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Abstract: Leaf area index (LAI) is an important biophysical trait for forest ecosystem and ecological
modeling, as it plays a key role for the forest productivity and structural characteristics. The ground-
based methods like the handheld optical instruments for predicting LAI are subjective, pricy and
time-consuming. The advent of very high spatial resolutions multispectral data and robust machine
learning regression algorithms like support vector machines (SVM) and artificial neural networks
(ANN) has provided an opportunity to estimate LAI at tree species level. The objective of the
this study was therefore to test the utility of spectral vegetation indices (SVI) calculated from the
multispectral WorldView-2 (WV-2) data in predicting LAI at tree species level using the SVM and
ANN machine learning regression algorithms. We further tested whether there are significant
differences between LAI of intact and fragmented (open) indigenous forest ecosystems at tree species
level. The study shows that LAI at tree species level could accurately be estimated using the
fragmented stratum data compared with the intact stratum data. Specifically, our study shows that
the accurate LAI predictions were achieved for Hymenocardia ulmoides using the fragmented stratum
data and SVM regression model based on a validation dataset (R2

Val = 0.75, RMSEVal = 0.05 (1.37% of
the mean)). Our study further showed that SVM regression approach achieved more accurate models
for predicting the LAI of the six endangered tree species compared with ANN regression method. It
is concluded that the successful application of the WV-2 data, SVM and ANN methods in predicting
LAI of six endangered tree species in the Dukuduku indigenous forest could help in making informed
decisions and policies regarding management, protection and conservation of these endangered
tree species.

Keywords: leaf area index; tree species; indigenous forest; WorldView-2; support vector machines;
artificial neural networks

1. Introduction

Indigenous forests in South Africa cover about 0.2% of the country’s land surface [1]. In
KwaZulu-Natal Province, coastal lowland indigenous forests occur in small, fragmented and largely
scattered patches in relatively dry landscapes [1,2]. One such fragmented forest in KwaZulu-Natal
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is the Dukuduku indigenous forest, which is one of the largest and the best preserved remnants of
South African coastal forests [3]. The coastal forest in the Dukuduku area is highly threatened by the
rapid growth of informal human settlements and agricultural systems [1]. As one of the key features
of landscape in South Africa, careful indigenous forest monitoring, management and conservation
is critical. One way to manage and monitor indigenous forest ecosystems is to estimate the trees’
structural (e.g., height), biophysical (e.g., leaf area index: LAI) and biochemical (e.g., foliar N content)
traits. In general, these tree characteristics are measures and proxies for ecosystem resilience, services,
conservation, landscape integrity and environmental health. The tree structural and bio-physiological
traits could also be used to study the effect of climate change on the indigenous forest ecosystems.
For instance, indigenous forest LAI and biomass are indicators of the amount of sequestered carbon
which provides a relatively cheap means for offsetting significant shares of the annual greenhouse gas
emissions [4–7]. Specifically, forest LAI is an important biophysical trait for modeling the energy and
mass exchange characteristics between the land surface and the atmosphere of terrestrial ecosystems [8].
LAI is one of the most useful indicators of forest growth, biomass and net primary production [8].
Therefore, predicting LAI of some tree species (e.g., endangered tree species) that play a vital role
in ecosystem services is necessary and valuable information. Such information is important for tree
growth monitoring, management and conservation measures to optimize, for instance the indigenous
forest services, and forest health in general. On the other hand, the different land use/cover matrices
and other ecological threats like land degradation can also significantly affect the tree biophysical and
structural traits, as well as the productivity (i.e., net primary productivity) in the indigenous forest
ecosystems. Specifically, studies have shown that LAI, which is a dimensionless variable that is defined
as the total one-sided surface area of all leaves in the canopy per unit ground area [9], is an important
biophysical trait that determines forest photosynthetic capacity processes [10–12].

Commonly, LAI is estimated through destructive and non-destructive ground-based methods [13].
However, these ground-based methods for predicting LAI like the handheld optical instruments are
time-consuming, laborious, subjective and pricy, particularly when carried out in large fragmented
landscapes. Hence, studies sought complementary approaches that use rapid, up-to-date, cost-effective
and synoptic data for predicting and modeling LAI [4,14–16]. The development in remote sensing
technologies, data, and processing as well as analytical approaches make it possible to explicitly
and accurately estimate LAI of forests and croplands [15–19]. These studies predicted LAI using
different empirical (e.g., linear and polynomial regressions) and physical (e.g., inversion of radiative
transfer models) approaches. For example, the physical approaches have been used to estimate
LAI of forests in different landscapes [15–21]. Physically-based retrieval methods, which refers to
inversion of radiative transfer models against remote sensing observations [22,23], while the empirical
approaches that include multiple linear regressions based on various statistical approaches also have
been applied in predicting LAI [19,24,25]. However, identifying suitable variables for developing a
multiple regression model is often critical because some variables are either weakly correlated with
LAI or are highly correlated to each other [24]. Moreover, the major challenge is that the multiple
linear regressions have often produced limited results, mainly because of their requirements to satisfy
some statistical conditions or to assume normal distribution of the input dataset as well as it suffers
from multi-collinearity [26,27]. In addition, the aforementioned studies utilized remotely sensed data
of varying spectral (multispectral and hyperspectral) and spatial (fine and medium) resolutions and
relatively accurate LAI prediction models were obtained. However, to our knowledge no study has
modeled LAI of specific tree species in indigenous forest ecosystem. Predicting LAI at species level
could help resource managers to understand the impact of various socio-ecological mechanisms on
indigenous endangered tree species, for example and the vulnerability of these trees to external and
internal perturbations.

Specifically, the previous studies have mostly focused on the use of spectral vegetation indices
(SVIs) that combined the advent of two or three wavebands as opposed to the use of spectral features at
a single waveband on modeling forests LAI [12,28–30]. SVIs are mathematical combinations of different



Remote Sens. 2016, 8, 324 3 of 26

spectral bands, commonly located in the visible and near-infrared (NIR) regions of the electromagnetic
spectrum. These mathematical models for forming vegetation indices are two classes that include
ratios and linear combinations, both of which exploit surface reflectance or raw digital number features
of the satellite data. Ratio SVIs may be the simple ratio index (SRI) of any two spectral bands, or the
ratio of sums, differences or products of any number of bands. Linear combinations are orthogonal sets
of n linear equations calculated using data from n spectral bands [31]. A prime reason for using these
two mathematical transformations is to improve the interpretations and visualization of the included
spectral information [31]. SVIs have become one of the most important sources of information for
monitoring vegetation, tree species, and other forest biophysical traits. The advantage of the SVIs is
to enhance the information contained in the spectral reflectance by detecting the spectral variability
that might be due to different vegetation, plant, canopy and leaf physiological, and morphological
characteristics [32]. Moreover, SVIs are efficient remotely sensed variables in reducing the noise in
the spectral data due to, for example, the ambient atmospheric conditions, sun view angles, canopy
geometry, shading, and soil background [33,34]. Therefore, a number of SVIs have been developed and
tested to estimate forest LAI. It is found that SVIs are suitable for detecting the within forest LAI spatial
variability [32,33]. The most commonly used SVI, the normalized different vegetation index (NDVI),
simple ratio index (SRI) and soil adjusted vegetation index (SAVI) are calculated from multispectral
data of low and medium spatial resolutions like Landsat and MODIS (Moderate Resolution Imaging
SpectroRadiometer) and utilized for predicting forests LAI [12,29,34–36]. However, because of the low
and medium spatial resolutions, the previous studies could not model the LAI at tree species level.

On the other hand, the newly launched multispectral sensors like Sentinel-2, WorldView-2 (WV-2),
WorldView-3 (WV-3), and Pleiades provide data of the fine spatial resolution that can also capture
the vegetation spectral properties at some unique portions of the electromagnetic spectrum (e.g., red
edge). The fine spatial resolutions of these newly launched sensors and the inclusion of the uniquely
located bands in calculating the SVI can offer a great opportunity for predicting LAI at tree species
level. The new additional bands (e.g., yellow and red edge), which were previously contained in the
hyperspectral data, could overcome the limitations of the conventional bands (e.g., red) while reducing
the unnecessary redundancy in the hyperspectral data [37–39]. Studies have shown that the key bands
like the red edge of multispectral data are useful in characterizing the spatial variability of vegetation
biophysical traits like LAI [14].

When the empirical regression methods are concerned, most of the above-mentioned studies
either employed multiple linear regressions or machine learning approaches like random forest (RF) to
estimate LAI at forest level. However, as previously mentioned the conventional empirical methods
are constrained by some limitations related to the normal distribution of the response variables and
multi-collinearity [26,27]. The use of machine learning methods has therefore regarded as efficient
and robust protocols for predicting forest biophysical traits in the field of remote sensing [40–42].
Particularly, these methods, which make no assumption on the out response variables distribution,
have increasingly offered a better capability to analyze remotely sensed data [43,44]. In particular,
there is a lack of knowledge on whether high resolution multispectral data (e.g., WV-2) could be
employed for predicting LAI of individual tree species. Moreover, ecologists might need to test
whether there are significant differences between LAI of endangered tree species grown in intact
and fragmented forests in order to assess the ecosystems services and resilience in the value chain,
for instance. The empirical prediction of tree LAI in such complex and dynamic forest ecosystems
using remotely sensed data may require efficient and robust machine learning regression algorithms
like RF, support vector machines (SVM), artificial neural networks (ANN) and partial least squares
(PLS). RF is a robust non-linear algorithm for predicting forest LAI [45]. However, one drawback
of RF regression algorithm when many input predictors are utilized is that it selects predictors that
could be correlated to each other [46,47]. On the other hand, PLS regression, which is a linear method
that used for predicting forest LAI [48], could not accurately handle higher dimensional data with
relatively fewer training samples like the ones utilized in this study and it lacks of an excellent empirical
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performance compared to other machine learning regression algorithms [49,50]. Hence, this study
used two non-linear machine learning algorithms, viz., SVM and ANN, to predict endangered tree
species LAI using WV-2 spectral variables. SVM is a well-known machine learning algorithm that
has frequently used to change the nonlinear regression problem into a linear projection by a variety
of kernel approaches [51,52]. The advantages of SVM compared to other conventional linear and
non-linear regression methods are that it offers excellent generalization abilities. It also provides sparse
solutions where only the most relevant sample of the calibrating data are weighted resulting in low
computational cost and memory requirements [34,53]. The algorithm has been applied to relate SVIs to
various vegetation biophysical traits like LAI [54–56]. On the other hand, ANN regression comprises of
an interconnected group of artificial neurons and processes information using a connectionist approach
for computation [57,58]. The approach therefore offers a very efficient regression method to simulate
the relationship between SVIs and LAI [59–61]. To the best of our knowledge, no study utilized
SVIs calculated from WV-2 data to predict LAI of endangered tree species in tropical indigenous
forests. In this study, we tested the utility of SVIs calculated from the multispectral WV-2 data, SVM
and ANN machine learning regression algorithms for predicting LAI at tree species level. The LAI
of six endangered tree species in the Dukuduku intact and fragmented (open) indigenous forest
ecosystems was estimated. We also tested whether there are significant differences between LAI of the
six endangered tree species grown in intact and fragmented indigenous forest ecosystems. We further
explored the possibility of using the combined data sets across the six endangered tree species on the
one hand, and across the two forest strata (i.e., intact and fragmented forests) on the other hand for
deriving universal models for predicting LAI.

2. Methodology

2.1. Study Area

The study was conducted in the Dukuduku indegenous forest which is located on the northern
bank of Umfolozi River floodplain, South Africa. The study area stretches between latitute 28˝5212511S
and longitude 32˝1712311E (Figure 1). The Dukuduku forest area covers more than 6000 hectares
(ha) of indigenous coastal forest on the rolling savannahs of the inland across the dune line along
the KwaZulu-Natal coast, from southern KwaZulu-Natal province to beyond the Mozambican
boundary [2,62]. It is considered to be one of the largest remaining stretches of coastal lowland
forest in South Africa. However, due to a high number of individual illegal residence and intensive
agricultural activities, the natural vegetation surrounding the forest has widely been removed [1,2,62].
Similarly, increasing human activities and settlements in the area have led to an increase in ecosystem
fragmentation [1,2,62]. Therefore, the Dukuduku forest is facing many threats presented by the
destruction of indigenous vegetation, forest plantations and agricultural farmlands. Two forest
management protocols are practiced in the Dukuduku area: (i) Fragmented (open) forests, which are
managed by the local communities and the traditional leaders. These are the forests or woodlands
where individual tree crowns do not overlap to form a continuous canopy layer and are widely
spaced. (ii) Intact forests, which are managed by the officials (e.g., Department of Forestry) and are
defined as areas of land that are occupied by trees of closed canopies (continuous canopy layer).
The majority of forests in both the intact and fragmented forests are dominated by various natural
indigenous vegetation species. The vegetation species includes different age groups and other types
of land use/cover classes. The most dominant tree species in the area include Syzygium cordatum
and Cussonia zuluensis. However, it is observed that six other tree species; namely Albizia adianthifolia,
Ekebergia capensis, Harpephyllum caffrum, Hymenocardia ulmoides, Sclercarya birrea and Trichilia dregeana
in the Dukuduku forest are under severe threat and endangered in both the fragmented and intact
forest strata as they face rapid harvesting for woodcarving and traditional medicine [63–65]. In a
previous study, these six endangered tree species were accurately mapped (overall accuracy = 77%)
and distinguished from other land use/cover classes in the Dukuduku area [66]. It is therefore of some
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interest to monitor the growth and health of these six endangered tree species through the prediction
of key biophysical traits (e.g., LAI).Remote Sens. 2016, 8, 324 5 of 26 
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Figure 1. The location of the Dukuduku indigenous forest in KwaZulu-Natal Province, South Africa
and field sample locations overlaid in a true-color WorldView-2 image.

2.2. Sampling Procedure and Field Data Collection

A field campaign was carried out between 1 and 7 December 2013 following stratified purposive
sampling method to collect LAI measurements from the six selected endangered tree species (Albizia
adianthifolia, Ekebergia capensis, Harpephyllum caffrum, Hymenocardia ulmoides, Sclercarya birrea and
Trichilia dregeana). A handheld Leica Geosystem GS20 Geographical Positioning System (GPS) of
sub-meter (0–0.25 m) accuracy [67] was used to geo-locate the sample trees. The networks of road
and open paths were used to assist in selecting the endangered tree species by walking in various
directions in the intact forest. A handheld LAI-2200 plant canopy analyzer was used to estimate LAI
of each sample tree under overcast sky conditions at low solar elevation, i.e., around early morning
(8:00–10:00 a.m., Greenwich Mean Time: GMT +2) and late afternoon (3:00–6:00 p.m., GMT +2) with
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180˝ view restrictor on the sensor [38,68]. To avoid direct sunlight on the sensor, it was required for the
operator to take samples of below and above canopy radiation in the opposite direction to the sun.
For each sample tree, one above canopy measurement was taken by walking to an adjacent open field.
Next, five below canopy measurements were performed on the individual trees at regular space points
around each tree diameter from which the average sample LAI was calculated. In total, 563 trees were
collected from both the fragmented (n = 300) and intact (n = 263) indigenous forest strata (Figure 1).
For each endangered tree species, the sample points were 58 and 67 (Albizia adianthifolia), 47 and
37 (Ekebergia capensis), 41 and 44 (Harpephyllum caffrum), 39 and 56 (Hymenocardia ulmoides), 40 and
59 (Sclercarya birrea), and 38 and 37 (Trichilia dregeana) in the intact and fragmented strata, respectively.

2.3. Calculating Leaf Area Index from Field Data

For processing and calculating LAI from field data, the FV2200 1.2 software, and the LAI-2200
instrument software were utilized to compute the LAI based on the procedure described by LICOR [69].
In a first step, the measurements from the below and above canopy sensors were matched using the
closest readings in time. Detector ring 5 (61˝–74˝) was omitted to reduce the known underestimation
of the LAI compared with the real measurements [13,70]. We omitted the detector ring 5 because the
underestimation of the LAI-2200 plant canopy analyzer increases with increasing zenith angle [71].
These software packages offer diverse options for data processing and different inversion algorithms
to calculate LAI. We used the horizontal model of FV2200 to calculate the LAI because it considered as
an ideal algorithm for calculating LAI of wide and flat canopies like forest trees [30].

2.4. Remotley Sensed Data and Pre-Processing

WV-2 image was acquired on the 1 December 2013 under clear-sky conditions. The WV-2 is the
first multispectral commercial satellite with eight bands, and senses in the 400–1400 nm spectral range
(50–180 nm). The spatial resolution of multispectral bands is 2.0 m along with a panchromatic band
of 0.5 m fine spatial resolution with a swath width of 16.4 km at nadir, and an average revisit time
of 1.1 days [72]. The spectral bands of WV-2 consist of four conventional bands (blue, green, red,
and NIR1) and four additional bands (coastal blue, yellow, red edge, and a new NIR-2). Therefore,
the satellite has the spectral and spatial resolutions that meet many applications like predicting and
monitoring forest structural and biophysical traits at species level [73,74]. The WV-2 image was
atmospherically corrected and transformed to at canopy reflectance using the Quick Atmospheric
Correction (QUAC) procedure in ENVI (Environment for Visualizing Images) 4.7 software [75].
QUAC performs in-scene based atmospheric correction at the visible and near-to-shortwave infrared
(VNIR-SWIR) regions of the electromagnetic spectrum for multi-and hyperspectral imagery. QUAC
determines atmospheric composition parameters directly from the information contained within the
image (pixel spectra), thus allowing for the retrieval of accurate reflectance spectra [76]. The acquired
image was geometrically corrected (Universal Transverse Mercator: UTM zone 36 South and WGS-84
Geodetic datum) by DigitalGlobe™.

2.5. Spectral Vegetation Indices (SVIs)

SVIs based on absorption and reflectance in the visible and NIR regions (e.g., NDVI)
have been widely used for predicting biophysical traits (e.g., LAI) of agricultural and natural
ecosystems [19,30,34,35,77]. In this study, after the WV-2 image was processed, 24 SVIs were computed
(Table 1) and utilized to predict the LAI of the six endangered tree species. These indices were selected
based on previous studies that predicted forest biophysical traits like LAI and biomass [30,77–81].
We investigated the use of all SVIs combined together (n = 24) for predicting the LAI of the endangered
tree species in each forest stratum (i.e., intact and fragmented forests). In addition, the data were
combined across the six endangered tree species and across the two forests (fragmented and intact)
and used to develop universal models that could predict LAI in each of the forest stratum or in the
whole study area.
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Table 1. Summary of the WorldView-2-derived spectral vegetation indices (SVIs) used in this study.

No. Vegetation Index Abbreviation Equation Reference

1 Simple Ratio Index SRI NIR1/RED Jordan [5]

2 Normalized Difference
Vegetation Index NDVI (NIR1 ´ RED)/(NIR1 + RED) Rouse, et al. [82]

3 Ratio Vegetation Index RVI RED/NIR1 Richardson and
Weigand [83]

4 Transformed Vegetation Index TVI
?

NDVI` 0.5 Deering and Rouse [84]

5 Non-Linear Index NLI (NIR2 ´ RED)/(NIR2 + RED) Goel and Qin [85]

6 Atmospherically Resistant
Vegetation Index ARVI (NIR2 ´ (2 ˆ RED ´ BLUE)/

(NIR2 + (2 ˆ RED ´ BLUE) Kaufman and Tanre [86]

7 Structure-Insensitive
Pigment Index SIPI (NIR1 ´ BLUE)/(NIR1 ´ RED EDGE) Peluelas, et al. [87]

8 Renormalised Difference Index RDI (NIR1 ´ RED)/(NIR1 + RED)½ Roujean and Breon [88]

9 Green Normalized Difference
Vegetation Index GNDVI (NIR1 ´ GREEN)/(NIR1 + GREEN) Gitelson and

Merzlyak [89]

10 Modified Simple Ratio MSR (NIR1/RRED ´ 1)/(NIR1/RED)½ + 1 Chen [42]

11 Pigment Specific Simple Ratio
(Chlorophyll a) PSSRa NIR1/RED EDGE Blackburn [90]

12 Pigment Specific Simple Ratio
(Chlorophyll b) PSSRb NIR1/RED Blackburn [90]

13 Plant Senescence
Reflectance Index PSRI (RED EDGE ´ BLUE)/NIR1 Merzlyak, et al. [91]

14 Enhanced Vegetation Index EVI 2.5 ˆ ((NIR1 ´ RED)/(NIR1 + 6 ˆ
RED ´ 7.5 ˆ BLUE + 1)) Huete, et al. [92]

15 Modified Chlorophyll
Absorption in Reflectance Index MCARI

[(RED EDGE ´ RED) ´ 0.2ˆ
(RED EDGE ´ GREEN)] ˆ

(RED EDGE/RED)
Daughtry, et al. [93]

16 Modified Simple Ratio MSR (NIR1 ´ BLUE)/(RED ´ BLUE) Sims and Gamon [94]

17 Normalized Difference Index NDI (NIR1 ´ RED)/(NIR1 + RED) Sims and Gamon [94]

18 Transformed Chlorophyll
Absorption in Reflectance Index TCARI

3 ˆ [(RED EDGE ´ RED) ´ 0.2 ˆ
(RED EDGE ´ GREEN)(RED ´

DGE/RED)]
Haboudane, et al. [95]

19 Visible Atmospherically
Resistant Index VARI (GREEN ´ RED)/

(GREEN + RED ´ BLUE) Gitelson, et al. [96]

20 Visible Green Index VGI (GREEN ´ RED)/(GREEN + RED) Gitelson, et al. [96]

21 Modified Normalized Difference MND (NIR1 ´ BLUE)/
(NIR1 + RED EDGE – 2 ˆ BLUE) Sims and Gamon [94]

22 Carotenoid Reflectance Index CRI (1/BLUE) ´ (1/RED EDGE) Gitelson, et al. [96]

23 Green Index GI (NIR1/GREEN) ´ 1 Gitelson, et al. [97]

24 Red Index RI (NIR1/RED) ´ 1 Gitelson, et al. [97]

Blue, green, red, red edge, near infrared 1 and near infrared 2 are WorldView-2 bands 2, 3, 5, 6, 7
and 8, respectively.

2.6. Statistical Analysis

2.6.1. Descriptive Statistics and an Independent t-Test

The field LAI data were described using the mean and standard deviation (SD) statistics.
The data were then tested for normality using the Shapiro–Wilk test [98]. An independent t-test
was then performed with 95% confidence levels (p ď 0.05) to test if there are significant differences
in the endangered tree species LAI between the intact and fragmented indigenous forest strata.
An independent t-test is the suitable method for comparing means of two groups (e.g., two forest
ecosystems) on a given normally distributed variable (e.g., LAI).
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2.6.2. Support Vector Machines (SVM) Regression Algorithm

SVM algorithm, which was invented by Cortes and Vapnik [53], is based on the statistical learning
theory and requires no assumption on the distribution of the response variable (e.g., LAI) [34,99].
SVMs are very specific learning algorithms characterized by the usage of kernels, absence of local
minima, sparseness of the solution and capacity control obtained by acting on the margin, or on a
number of support vectors. Originally, SVM was developed to solve the classification problems but it
was later extended to handle regression problems [53]. The support vector regression (SVR) algorithm
converts the nonlinear regression problem into a linear relationship by using the kernel functions
to map the original input space into a new feature space with higher dimensions [51]. In particular,
the SVR aims to estimate an unknown continuous-valued function based on a finite number of noisy
samples. Basically, it makes use of structural minimization principle which is known to have good
generalization performance for different dataset sizes as opposed to empirical risk minimization
implemented by other method like ANN [100,101]. Further, the kernel methods of SVR require
optimizing only two parameters. These two parameters are ε-insensitive zone (ε) and regularization
parameter (C). The accuracy of the SVR is highly dependent on a correct setting of the meta-parameters
(ε and C). The parameter ε controls the width of the epsilon-insensitive zone for the calibrating dataset.
Hence, the value of ε can affect the number of support vectors used to construct the regression function.
In other words, the bigger the epsilon, the fewer support vectors are selected. Conversely, bigger ε
values result in more “flat” estimates [52], whereas the parameter C determines the balance between
the model complexity and the degree to which the larger deviations (than epsilon) are tolerated in
the optimization. Therefore, the larger values of C aim at minimizing the empirical risk regardless
of the complexity of the model. In this regard, both C and ε values affect model complexity. A more
detailed description of SVR method can be found in Cortes and Vapnik [53], Cherkassky and Ma [52]
and Ben-Hur and Weston [102].

In this study, the SVM regression method was used to estimate the LAI of the six endangered
tree species using the 24 SVI combined together as predictor variables (n = 24) and to minimize the
calibrating errors, the Vapnik’s ε-insensitive loss function was employed. In order to project the
data into a new space, a radial basis function was used, followed by optimization procedure to find
the number of support vectors for the best performance. Moreover, the optimal values of the two
parameters C and ε of the radial basis function were obtained using a 10-fold cross validation method
and grid search on the calibrating dataset [39,103]. The calibrating dataset was divided into 10 subsets
of equal size, SVM regression models were then calibrated on the nine subset samples, and tested
on the removed one and the process was repeated ten times until all subset samples had served as
test samples. The pair parameter that minimizes the prediction error was then considered as the best
values for the final prediction performance. The analyses were carried out using the e1071 library
version 2.15.2 in R statistical packages [104].

2.6.3. Artificial Neural Networks (ANN) Regression Algorithm

ANN is one of the firstly developed nonparametric machine learning regression techniques. It is
a powerful approach that cannot only analyze complex relationships but also does not depend on an
assumption of data normality [58,105]. The ANN is a mathematical model that simulates the structural
and functional aspects of biological neural connections. It consists of an interconnected group of
artificial neurons and processes information using a connectionist approach for calculation [57].

Several models of ANN such as radial basis function, back propagation and multilayer perceptron
have been applied for analyzing remotely sensed data for a variety of applications like forestry and
ecological modeling [106–108]. Radial basis function neural network has proved to be a good function
for analyzing a wide variety of remotely sensed data since it reduces the computational time required
for the calibrating process [10,105]. The approach requires one input variable, which is the “distance”
between the weight and input nodes. The back propagation is the multi-layer feed forward neural
networks method which comprises of a series of simple connected neurons, or nodes between input and
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output layers [58]. On the other hand, the multilayer perceptron is a commonly used ANN structure
that consists of an input layer, an output layer and one or more hidden layers of nonlinearly-activating
nodes [58,109]. The nodes are connected by a certain synaptic weight to all nodes in the next layer
and the perceptron learning occurs through the changes in the connections weights after the input
protector (SVIs) are processed [109]. The multilayer perceptron is a feed forward ANN model that
projects input data onto a set of suitable output by using three or more layers of nodes with nonlinear
activation functions [58,110]. ANN has been widely used in modeling vegetation and tree species
traits that are not linearly predictable in the original remotely sensed variables [41,111].

In this study, ANN regression algorithm was employed using a feed-forward multilayer
perceptron neural networks with error back propagation modeling approach to estimate the LAI
of the six endangered tree species using all the 24 SVI presented in Table 1 combined together as
predictor variables. In particular, the information in the neural networks moves forward from one
layer to the next to compute the output, and the error is propagated back from output to input layer
to adjust the weights of the connection and the biases so as to minimize the mean square error of
prediction. Many trials of internal network structure, input data, and learning approaches have been
tested to define the optimal regression features based on the method described by Yin et al. [112].
The optimum number of nodes for each trail was tested to assess the necessary number of hidden
layers and the number of required nodes per layer. This was tested by manually changing the number
of nodes in the hidden layer. In this study, the base networks consisted of two hidden layers and the
number of training iterations was set to a default value of 1000 [113]. The number of neurons in the
hidden layer and learning rate parameters were optimized using a trial and error basis. Firstly, the
network was run with a fixed learning rate of 0.01, with the number of neurons in the hidden layer
changing from 1 to 5. Secondly, the network performance was assessed using the root mean square
error and coefficient of determination metrics. The number of neurons that produced the lowest root
mean square error and highest coefficient of determination were selected as optimal neurons.

2.6.4. Validation

To validate the performance of the SVM and ANN regression algorithms, the reference data
were randomly split into 70% (210 and 184 for the intact and fragmented strata, respectively) for
calibration and 30% (90 and 79 for the intact and fragmented strata, respectively) for validation
based on the recommendation by Adelabu et al. [114]. Moreover, the calibration dataset was used
for optimizing the SVM and ANN regression algorithms, whereas the validation dataset was used to
examine the performance and reliability of the prediction models. One-to-one relationships between
the measured and predicted LAI values were fitted and coefficient of determination (R2), root mean
square errors (RMSE), and bias metrics were then calculated. The RMSE provides direct estimates of
the modeling errors expressed in the original measurement units, the lower value of RMSE indicates a
good predictive model performance [100].

3. Results

3.1. Descriptive Statistics and an Independent t-Test

A Shapiro–Wilk normality test showed that the LAI data for the six endangered tree species grown
in the fragmented and intact indigenous forest strata were normally distributed (p = 0.032 for the
intact forest stratum and p = 0.044 for the fragmented forest stratum). Figure 2 shows the descriptive
statistics of the LAI for the six endangered tree species in the fragmented and intact indigenous forest
strata. The result of the independent t-test showed that fragmented forest obtained significantly higher
(p ď 0.05) mean LAI compared to the intact indigenous forest strata (Figure 2). With regard to the
individual tree species, there is a great variability in LAI among the species and the highest LAI mean
values were achieved for Albizia adianthifolia (4.19) and Trichilia dregeana (3.94) in intact forest stratum,
while the lowest mean values were obtained for Albizia adianthifolia (2.03) in fragmented forest stratum
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(Figure 2). Furthermore, the descriptive statistics of the combined (aggregated) LAI across the six
endangered tree species in the intact and fragmented forest ecosystems are also shown in Figure 3.
The figure also shows a significant difference (p ď 0.05) in combined trees LAI between the fragmented
and intact forests.
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3.2. Support Vector Machines (SVM) and Artificial Neural Networks (ANN) Regression Models

Since the SVIs dataset achieved the best results, the study has only reported for both calibration
and validation using combined SVIs dataset. Table 2 shows the optimum parameters for both the
SVM and ANN regression methods. The 10-fold cross validation method and grid search approaches
resulted in optimal ε and C values of 1 and 100, respectively, for all endangered tree species in the
two forest strata, except for the Albizia adianthifolia and Sclercarya birrea in fragmented forest stratum
(1 and 1000), and Hymenocardia ulmoides, Sclercarya birrea and Trichilia dregeana in intact forest stratum
(1 and 10). Similarly, the results showed optimal SVM parameters of 1 for ε and 100 for C when the
combined data were utilized. The table also shows that the input layers for ANN regression method
ranged between 1 and 6 for the six endangered tree species in the fragmented forest stratum and for the
combined data and between 4 and 6 for the species in the intact forest stratum and for the combined
data. The hidden layers were varied between 2 and 5 for the fragmented and the combined data and
4 and 9 for the intact forest stratum.

Table 2. The optimal parameters for the best calibrated SVM and ANN regression models used
for predicting the LAI of the six endangered tree species in the fragmented and intact indigenous
forest strata.

Support Vector Machines

Endangered Tree Species Fragmented Forest Stratum Intact Forest Stratum

ε C ε C

Albizia adianthifolia 1.0 1000 1.0 100

Ekebergia capensis 1.0 100 1.0 100

Harpephyllum caffrum 1.0 100 1.0 100

Hymenocardia ulmoides 1.0 100 1.0 10

Sclercarya birrea 1.0 1000 1.0 10

Trichilia dregeana 1.0 100 1.0 10

Combined data across the
six endangered tree species 1.0 100 1.0 100

Combined data across the
six tree species and the
two forest ecosystems

1.0 1000



Remote Sens. 2016, 8, 324 12 of 26

Table 2. Cont.

Artificial Neural Networks
Endangered Tree Species

Inputs Hidden Profile Inputs Hidden Profile

Albizia adianthifolia 3.0 05 MLP 3:3-5-1:1 4.0 06 MLP 4:4-6-1:1

Ekebergia capensis 5.0 04 MLP 5:5-4-1:1 6.0 08 MLP 6:6-8-1:1

Harpephyllum caffrum 2.0 03 MLP 2:2-3-1:1 4.0 09 MLP 4:4-9-1:1

Hymenocardia ulmoides 1.0 02 MLP 1:1-2-1:1 5.0 06 MLP 5:5-6-1:1

Sclercarya birrea 1.0 02 MLP 1:1-2-1:1 4.0 04 MLP 4:4-4-1:1

Trichilia dregeana 6.0 05 MLP 6:6-5-1:1 6.0 04 MLP 6:6-4-1:1

Combined data across the
six endangered tree species 3.0 04 MLP 3:3-4-1:1 4.0 05 MLP 4:4-5-1:1

Combined data across the
six tree species and the
two forest ecosystems

6.0 05 MLP 6:6-5-1:1

MLP = multilayer perceptron.

The results of calibrating both the SVM and ANN regression approaches are presented in Table 3.
All the SVM and ANN models explained more than 70% of the variance (R2

Cal ď 0.70) in the tree LAI
in the fragmented forest stratum, except for the Sclercarya birrea when the SVM and ANN models
were calibrated and for the Trichilia dregeana using the ANN regression method. For the intact forest
stratum, the results showed R2

Cal values of more than 0.70 for all endangered tree species when SVM
regression model was fitted, whereas the ANN regression models resulted in R2

Cal values of less
than 0.70 for all tree species except for the Harpephyllum caffrum (Table 3). Regarding the combined
LAI dataset, the results of calibrating the SVM regression approach explained low LAI variance of
R2

Cal = 0.45 for the fragmented forest stratum and R2
Cal = 0.41 for the intact forest stratum. Lateral to

that, ANN regression approach achieved R2
Cal of 0.41 and 0.38 for combined fragmented and intact

data, respectively (Table 3). Furthermore, the combined data across the six tree species and the two
forest ecosystems also yielded low coefficient of variation of R2

Cal = 0.46 and 0.43 for predicting LAI
when SVM and ANN methods were used, respectively (Table 3). In general, the SVM regression
models yielded relatively better results compared to the ANN models. On the other hand, models
developed using the fragmented forest data fitted the data more accurately compared with the models
developed using the intact forest data (Table 3).

Table 3. Coefficient of determination (R2
Cal) and root mean square errors (RMSECal) for the SVM and

ANN regression models when calibrated using the data collected from the fragmented and intact
forest strata.

Support Vector Machines

Endangered Tree Species Fragmented Forest Stratum Intact Forest Stratum

R2
Cal RMSECal RMSECal% R2

Cal RMSECal RMSECal%

Albizia adianthifolia 0.79 0.09 2.06 0.83 0.13 1.93

Ekebergia capensis 0.75 0.05 0.87 0.77 0.05 1.27

Harpephyllum caffrum 0.82 0.04 1.09 0.78 0.04 1.35

Hymenocardia ulmoides 0.86 0.03 0.73 0.73 0.06 0.98

Sclercarya birrea 0.64 0.08 1.12 0.72 0.09 3.50

Trichilia dregeana 0.72 0.05 1.73 0.69 0.06 1.72

Combined data across the
six endangered tree species 0.45 0.52 13.81 0.41 0.60 15.85

Combined data across the
six tree species and the
two forest ecosystems

0.46 0.61 18.89
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Table 3. Cont.

Artificial Neural Networks

Endangered Tree Species Fragmented Forest Stratum Intact Forest Stratum

R2
Cal RMSECal RMSECal% R2

Cal RMSECal RMSECal%

Albizia adianthifolia 0.74 0.07 4.69 0.62 0.09 2.18

Ekebergia capensis 0.70 0.03 0.91 0.63 0.05 1.33

Harpephyllum caffrum 0.78 0.04 1.14 0.71 0.05 1.39

Hymenocardia ulmoides 0.84 0.03 0.78 0.59 0.07 2.00

Sclercarya birrea 0.66 0.04 1.15 0.67 0.05 1.31

Trichilia dregeana 0.67 0.06 1.81 0.62 0.08 1.99

Combined data across the
six endangered tree species 0.42 0.59 16.01 0.38 0.70 21.00

Combined data across the
six tree species and the
two forest ecosystems

0.43 0.67 20.30

Cal = Calibration dataset.

3.3. Model Validation

Figures 4–7 show the one-to-one relationships between the measured and predicted LAI for all
models developed in this study. When the performance of the SVM prediction models were assessed,
the results showed that LAI could be better estimated for the Hymenocardia ulmoides grown in the
fragmented forest ecosystem as indicated by the relatively higher R2

Val, and lower error metrics
(Figure 4). For the intact forest (Figure 5), the best model was achieved for predicting the LAI of the
Albizia adianthifolia (R2

Val = 0.80 and RMSEVal = 2.10% of the mean). The slope in all other predictive
models deviated from the expected one-to-one relationship and the models either overestimated or
underestimated the LAI measurements. On the other hand, the best ANN regression model was
achieved for predicting the LAI of the Hymenocardia ulmoides (Figure 6) in the fragmented forest
stratum (R2

Val = 0.71 and RMSEVal = 1.52% of the mean) and for Harpephyllum caffrum (Figure 7) in
the intact forest stratum (R2

Val = 0.71 and RMSEVal = 1.57% of the mean). The results also showed
unreliable and inaccurate models for predicting LAI of the combined six endangered tree species in
the fragmented (RMSEVal = 24.00% and 24.96% of the mean for SVM and ANN, respectively) and
intact (RMSEVal = 21.07% and 26.04% of the mean for SVM and ANN, respectively) forests (Figure 8),
and combined data across the six endangered tree species and the two forest ecosystems (a universal
model RMSEVal = 21.11% and 24.09%. of the mean for SVM and ANN, respectively) (Figure 9). It is
interesting to note that most of the SVM models developed using the fragmented data overestimated
the LAI in all tree species, except for Sclercarya birrea.
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validation dataset (30%) using support vector machines (SVM) regression algorithm and intact
indigenous forest data.
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validation dataset (30%) using: (a) combined fragmented forest data with support vector machines;
(b) combined fragmented forest data with artificial neural networks; (c) combined intact forest data
with support vector machines; and (d) combined intact forest data with artificial neural networks.
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4. Discussion

4.1. WorldView-2 Image Potential in Predicting LAI of Endangered Tree Species

Our study shows that LAI at individual species level can accurately be estimated in fragmented
and intact forest ecosystems. This result is in consistency with other studies that demonstrated
the utility of WV-2 in predicting LAI at different spatial scales of a landscape [14,19,77]. These
findings therefore support the assertion that the potential utility of WV-2 spectral variables
is improved predictions accuracy of vegetation biophysical traits such as LAI in indigenous
ecosystems [14,19,30,77,115]. The successful use of WV-2 data for predicting LAI at tree species level
could be due to the fine spatial resolution (2 m) that is required to capture the spectral properties
of each individual tree species. This is in confirmatory with the finding of other studies like Pu
and Cheng [85] who found that LAI predictive models generated using WV-2 data in a mixed forest
ecosystem performed better than those derived using the relatively low spatial resolutions Landsat 5
TM data.

Although all 24 SVIs (Table 1) combined together were utilized to predict LAI of the endangered
tree species, we hypothesized that the red edge band, which was included in some of the SVI, could
have enhanced the performance of the LAI predictive models. The red edge band, the inflection point
in the slope that connects the reflectance in the red and in the NIR spectral range [116–118], is more
sensitive to vegetation biophysical traits like chlorophyll content as compared to other regions of
the electromagnetic spectrum [19,30,119]. It is found that the vegetation indices computed from the
red edge and NIR have relatively stronger correlation with LAI in different landscapes. Chlorophyll
content can be one of the vegetation biochemical that has a direct relationship with LAI [116,118–120].
In general, our finding is in conformity with Mutanga et al. [115] who concluded that the vegetation
indices derived from WV-2 data involving the uniquely located red edge band can improve the
prediction accuracy of vegetation biophysical traits (e.g., biomass) compared with the indices that only
include conventional bands.

4.2. Predicting LAI of Endangered Tree Species in Frgamented and Intact Forests

The tree LAI in the fragmented forest (open) was significantly higher than that in the intact forest.
The predictive models for predicting LAI in fragmented forest (Figures 4 and 6) outperformed those
for predicting LAI in the intact forest (Figures 5 and 7). In the intact forest, the target endangered tree
species could have been mixed with other tree species within the sample tree and that might have
resulted in mixed spectral characteristics (SVI). Hence, the mixed spectral features in the intact forest
might have hindered the performance of the LAI predictive models. Moreover, in a few cases in the
intact forest and due to the difficulty of taking measurements close to the stem area of the individual
trees, we collected LAI measurements from sites where two or more tree species were overlapped.
The spectral features from the overlapped sites could have also resulted in mixed spectral features
due to different trees structural and biophysical traits [66]. It is also interesting to note that in intact
forest stratum, we sampled trees along the roads and open paths, hence it is expected that one side of
trees could have received more sunlight than other side of the trees. Since LAI is a light-dependent
biophysical trait, the variation in light along trees side could have confounded the prediction of LAI in
intact forest and the performance of the models developed when intact forest data were utilized.

In general, the results of this study showed unreliable and inaccurate models for predicting LAI
in the two forests (fragmented and intact) when the data were pooled across the six endangered
tree species. Likewise, inaccurate universal LAI prediction model was obtained when the data were
combined across the six endangered tree species and the two forests (fragmented and intact). That is
expected, since our six endangered tree species have distinguishable spectral features [66] that would
have confounded the establishment of accurate LAI models across the tree species. The future studies
aiming at predicting LAI in our study area or other areas with similar conditions should classify areas
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into different tree species and separate between the fragmented and intact forests when WV-2 spectral
variables and SVM as well as ANN regression algorithms are employed.

4.3. Support Vector Machines (SVM) and Artificial Neural Networks (ANN) Regression Models

We utilized two optimized learning nonlinear regression methods (SVM and ANN) to predict
LAI in Dukuduku indegenous forest at tree species level. Tree biophysical traits in such a complex,
and dynamic natural ecosystem might not possibly be modeled using a linear relationship. The
nonelinear SVM and ANN regresion approaches explained the high varaibility in the trees LAI in
the complex Dukuduku landscape and resulted in predictive models of relatively high accuracy. We
also parametrized the two regression apprasoches to get the best meta parameters for predicting
LAI [52,121]. The results showed that different optimal parameters were required to estimate LAI in
the fragmented and intact forest ecosystems. This was expected since we employed empirical statistical
approaches for deriving the predictive models under two different forest ecosystems. This result is
in conformity with other studies that reported different optimal settings for SVM and ANN under
different levels and complexities of landscapes [54,68,101,121,122].

Furthermore, our study shows that the LAI predictive models derived using SVM regression
performed relatively better than those derived using ANN regression. Other studies also noted the
superiority of SVM models in predicting forests and crops LAI [19,30,101]. The superiority of SVM
models in predicting endangered tree species LAI when compared with the ANN models could also
be due to the fact that SVM regression usually makes use of structural minimization principle, which
is known to have the ability to produce accurate predictive models [51,100,101]. Meanwhile, ANN
regression approach employs model functions like radial basis function that are relatively biased when
used with input remotely sensed variables and can deviate from what has been presented during
the calibrating stage [21,60,123]. Furthermore, ANN regression is often referred to as a black-box
technique that could encounter an overfitting problem on the test dataset [124,125]. ANN also requires
a relatively long processing time during the calibrating phase due to manual adjustments of the hidden
layers nodes. However, SVM was optimized using a 10-fold cross validation method, while ANN
optimal parameters were obtained using a trial and error approach. Further studies should employ
the same method to calibrate and optimize SVM and ANN regression methods when are compared for
their performance in predicting forest biophysical traits.

Overall, our results are promising for accurate prediction of LAI at tree species level in Dukuduku
forest ecosystem. However, our results should be interpreted with some caution as we used snapshot
data at specific environmental conditions and forest ecosystems. Further studies should explore the
transferability of the present models to other points in space or time. Our LAI estimates should also
be utilized to study and model other forest biophysical (e.g., biomass, net primary productivity) and
metro-physiological (e.g., evapotranspiration) traits using process-based physical models.

5. Conclusions

This study shows a successful application of high spatial resolutions WV-2 spectral variables
and the machine learning SVM and ANN regression methods for predicting LAI of six endangered
tree species in fragmented and intact Dukuduku indigenous forest ecosystems in South Africa. Our
results showed that 60% (R2

Val > 0.60) of the variation in LAI of the endangered tree species could
be explained by the predictive models when data in the fragmented forest ecosystem were utilized.
On the other hand, the results showed that a maximum R2

Val of 0.80 could be obtained for predicting
the LAI of the endangered tree species in intact forest ecosystem. In general, LAI predictive models
developed using the fragmented forest data performed more accurately (RMSEval ranged between
1.37% and 14.72% of the mean) compared with the models developed using the intact forest data
(RMSEval ranged between 1.57% and 5.85% of the mean) and SVM regression approach achieved
relatively more accurate LAI prediction models compared with ANN regression.
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Overall, the successful application of the WV-2 data, SVM and ANN for predicting LAI of six
endangered tree species in the Dukuduku indigenous forest could help in making informed decisions
and policies regarding management, protection and conservation of these endangered tree species.
The findings of this study, however, provide the necessary insight and motivation to the remote sensing
community, ecologists and forest managers to shifting toward identifying the most suitable and readily
available remote sensing sensors necessary for reliable and accurate indigenous forest monitoring
especially in a fragmented ecosystem.
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