of the line segment is small.

3. Experimental Analysis

3.1. Test Data

The LiDAR point clouds of three different regions are utilized to validate the proposed method.
The regions are the Vaihingen area in Germany [48], Wuhan and Guangzhou in China. The description
of the datasets is listed in Table 1.

The comparison test consists of roof and area segmentation.

Table 1. Descriptions of test data.

Site Vaihingen Wuhan Guangzhou

Total area size 2,320,000 m2 127,636,898 m2 60,115,494 m2

Point density 4 points/m2 8 points/m2 6 points/m2

Roof type Mostly gable roof
with a large slope Flat roof and gable roof Flat and gable roofs

with a small slope

Scene type Urban area with
little trees Urban area with many trees Urban area with

many trees

Feature The roofs are simple The roofs are complex The slope of the roof
is small

Used points 3,911,955 2,374,018 15,597,504
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3.2. Roof Segmentation

Several of the typical segmentation methods for roof segmentation used in the comparison
test are RANSAC [19], 3D Hough transformation [27], PCA + region growth (RG_PCA) [36], iterative
PCA + region growth (RG_IPCA) [37], and the global optimization-based algorithm Graphcuts (Global
energy) [38]. The algorithms are all implemented with Microsoft Visual C++ under the Microsoft
Windows 7 operating system. A personal computer with Intel Core i5, 2.5 GHz CPU, 4GB memory is
used for the testing. The ground truth of roof segmentation for quality evaluation is obtained through
manual editing.

The seven metrics utilized to evaluate CLEG and the compared algorithms are computation time
(time), completeness (comp), correctness (corr) [49], reference cross-lap (RCL), detection cross-lap
(DCL) [50,51], boundary precision (BP), and boundary recall (BR) [52].

Completeness is defined as the percentage of reference planes that are correctly segmented.
This metric is related to the number of misdetected planes.

comp “
TP

TP` FN
(4)

Correctness denotes the percentage of correctly segmented planes in the segmentation results.
It indicates the stability of the methods.

corr “
TP

TP` FP
(5)

TP in Equations (4) and (5) denotes the number of planes found in both the reference and
segmentation results. Only the planes with a minimum overlap of 50% with the reference are true
positives. FN denotes the number of reference planes not found in the segmentation results (i.e., false
negatives). FP is the number of detected planes not found in the reference (i.e., false positives).

Reference cross-lap rate is defined as the percentage of reference planes that overlap multiple
detected planes. This metric shows the over-segmentation of the methods.

RCL “
N1

r
Nr

(6)

Nr in Equation (6), denotes the number of reference planes, and N1
r is the number of reference

roof planes that overlap more than one detected plane.
Detection cross-lap rate denotes the percentage of detected planes that overlap multiple reference

roof planes. This metric shows the under-segmentation of the methods.

DCL “
N1

d
Nd

(7)

Nd in Equation (7) denotes the number of detected planes, and N1
d is the number of detected

planes that overlap more than one reference roof plane.
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Boundary precision measures the percentage of correct boundary points in the detected
boundary points.

BP “
ˇ

ˇ

ˇ

ˇ

Bd X Br

Bd

ˇ

ˇ

ˇ

ˇ

(8)

Boundary recall measures the percentage of correct boundary points in the reference
boundary points.

BP “
ˇ

ˇ

ˇ

ˇ

Bd X Br

Br

ˇ

ˇ

ˇ

ˇ

(9)

Br in Equations (8) and (9) denotes the boundary point set in reference, Bd denotes the
boundary point set in the segmentation results, and | | denotes the number of points in a dataset.
Over-segmentation may result in a high boundary recall ratio, whereas under-segmentation may lead
to high boundary precision. Only when boundary precision and boundary recall are both high can the
precision of the method be determined.

The same parameters are utilized in the comparison test to ensure the comparability of the results
as shown in Table 2.

Table 2. Parameters used in the comparison test.

Parameter Value Methods

Point to plane distance threshold d 0.3 m RANSAC, Hough, RG_PAC, Global
energy, and CLEG

Curvature threshold 0.01 RG_PCA and RG_IPCA
Minimum number of points required

for a valid plane 10 RANSAC, Hough, RG_PCA, RG_IPCA,
and Global energy

Line segmentation threshold ε 0.25 m CLEG
Grid size 0.6 m CLEG

Min line length l 1.8 m CLEG

Many gable roofs with large slopes are found in Vaihingen. The roof structure is also complex, as
shown in Figure 8a. Some noise points also exist (Figure 8b). A complex roof structure with planes
that have a small slope difference with its neighbor planes, and also with small structures, is shown in
Figure 8c. Many flat and gable roofs are found in Wuhan. The slope of gable roofs is not large. A flat
roof is close to the gable roofs, as shown in Figure 9a. A complex symmetric roof structure is shown in
Figure 9b. A symmetric trapezoid roof is shown in Figure 9c. Many gable roofs with small slopes are
found in Guangzhou. The nearly arc-shaped roofs results in weak edges of the planes, as shown in
Figure 10a. Figure 10b,c show several complex structures and roofs close to one another.

Segmentation results of roof points in the Vaihingen area are shown in Figure 8, and the evaluation
of precision is listed in Table 3.
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Segmentation results of roof points in the Wuhan area are shown in Figure 9, and the evaluation
of precision is listed in Table 4.
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Table 3. Quality of the segmentation results in the Vaihingen area.

Time % Comp % Corr % RCL % DCL % BP % BR

(a)

RANSAC 0.016 s 100 85.7 0 28.6 72.1 78.7
3D Hough 59.795 s 75 37.5 75 0 29.8 44.2
RG_PCA 0.016 s 100 72.7 25 0 100 5.8
RG_IPCA 0.015 s 100 88.9 12.5 0 94.2 55.1

Global energy 0.062 s 100 88.9 12.5 0 84.9 81.6
CLEG <1 ms 100 100 0 0 97.7 93.7

(b)

RANSAC 0.046 s 77.8 70 0 80 40.1 88.1
3D Hough 244.329 s 44.4 7.8 66.7 2.1 17.4 55.9
RG_PCA 0.046 s 100 42.9 44.4 0 41.1 38.4
RG_IPCA 0.015 s 100 62.3 22.2 7.1 48.2 53.6

Global energy 0.328 s 100 81.8 22.2 0 83.4 84.0
CLEG <1 ms 100 100 0 0 87.5 83.4

(c)

RANSAC 0.016 s 100 87.5 14.3 12.5 60.4 87.1
3D Hough 84.038 s 71.4 27.8 57.1 5.6 20.5 48.9
RG_PCA 0.031 s 100 100 0 0 84.8 8
RG_IPCA 0.015 s 85.7 100 0 16.7 50.9 51.4

Global energy 0.078 s 85.7 100 0 16.7 71.5 60.3
CLEG <1 ms 100 100 0 0 84.3 86

Table 4. Quality of segmentation results in the Wuhan area.

Time % Comp % Corr % RCL % DCL % BP % BR

(a)

RANSAC <1 ms 100 100 0 33.3 19.3 63.4
3D Hough 136.376 s 33.3 9.1 66.7 41.7 3.7 10.1
RG_PCA 0.031 s 100 75 33.3 0 40 65.6
RG_IPCA 0.015 s 100 75 33.3 33.3 26.6 68.3

Global energy 0.047 s 100 100 0 0 77.5 75.4
CLEG <1 ms 100 100 0 0 87.1 84.7

(b)

RANSAC 0.827 s 15.4 26.7 0 73.3 17.7 60.2

3D Hough 1434.733
s 46.2 13.4 50 14.1 16.7 54.9

RG_PCA 0.063 s 100 52 34.6 0 28.3 23.2
RG_IPCA 0.201 s 100 86.7 3.8 3.3 64.1 61.9

Global energy 2.325 s 100 88.9 0 7.4 73.3 70.6
CLEG 0.015 s 100 100 0 0 92.7 91.3

(c)

RANSAC 0.016 s 100 71.4 0 28.5 34.0 66.1
3D Hough 161.929 s 60 11.1 80 44.4 18.3 61.1
RG_PCA 0.031 s 100 35.7 60 0 29.2 52.9
RG_IPCA 0.016 s 100 55.6 60 0 46.5 71.3

Global energy 0.109 s 100 83.3 20 0 65.6 71.7
CLEG <1 ms 100 100 0 0 88.8 87.8

Segmentation results of roof points in the Guangzhou area are shown in Figure 10, and the
evaluation of precision is listed in Table 5.
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RANSAC runs fast when the point number is small (Table 4). The time of dataset (a) is less than 
1 ms. However, the algorithm runs slow when the point number is large. The voting procedure with 
all the left points is undertaken afresh when a plane is found. When the roof structure is complex, 
many errors occur because the spatial relationship of the neighbors is not considered. The results are 
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Figure 10. Segmentation of roof points in the Guangzhou area. (a) weak edge; (b) symmetric structure;
(c) complex structure.

RANSAC runs fast when the point number is small (Table 4). The time of dataset (a) is less than
1 ms. However, the algorithm runs slow when the point number is large. The voting procedure with
all the left points is undertaken afresh when a plane is found. When the roof structure is complex,
many errors occur because the spatial relationship of the neighbors is not considered. The results are
shown in the black rectangles in Figures 8a–c, 9a–c and 10a–c.
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Table 5. Quality of segmentation results in the Guangzhou area.

Time % Comp % Corr % RCL % DCL % BP % BR

(a)

RANSAC 0.047 s 23.1 37.5 15.4 50 20.0 62.6
3D Hough 556.970 s 61.5 14.3 76.9 12.5 17.5 54.5
RG_PCA 0.110 s 84.6 91.7 8.7 0 75.4 21.4
RG_IPCA 0.031 s 84.6 68.8 8.7 0 69.3 59.0

Global energy 0.842 s 84.6 78.6 8.7 0 78.0 72.0
CLEG 0.016 s 100 100 0 0 86.0 80.9

(b)

RANSAC 0.016 s 50 51.4 0 28.6 62.8 77.8
3D Hough 610.557 s 50 44.4 25 22.2 18.9 9.2
RG_PCA 0.078 s 100 38.1 37.5 0 66.2 58.8
RG_IPCA 0.047 s 75 40 12.5 6.7 83.1 57.0

Global energy 0.374 s 100 100 0 0 86.0 77.8
CLEG <1 ms 100 100 0 0 95.5 96.9

(c)

RANSAC 0.047 s 9.1 14.3 0 100 17.1 57.8
3D Hough 866.773 s 18.2 3.6 45.5 16.4 15.3 50.5
RG_PCA 0.078 s 63.6 53.8 18.2 16.4 74.1 29.8
RG_IPCA 0.046 s 100 84.6 9.1 15.4 40.6 38.9

Global energy 0.374 s 100 100 0 0 74.5 73.6
CLEG 0.015 s 100 100 0 0 85.6 87.0

The voting space in 3D Hough transformation is first computed. The votes are then sorted,
and the planes are detected in order. The region growth is finally used to obtain an entire plane in
the supported points. The results of 3D Hough transformation are sometimes worse than those of
RANSAC because one point may support many planes, and the remaining planes may not be the
most supported ones. Many false planes are detected, as shown by the red rectangles in Figures 8a–c
and 9a–c. 3D Hough transformation has the same disadvantage as RANSAC and causes cross-planes
without the use of normal vectors. The terminal condition is difficult to decide, and it uses the ratio of
the smallest plane to the largest plane and the ratio of number of remaining points to total points may
also lead to missing small planes, as shown by the center red rectangles in Figure 10a–c.

RG_PCA employs the K-nearest neighbors (KNN) to obtain the neighbor relationship and compute
the normal vectors using PCA. The regions are then grown using the normal vectors. PCA may produce
unstable results in estimating the normal vector at the edge regions. Therefore, the methods do not
perform well in segmenting the points close to the facet boundary, as shown by the green rectangles in
Figures 8a–c, 9a and 10c. KNN may produce an unstable neighbor relationship in areas with a largely
uneven point density and results in over-segmentation, as shown by the green rectangles in Figure 9b,c.
The difference of the normal vectors at the edge areas is small when the slope is small. This causes
under-segmentation, as shown by the green rectangles in Figure 10a,b.

RG_IPCA utilized a triangulated irregular network (TIN) to obtain the neighbor relationship,
compute the initial normal vectors using PCA, and grow to regions. This method can properly estimate
the normal vectors at several boundary regions but may also lead to errors in several areas, as shown
by the blue rectangles in Figures 8b,c, 9a,b and 10c. RG_IPCA has the same disadvantage as RG_PCA
when the slope is small. The method results is under-segmentation, as shown by the blue rectangles
in Figure 10a,b. Over-segmentation also exists in RG_IPCA, as denoted by the blue rectangles in
Figures 8a and 9c.

The global energy method utilizes Graphcuts to obtain the minimum energy. This method
yields quiet accurate results but depends on a good initial input. Consequently, missed planes will
also be missed in the optimization results, as shown by the yellow rectangles in Figures 8c and 10a.
The method also causes over-segmentation in noisy areas, as shown by the yellow rectangles in
Figures 8b and 9c. The improper neighbor relationship causes under-segmentation, as denoted by the
yellow rectangle in Figure 9b. The separated planes are combined because TIN may connect faraway
points. The two facets are on the same plane because of symmetry. In other conditions, global energy
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can perform quite well and obtain complete results with the fewest points left. CLEG can properly
handle these complex structures with very few missing points.

The proposed CLEG algorithm also has several disadvantages caused by the strict conditions of
seed CLE selection. A seed CLE is not detected when the plane is small. Therefore, the plane may be
missed, as shown by the red rectangle in Figure 11.
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3.3. Region Segmentation

The CLEG algorithm can also process the point cloud containing terrains, buildings, trees, etc.
The proposed method is similar to region growth methods. The comparison methods only include
RG_PCA and RG_IPCA. The parameters used are shown in Table 6. The difference is that the minimum
number of points required for a valid plane is larger than that in roof segmentation, because if the
number is small, there may be many false planes detected in tree areas.

Table 6. Parameters used in the comparison test.

Parameter Value Methods

Point to plane distance threshold d 0.3 m RG_IPCA, CLEG
Curvature threshold 0.01 RG_PCA, RG_IPCA

Minimum number of points required for a valid plane 20 RG_PCA, RG_IPCA
Line segmentation threshold ε 0.25 m CLEG

Grid size 0.6 m CLEG
Min line length l 1.8 m CLEG
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Seven datasets are utilized to prove the effectiveness and speed of the proposed method.
The description is listed in Table 7.

Table 7. Computation time in the comparison test.

Dataset Area Number of Points RG_PCA RG_IPCA CLEG

(a) Vaihingen 321,956 70.054 s 1.482 s 0.468 s
(b) Wuhan 298,666 255.170 s 2.356 s 0.499 s
(c) Guangzhou 174,830 15.616 s 0.780 s 0.187 s
(d) Vaihingen 3,582,656 - 17.691 s 6.272 s
(e) Wuhan 2,058,844 - 10.203 s 2.948 s
(f) Guangzhou 3,091,547 - 15.116 s 8.580 s
(g) Guangzhou 12,305,250 - - 58.126 s

Building the neighbor relationship possesses the highest computation cost in RG_PCA and
RG_IPCA during the comparison test. The methods are different in the two algorithms. KNN is used
in RG_PCA, and TIN is used in RG_IPCA. RG_PCA employs PCA to estimate the normal vectors of
each point. The results may be unstable at boundary points, which often results in over-segmentation,
as denoted by the blue rectangles in Figures 12 and 13. RG_IPCA sometime estimates the false normal
vectors and results in some false segmentation, as shown by the yellow rectangles in Figures 12 and 14.
Over-segmentation is also found in noisy areas, as shown by the blue rectangle in Figure 13. Although the
minimum point of a valid plane is 20, some planes are found in the tree areas, as shown by the green
rectangles in Figures 12 and 13. CLEG can handle these cases well with faster speed (Table 7).

Segmentation results of the point cloud Vaighingen using a small dataset.
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Figure 14. Segmentation results in the Guangzhou area using dataset (c).

KNN is very slow when large datasets are used for segmentation. Therefore, only RG_IPCA is
used for comparison. RG_IPCA may result in false segmentation at the roof areas, as shown by the
blue rectangles in Figures 15–17. False segmentation is also observed at ground area, as shown by
the green rectangle in Figure 16. Under-segmentation is found when the slope is small. This result is
denoted by the red rectangles in Figures 15 and 16. A cross-plane is denoted by the black rectangle in
Figure 17. Furthermore, many planes are found in the tree areas, as shown by the yellow rectangles in
Figures 15–17. CLEG can still handle these areas well with less processing time.
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Segmentation results of point cloud in the Vaighingen area using a large dataset.
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Segmentation results of the point cloud in the Wuhan area using a large dataset.
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Segmentation results of the point cloud in the Guangzhou area using a large dataset.
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Building TIN in RG_IPCA during the test causes shortage in memory when a large point cloud 
with 12 million points is used. The CLEG algorithm can handle this large dataset, and completes the 
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based neighbor relationship and CLE growth to overcome the shortage of uneven point cloud 
density. The process that consumes the most computation time in CLEG is the sorting of the seed 
points, which can be improved in the future by parallel computing. 

Figure 17. Segmentation results in the Guangzhou area using dataset (f).

Building TIN in RG_IPCA during the test causes shortage in memory when a large point cloud
with 12 million points is used. The CLEG algorithm can handle this large dataset, and completes
the segmentation within 1 min (Figure 18). The proposed algorithm uses grid indexing instead of
point-based neighbor relationship and CLE growth to overcome the shortage of uneven point cloud
density. The process that consumes the most computation time in CLEG is the sorting of the seed
points, which can be improved in the future by parallel computing.
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3.4. Parameters Setting

The important parameters in CLEG algorithm are grid size and min line length. The grid size can
be determined by the average point density.

The threshold of min line length is selected empirically in our experiment. This has an impact
on the plane extraction results. The areas with line segments shorter than the threshold are missed.
An example is shown in Figure 19.
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Figure 19. The influence of min line length. (a) Corresponding image; (b) l = 1.8 m, a narrow plane is
missed; (c) l = 3.0 m, small planes are missed; (d) l = 4.2 m, more small planes are missed; (e) l = 6 m,
a large plane is missed; (f) l = 7.2 m, more large planes are missed.

As shown in Figure 19b, a narrow but long-shaped plane object is missed marked in the yellow
box. From Figure 19c–f, with the increase of min line length threshold, more and more planes are
omitted as marked in the red boxes. The threshold can be determined by the minimum size of the
planes according to the level of detail.
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4. Conclusions

Using profiles or scan lines of LiDAR data to segment a surface and classify objects is not
new [3–7]. This study focuses on using cross-line elements for plane segmentation. Proper and quality
seed selection and region growth based on information derived from CLE are considered for the
accurate and stable detection of planes. The pre-segmentation of the point cloud into CLEs eliminates
the problem of selecting support points in clustering and model fitting methods, which is the key for
the proposed method. With the use of the angle information derived from the CLE, the stages of seed
selection and growth become more reliable. Furthermore, the CLEG algorithm is computationally
efficient due to simple operations in seed generation and growth. The tests using various datasets
show that the proposed algorithm runs much faster than popular methods while producing stable and
accurate segmentation results. CLEG has great potential in feature extraction, object classification and
3D modeling of buildings.

However, the CLEG algorithm may still result in missing small facets because of the missing seed
CLEs. Furthermore, the parameter of minimum line length has an impact on the plane extraction
results; some narrow but long-shaped plane objects are missing. An additional retrieval step may
be necessary to find these missing small and narrow planes. Two parallel lines can also determine
a plane. In the next study, this could be combined with CLE to detect the missed narrow but long
planes. Meanwhile, the CLE-derived features may be utilized in object classification and building
detection from point cloud data, which is an important future task in extending the usage of CLEs.
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LiDAR light detection and ranging
DSM digital surface model
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RANSAC random sample census
PCA principle component analysis
IPCA iterative PCA
GSD ground sample distance
RG region growth
KNN K-nearest neighbors
TIN triangulated irregular network
RCL reference cross-lap
DCL detection cross-lap
BP boundary precision
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