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Abstract: Measuring the impact of livestock grazing on grassland above-ground net primary
production (ANPP) is essential for grass yield estimation and pasture management. However,
since there is a lack of accurate and repeatable techniques to obtain the details of grazing locations
and stocking rates at the regional scale, it is an extremely challenging task to study the influence
of regional grazing on the grassland ANPP. Taking Zoige County as a case, this paper proposes an
approach to quantify the spatial and temporal variation of grazing intensity and grazing period
through time-series remote sensing data, simulated grassland ANPP through the denitrification
and decomposition (DNDC) model, and then explores the impact of grazing on grassland ANPP.
The result showed that the model-estimated ANPP while considering grazing had a significant
relationship with the field-observed ANPP, with the coefficient of determination (R2) of 0.75, root
mean square error (RMSE) of 122.86 kgC/ha, and average relative error (RE) of 8.77%. On the
contrary, if grazing activity was not considered in simulation, a large uncertainty was found when
the model-estimated ANPP was compared with the field observation, showing R2 of 0.4, RMSE of
211.51 kgC/ha, and average RE of 32.5%. For the whole area of Zoige County in 2012, the statistics of
the estimation showed that the total regional ANPP was up to 3.815 ˆ 105 tC, while the total regional
ANPP, without considering grazing, would be overestimated by 44.4%, up to 5.51 ˆ 105 tC. This
indicates that the grazing parameters derived in this study could effectively improve the accuracy of
ANPP simulation results. Therefore, it is feasible to combine time-series remote sensing data with the
process model to simulate the grazing effects on grassland ANPP. However, some issues, such as
selecting proper remote sensing data, improving the quality of model input parameters, collecting
more field data, and exploring the data assimilation approaches, still should be considered in the
future work.
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1. Introduction

As one of the most important living environments for human beings [1], grasslands cover
approximately 24% of the world’s land surface area [2]. Grassland ecosystems accumulate up to
18% of the total global terrestrial carbon sink each year and play an important role in the global
carbon cycle [3]. However, due to global warming and unreasonable human disturbance [4], they
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are subjected to serious progressive degradation [5] so that the dynamic balance of the carbon cycle
in grassland ecosystems has been broken [6]. Dynamically monitoring the ecological environment
changes of grassland ecosystems is critical to understand the role of grasslands in the global carbon
cycle and is desirable for the local government to manage the grasslands resource.

Primary production represents the major input of carbon and energy into ecosystems [7] and
above-ground net primary production (ANPP) is considered as an integrative variable of the function
of terrestrial ecosystems because of its relationships with animal biomass, secondary productivity, and
nutrient cycling [8,9]. Grassland ANPP is one of the most direct indicators of grassland ecological
environment status [10]. Methodologically, grassland ANPP could be estimated through the ecosystem
models, which have always been regarded as essential and indispensable tools in simulating net
primary production (NPP), owing to their ability to describe the response of the grassland ecosystem
to changing environmental conditions and human disturbances [11]. Since the 1980s, a variety of
process-based ecological models have been developed to estimate grassland ANPP [12]. Among
them, denitrification and decomposition (DNDC) is considered as one of the most widely used and
successful biogeochemical models [13], and it has been applied to simulate the amount and dynamics
of carbon for almost all terrestrial ecosystems [14]. At the International Workshop on Global Change
for Asia Pacific Region in 2000, the DNDC model was designated as one of the biogeochemical models
applicable for the Asia Pacific region [15]. Although the DNDC model provides a powerful tool to
estimate ANPP, significant uncertainties still exist when it is used to simulate the regional ANPP for
grasslands because of the human disturbances, especially the grazing impact.

Grazing could significantly influence primary production, vegetation composition, and root
biomass [16], and it would have a more direct and rapid impact on standing biomass than other factors,
such as management practices, edaphic conditions, and climate in the short term [17]. Therefore,
how to quantify the variation of the grazing effects on grassland ANPP is critical to simulate regional
grassland ANPP. Despite a lot of debate about whether or not grazing can increase grassland ANPP
at the individual site [18], due to the lack of sufficient historic grazing data, there have not been
enough systematic and comprehensive investigations conducted on the regional grazing effects by
far, especially in the nomadic or semi-nomadic pastures. Although the grazing data derived from
the “Gridded Livestock of the World” (GLW) data could be used to model the grazing effect on dry
grassland carbon cycling, it was too coarse to reflect the spatial variation of grazing intensity [19].
Additionally, because of the large area for livestock grazing, the relatively long duration of active
interaction between animals and plants, and the difficulty encountered in measuring the forage
consumed by free-ranging animals [20], it is even hard to assess regional grazing effects in free grazing
systems. A significant obstacle to quantifying the regional grazing effects is the difficulty in getting the
data regarding the grazing locations and stocking rates through conducting grazing experiments at
a large enough scale [21]. Moreover, there is a lack of accurate and repeatable techniques to obtain
the details of grazing intensity and grazing period at regional scale [22]. Limited regional monitoring
makes it difficult to pinpoint the regional impact of livestock on the grassland ANPP [23].

With the development of satellite and computer technologies, remote sensing techniques have
become highly promising tools in monitoring spatial and temporal changes of the grassland ecosystem
at regional scales with rapid data acquisition and at lower cost [24]. In view of the different vegetation
status between grazing and non-grazing areas, and the good relationships between the vegetation
indices and vegetation coverage, the vegetation indices are usually used to explore the ability of
remote sensing data to quantify the grazing intensity or evaluate the grazing effects. For example,
Kawamura et al. (2005) investigated the spatial distribution of grazing intensity based on the
Normalized Difference of Vegetation Index (NDVI) and the tracking data recorded by global
positioning system (GPS) [25]. Blanco et al. (2009) applied the NDVI to detect the spatial and
temporal patterns of vegetation in two different grazing systems (i.e., continuous and two-paddocks
rest-rotation) [22]. Yu et al. (2010) estimated the grazing capacity using the NDVI, above-ground
biomass data, and theoretical livestock carrying capacity [26]. Li et al. (2014) identified the mowing and
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grazing regions from the NDVI data and then obtained grazing intensity through the grazing steppe
area and annual sheep units [27]. These studies indicated that the spatial pattern of the vegetation
indices (e.g., NDVI) could be used to identify regional changes resulting from livestock grazing that
may not be apparent from local monitoring [23]. Therefore, it is feasible to employ the vegetation
indices to quantify the spatial distribution of grazing intensity at regional scale [28,29]. However, there
has been little research on the grazing period and the variation of grazing intensity within and between
seasons [30]. To simulate regional grassland ANPP in free grazing systems, especially for a short time,
it is necessary not only to quantify the spatial distribution of regional grazing intensity, but also to
obtain the grazing period of grazing pastures.

Since being highly correlated with vegetation phenology and easily available [31], a time series of
the Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI product (MOD13Q1) was chose
to develop an approach to directly estimate the regional grazing intensity and grazing period. Taking
the grassland-wetland ecosystems on the Zoige Plateau in China as a case, we aimed to simulate
grassland ANPP under grazing conditions based on DNDC model and, thereby, evaluated the spatial
and temporal variation of grazing effects and the impact of grazing on grassland ANPP. The specific
objectives of this paper were to (1) develop a methodology to quantify regional grazing parameters,
including grazing intensity, and grazing period; and (2) simulate the grassland ANPP and investigate
its response to grazing activity.

2. Study Area

The Zoige Plateau (101˝301–103˝301 E, 32˝201–34˝001 N, 3400 m a.s.l), located at the eastern
edge of the Qinghai-Tibetan Plateau in China (Figure 1a), covers an area of approximately 4600 km2

of peatlands [32]. It is regarded as one of the largest alpine peat swamp in the world with about
40 percent of peat stocks in China [33]. This paper takes Zoige County as a case area which is a major
and typical region on Zoige Plateau (Figure 1b) [34]. The study area is mainly covered by wetlands
and grasslands and there is a national nature reserve established in the center region of Zoige County
to serve as functions for ecological conservation (Figure 1c). Due to global climate change and human
disturbance (e.g., drainage, grazing, and peat harvest), since 1970s, the wetlands and grasslands in this
area had experienced degradation, and the typical landscape degradation gradient was characterized
by wetlands, moisture grasslands, dry grasslands and deserts. Over the past decades, the wetland area
had been decreasing at a rate of about 3.85% per year [35]. After the middle of 1980s, human activities
like livestock grazing has become one of most critical factors influencing the ANPP in this region [36].
These situations would make Zoige County representative and suitable for carrying out simulation of
the grazing effect on alpine grassland ANPP.

The climate of Zoige County is typical of alpine regions, with low temperature and high humidity.
Based on the meteorological data measured at Zoige meteorological station from 1957 to 2012, the
annual mean temperature was 1.21 ˝C and the average annual precipitation ranged from 464.8 to
862.9 mm (mainly concentrated in May–August). The growing period is from late March to Early
September [34], and the NDVI would be up to the maximum value at the end of July to early August.
The native grasslands are divided into summer pastures, winter pastures and all-year pastures by
local people [37]. In the summer pastures, continuous livestock grazing will last from June to October,
which is the best season for forage production. The grazing pastures from November to May of the
next year are defined as the winter pastures, where grazing period would last seven months or even
longer. In different kinds of pastures, the grazing systems are characterized by nomadic grazing.
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Figure 1. (a) Location of the Zoige Plateau in China; (b) the digital elevation model (DEM) of the 
study area and the spatial distribution of meteorological stations around the Zoige County; and (c) 
land cover types in study area and the spatial distribution of field sample plots used for model 
validation. 

3. Methodology 

3.1. Overall Description 

The DNDC model was adopted to simulate the impact of livestock grazing on the grassland 
ANPP in this paper. Grazing practice in this model is defined by specifying the grazing parameters, 
such as livestock type, heads and the grazing duration [38]. Given that NDVI is better predictor for 
rangeland biomass than other vegetation indices [39], in order to obtain these input parameters at 
regional scale, the time-series NDVI, and the statistical data of livestock heads were used to calculate 
grazing intensity and grazing period. After being converted into the normal sheep units, the grazing 
intensity was input into DNDC model as the heads of livestock per one hectare, and the grazing 
period (i.e., the time interval between two adjacent images) would be seen as the grazing duration. 
Then, based on the grazing parameters and the ecological driving factors (i.e., meteorology, soil, 
vegetation, slope and land cover), the raster information of all input parameters would be resampled 
into 250 m and the DNDC model would be run taking each pixel as a simulation site. In the end, the 
simulation results of grassland ANPP would be validated with the above-ground biomass measured 
at field scale from Zoige County. The total framework of this study can be seen in Figure 2. 

Figure 1. (a) Location of the Zoige Plateau in China; (b) the digital elevation model (DEM) of the study
area and the spatial distribution of meteorological stations around the Zoige County; and (c) land cover
types in study area and the spatial distribution of field sample plots used for model validation.

3. Methodology

3.1. Overall Description

The DNDC model was adopted to simulate the impact of livestock grazing on the grassland
ANPP in this paper. Grazing practice in this model is defined by specifying the grazing parameters,
such as livestock type, heads and the grazing duration [38]. Given that NDVI is better predictor for
rangeland biomass than other vegetation indices [39], in order to obtain these input parameters at
regional scale, the time-series NDVI, and the statistical data of livestock heads were used to calculate
grazing intensity and grazing period. After being converted into the normal sheep units, the grazing
intensity was input into DNDC model as the heads of livestock per one hectare, and the grazing period
(i.e., the time interval between two adjacent images) would be seen as the grazing duration. Then,
based on the grazing parameters and the ecological driving factors (i.e., meteorology, soil, vegetation,
slope and land cover), the raster information of all input parameters would be resampled into 250 m
and the DNDC model would be run taking each pixel as a simulation site. In the end, the simulation
results of grassland ANPP would be validated with the above-ground biomass measured at field scale
from Zoige County. The total framework of this study can be seen in Figure 2.
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Figure 2. The framework for simulating the grassland ANPP under grazing condition for each 
simulation site with the DNDC model. a* and b* are conditions to judge whether a pixel where to be 
used for grazing; and Grazing* indicates that the pixel is used for grazing, while No-Grazing* 
implies that the pixel is identified as an non-grazing area. 

3.2. Grazing Parameters Retrieval 

3.2.1. NDVI Data 

The time-series NDVI data used to explore the method describing the grazing effects, were 
from the MODIS NDVI product (MOD13Q1) in 2012, including 23 temporal NDVI images. 
MOD13Q1 data are provided every 16 days at 250-meter spatial resolution as a gridded level-three 
product (available at [40]). Since providing consistent spatial and temporal comparisons of global 
vegetation conditions, such MODIS NDVI products can be used to monitor the vegetation 
conditions and simulate above-ground productivity [26,41]. However, these NDVI products might 
be affected by cloud, atmosphere, and ice-snow cover. Although maximum value composite and 
cloud detection methods had been used in the processing of the NDVI time-series dataset, there are 
still lots of residual noises. Due to the success in offering high-quality long time-series NDVI for 
monitoring the ecosystem on the Zoige Plateau [42], a Savitzky–Golay (S–G) filter was chosen to 
reconstruct the MODIS NDVI time-series dataset before calculating grazing parameters. More 
detailed information about the S–G filter could be found by referring to the previous publication 
[42]. 

3.2.2. Grazing Intensity 

Livestock grazing is a major form of land use in Zoige County and it is also the main human 
driving factor in simulating the grassland-wetland ecosystem with the DNDC model [27]. As shown 
in Figure 3, after the S–G filter application, the NDVI time-series profiles at undisturbed grassland 
would be approximately a parabola (see the dot line). If one region is used for grazing, the NDVI 

 

Figure 2. The framework for simulating the grassland ANPP under grazing condition for each
simulation site with the DNDC model. a* and b* are conditions to judge whether a pixel where to be
used for grazing; and Grazing* indicates that the pixel is used for grazing, while No-Grazing* implies
that the pixel is identified as an non-grazing area.

3.2. Grazing Parameters Retrieval

3.2.1. NDVI Data

The time-series NDVI data used to explore the method describing the grazing effects, were from
the MODIS NDVI product (MOD13Q1) in 2012, including 23 temporal NDVI images. MOD13Q1
data are provided every 16 days at 250-meter spatial resolution as a gridded level-three product
(available at [40]). Since providing consistent spatial and temporal comparisons of global vegetation
conditions, such MODIS NDVI products can be used to monitor the vegetation conditions and
simulate above-ground productivity [26,41]. However, these NDVI products might be affected by
cloud, atmosphere, and ice-snow cover. Although maximum value composite and cloud detection
methods had been used in the processing of the NDVI time-series dataset, there are still lots of residual
noises. Due to the success in offering high-quality long time-series NDVI for monitoring the ecosystem
on the Zoige Plateau [42], a Savitzky–Golay (S–G) filter was chosen to reconstruct the MODIS NDVI
time-series dataset before calculating grazing parameters. More detailed information about the S–G
filter could be found by referring to the previous publication [42].

3.2.2. Grazing Intensity

Livestock grazing is a major form of land use in Zoige County and it is also the main human
driving factor in simulating the grassland-wetland ecosystem with the DNDC model [27]. As shown
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in Figure 3, after the S–G filter application, the NDVI time-series profiles at undisturbed grassland
would be approximately a parabola (see the dot line). If one region is used for grazing, the NDVI
time-series profile should be different from the NDVI curve of non-grazing areas. In order to obtain
the regional spatial and temporal patterns of grazing intensity of the study area, based on the different
land use types, the NDVI time series data acquired from each simulation site would be compared with
the NDVI time series data of the non-grazing regions.
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Figure 3. Comparison of observed NDVI of one pixel with the NDVI of non-grazing areas (the solid
line named NDVIobs is the observed NDVI value of one pixel which would be judged whether it is
used for grazing, and the dot line curve is the trend line of NDVI in non-grazing areas).

As shown in Figure 2, there are two steps set in this paper to calculate the change rate of the
grazing intensity. The first step is to determine whether the study area is used for grazing or not.
Referring to the previous research [22,27], we used the time-series NDVI to develop two new indices,
including the ratio index (RI) and relative difference index (RDI) (Equations (1) and (2)).

RI “
NDVIi

NDVIugi
(1)

RDI “
∆NDVI

∆NDVIug
“

NDVIj ´ NDVIi

NDVIugj ´ NDVIugi
pj ą i ě 1q (2)

where NDVIi and NDVIj are, respectively, the value of NDVI at time i and j for one remote sensing
pixel which would be judged whether it is used for grazing. NDVIugi and NDVIugj are the values of
NDVI for non-grazing regions at time i and j. ∆NDVI is the difference between NDVI at times i and j,
and ∆NDVIug is the difference between NDVI for non-grazing regions at times i and j. Notably, if the
method above is used to determine whether grazing has taken place at the study area, it needs to know
the values of NDVI associated with non-grazing in that area. In this paper, the non-grazing areas were
confirmed by the field investigation. Based on the locations of the non-grazing areas, the NDVI values
for different land use types (i.e., wetland, moist grassland, and dry grassland) would be derived from
the NDVI products, which would be used as the reference values of NDVI in non-grazing area.

RI judges whether one pixel is used for grazing through comparing the NDVI value of the pixel
with the NDVI of non-grazing areas. For one pixel, if only RI is less than one or more than one,
we could not simply recognize this pixel as a grazing pixel or a non-grazing pixel. For example, as
presented in Figure 3, before the vegetation NDVI reaches the maximum value, the NDVI of the 113th
day is 0.2522, less than NDVI value (0.3038) of non-grazing areas, and the RI in 113th is less than one.
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It might be unreasonable to determine the pixel as the grazing pixel at 113th day just only relying
on RI. Since RDI is about 1.43, there might be no livestock grazing during the 97th–113th day after
grazing at the 97th day. In addition, after the vegetation NDVI reaches the maximum value, the RI at
the 305th day is also less than one, and RDI is more than one These two indices combined to show that
there might exist grazing disturbance from 289th day to the 305th day and the grazing activity made
the observed NDVI value decrease faster.

Additionally, RDI provides a measure of grazing impact using the variation of NDVI of one pixel.
Likewise, we should not only depend on RDI to determine whether one pixel is used for grazing.
For example, before the vegetation NDVI reaches the maximum value, the RDI from the 145th to the
161st day is less than one (0.91). However, the pixel could not be easily judged as a grazing pixel.
Because the RI at 161st day is more than one (1.08), and vegetation growth might be restricted by
natural conditions (e.g., heat or water conditions), not by livestock grazing.

Therefore, RI and RDI need to be combined to determine whether a single pixel has been used
for grazing. Meanwhile, as discussed above, if one pixel is used for grazing, the RI must be less than
one. However, before and after the vegetation NDVI value reaches the maximum value, the RDI of
the grazing areas would be different. Accordingly, as seen in Figure 2, a* and b* are deduced to judge
whether a pixel used for grazing as follows:

(a*) Before the vegetation NDVI reaches the maximum value, the regions with RI < 1 and RDI < 1
would be taken as grazing areas;

(b*) After the vegetation NDVI reaches the maximum value, the regions with RI < 1and RDI > 1
would be identified as grazing areas.

Subsequently, the second step is to calculate the grazing intensity. In free-grazing grassland,
we can obtain the grazing intensity of one pixel based on the number of livestock supported by the
variation of NDVI within a certain period of time. In order to subtract the change of NDVI caused
by the different natural conditions, the NDVI in grazing areas would be compared with the NDVI in
non-grazing areas. The calculation formula of grazing intensity can be expressed as follows:

GI “

ˇ

ˇ∆NDVIg ´ ∆NDVIug
ˇ

ˇ

ř

ˇ

ˇ∆NDVIg ´ ∆NDVIug
ˇ

ˇ

ˆ SU (3)

therein, ∆NDVIg “ NDVIgj ´ NDVIgi ∆NDVIug “ NDVIugj ´ NDVIugi (4)

where SU is annual total livestock heads in study area, which was calculated from the number of heads
of livestock recorded in the statistical yearbook of the Zoige County in 2012 provided by Zoige County
government [43]. In this paper, SU need be converted into sheep units according to “animal unit
equivalent” standard provided by Sichuan Provincial Agricultural Department [44]. GI is the grazing
intensity for each pixel from time i to time j, and the unit of GI is the heads of sheep unit per hectare in
one day (SUD/ha). NDVIgi and NDVIgj are, respectively, the NDVI values in grazing regions at time i
and j. ∆NDVIg ´ ∆NDVIug is the variation of NDVI for one grazing pixel.

ř

|∆NDVIg ´ ∆NDVIug|
is the sum of the NDVI changes during a certain period of time for the total study area.

Based on previous research results about the grazing in Zoige Plateau [45] grazing could be
divided into very light grazing, light grazing, moderate grazing, heavy grazing, and very heavy
grazing (Table 1). Light grazing was defined as 5 SUD/ha, which is the maximum number of sheep per
ha (within a range of 1 to 5 SUD/ha) that ensured little grazing utilization (less than 30%). Moderate
grazing was defined as 10 SUD/ha, which was as the maximum number of sheep that could make
the grazing utilization less than 60%. Heavy grazing occurred at GI of 10–20 SUD/ha, and resulted in
grassland degradation. Very light grazing and very heavy grazing are, respectively, defined as less
than 1 SUD/ha and more than 20 SUD/ha.
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Table 1. Standard of grazing intensity.

Type Grazing Intensity (SUD/ha) Grazing Utilization (%)

Very light grazing <1 <20
Light grazing 1–5 20–30

Moderate grazing 5–10 30–60
Heavy grazing 10–20 60–70
Very grazing >20 >70

3.2.3. Grazing Period

Grazing period is usually defined as the number of days when a pasture is grazed. In this paper,
the grazing period for one year can be obtained through accumulating the grazing durations. Based
on the method described above, from January 1st to December 31st in 2012, 22 maps of grazing
intensity (except the first day in 2012) were obtained from the 23 time-series MODIS NDVI images.
The grazing duration would be calculated from the time interval between two adjacent images which
was inferred that there was livestock grazing. Taking one pixel as an example, if this pixel at 17th day
was recognized for grazing, the grazing duration would be 16 days (i.e., 1st–17th day). Otherwise, the
grazing duration would be zero day. For each map of grazing intensity, one corresponding spatial map
of grazing duration would be obtained. Finally, there are 22 maps of grazing duration would be used
to calculate the grazing period in 2012.

In view of the grazing duration results for the study area, according to the character of the period
of time for livestock grazing, the spatial distribution of the different pasture types (i.e., non-grazing
areas, winter pastures, summer pastures, and all-year pastures) could be discriminated from the whole
study area.

3.3. DNDC Model

3.3.1. Model Description

The DNDC model (version 9.5, available at [46]), developed at the University of New Hampshire,
is a process-based ecosystem model which was originally used for estimating carbon sequestration
and nitrogen trace gas emissions from the agricultural ecosystem [47]. Through long-term applications,
this model has been used to simulate biogeochemical carbon cycle for almost all terrestrial ecosystem
(i.e., farmland, forest, wetland, and grassland) and validated to be one of the most widely accepted
biogeochemical models in the world [48].

This model consists of six interacting sub-models (simulating the process of soil and climate,
vegetation growth, decomposition, nitrification, denitrification, and fermentation separately) and is
mainly driven by four primary ecological drivers (namely climate, soil, vegetation, and management
practices) (Figure 2). With the six sub-models and a large number of ecological input parameters, the
DNDC model can directly simulate the variations of NPP for the grassland-wetland ecosystem. Based
on the estimation results of NPP, the DNDC model was improved to calculate ANPP through the
Equation (5):

ANPP “ NPPˆ
fgrain ` flea f ` fstem

fgrain ` flea f ` fstem ` froot
(5)

where fgrain, flea f , fstem and froot are respectively the grain, leaf, stem, and root fractions of total biomass
at maturity and they were obtained from the vegetation data.

In DNDC model, grazing activity would directly affect the ANPP simulation results through
changing the standing live aboveground biomass and having an influence on the nitrogen demand
of vegetation growth. As shown in Figure 2, the grazing parameters would be input into the process
model to calculate the residual biomass after grazing and the nitrogen demand of plant material.
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3.3.2. Input Parameters

There are generally 38 input parameters in DNDC model without considering management
practices (e.g., livestock grazing), including climate, soil, vegetation, slope, and land use data.

The meteorological data in 2012 (1 January–31 December) for 28 meteorological stations around
the study area (see Figure 1b) were provided by the Chinese Meteorological Administration (available
at [49]), including daily temperatures, daily precipitation, daily wind speed, daily radiation, and
daily humidity data. Based on the ANUSPLINE software package [50], incorporating the variation
in elevation, the five climate databases were interpolated to obtain 250 m ˆ 250 m grid. Other
meteorological parameters, such as nitrogen concentration in rainfall, atmospheric background NH3

and CO2 concentration, were set to the default values of the DNDC model.
The soil property data were derived from the Chinese soil map at a scale of 1:1,000,000 (available

at [51]), including soil type, soil organic carbon (SOC), bulk density, soil pH, and soil clay. The
dominant soil type in Zoige County is loam, covering >83.2% of the study area. The values of main
soil parameters (listed in Table 2) could be set by references to the parameter values derived from the
Chinese soil map at scale of 1:1,000,000 or the default values of the DNDC model.

Table 2. Values of input soil parameters used in the DNDC model.

Parameters Sandy
Loam Loam Clay Loam Sandy

Clay Clay Pristine
Peat Soil

SOC at surface soil (0–5 cm)
(kgC/kg) a 0.00235 0.00235–0.005033 0.065667 0.001233 0.003783 0.065667

Bulk density (g/cm3) a 1.51 1.38–1.40 1.32 1.41 1.21 1.21–1.39
pH a 5.7 6.4–8 5.6 7.7 6.1 5.6–6.6

Clay fraction (0–1) a 0.06 0.20–0.23 0.32 0.23 0.56 0.22–0.56
Field capacity (0–1) b 0.32 0.49 0.57 0.6 0.75 0.55
Wilting point (0–1) b 0.15 0.22 0.27 0.28 0.45 0.26

Porosity (0–1) b 0.435 0.451 0.476 0.426 0.482 0.701
Hydro-conductivity (m/h) b 0.1248 0.025 0.0088 0.0078 0.0046 0.0072

a refers to the parameters derived from the Chinese soil map at a scale of 1:1,000,000; b refers to the parameters
derived from the default values of the DNDC model.

The vegetation data was built according to the Sichuan province vegetation type map at the scale
1:1,000,000 (provided by our research team). As seen in Table 3, the dominant vegetation communities
in Zoige County are Kobresia setchwanensis, Carex muliensis, Kobresia pygmaea, Kobresia capillifolia, Kobresia
schoenoides, Elymus nutans, and Polygonum macrophyllum. The relevant parameters came from the field
survey or referred to the relevant papers and the default values of the DNDC model.

The slope data was generated from the Shuttle Radar Topographic Mission (SRTM) 90m digital
elevation model (DEM) dataset (Figure 1b), which could be available from International Scientific and
Technical Data Mirror Site [52].

The land cover map with a 30-m spatial resolution was provided by our research team (Figure 1 c).
It was derived from TM images and auxiliary data such as DEM and time-series NDVI by the
matter-element fuzzy decision-making classifier, with an overall precision of 89.89% [53]. As shown in
Figure 1c, in Zoige County, the wetlands and grasslands account for about 77.2% of the whole study
area, including herbaceous wetland, peatland, wet meadow, meadow, prairie, and sparse pasture. In
accordance with the requirements of the DNDC model, these six land cover types would be classified
into three categories: wetland (herbaceous wetland and peatland), moisture grassland (wet meadow),
and dry grassland (meadow, prairie, and sparse pasture).
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Table 3. Values of input vegetation parameters used in the DNDC model.

Parameters Kobresia
setchwanensis

Carex
muliensis

Kobresia
capillifolia

Kobresia
schoenoides

Elymus
nutans

Polygonum
macrophyllum

Maximum biomass
production (kgC/ha) a 15,000 15,000 15,000 15,000 20,000 15,000

Grain Leaf and stem fraction
of biomass b 0.084 0.087 0.084 0.076 0.22 0.084

Root fraction of biomass b 0.916 0.913 0.916 0.924 0.78 0.916
C/N ratio of above plant c 18.751 18.751 18.751 18.751 19.177 17.591

C/N ratio of root c 62.304 62.304 62.304 62.304 62.304 62.304
Water requirement (kg
water/kg dry matter) d 800 800 800 800 200 200

TDD (˝C) c 1500 1200 1500 1200 2000 1500
N fixation index d 1.5 1.5 1.5 1.5 1.5 1.5

R/S c 10.9 10.51 10.9 12.12 3.55 10.9

C/N, carbon/nitrogen; TDD, thermal degree days for maturity; R/S, root/shoot ratio; a refers to the parameters
derived from the field observation; b refers to the parameters derived from the papers [54,55]; c refers to the
parameters derived from the papers [56–58]; d refers to the parameters derived from the default values of the
DNDC model.

3.4. The Ground Measurements

Since the grasses would accumulate the maximum biomass at the end of growing season [34],
we chose the relatively flat area to conduct the field sampling measurements in mid-August 2012.
As shown in Figure 1c, a total of 39 monitoring field plots with GPS record in Zoige County were
collected. At each monitoring site, one sample plot with the size of 100 m ˆ 100 m is designed to
have nine samples with a size of 1 m ˆ 1 m distributed uniformly in the sample plot. For nine
samples, above-ground grass would be harvested and dried. The above-ground biomass were then
converted into ANPP through multiplying by an empirical coefficient of 0.475 [59]. In each sample
plot, there were nine above-ground biomass samples and their average value would be assigned to the
sample plot.

Among all monitoring field plots, six field plots are located inside an exclosure which were not
used for grazing (Figure 1c), including one wetland plot, one moisture grassland plot, and four dry
grassland plots. For these non-grazing plots, based on each NDVI image, we derived the minimum
NDVI values for each land use type as the NDVI threshold values of different land use types in
non-grazing areas. Then, there would be 23 NDVI values of non-grazing areas in 2012 obtained from
the NDVI time series dataset and a NDVI curve of the non-grazing areas for wetland, moist grassland,
and dry grassland would be generated.

4. Results and Analysis

4.1. Validation of DNDC-Simulated Results

In order to evaluate the accuracy of the model simulation results, using the ground measurements
and the model simulation results, we calculated the coefficient of determination (R2), root mean square
error (RMSE), and relative error (RE) to evaluate the performance of the DNDC model.

As shown in Figure 4a, if grazing was considered, the ANPP simulation results of the sample
plots were very close to the observed data, with R2 of 0.75 and RMSE of 122.86 kgC/ha. The RE ranged
from 0.51% to 37.58% and the average RE was 8.77%. This indicated that the model estimations were
consistent with the observed ANPP of Zoige sample fields. It is reasonable to believe that the DNDC
model could be used to simulate the ANPP under grazing condition in Zoige County. If grazing was
not considered, the ANPP simulation values had poor accuracy, with RMSE of 211.51 kgC/ha and
average RE of 32.5%. As shown in Figure 4b, the DNDC-simulated ANPP were different from the field
measurements, with R2 of 0.4. Therefore, the combination of DNDC and the remote sensing-derived
grazing parameters could effectively improve the accuracy of ANPP simulation results.
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4.2. Spatial Variation of Regional ANPP

Figure 5a illustrates the spatial distribution of simulated ANPP of the Zoige County
wetland-grassland ecosystem in 2012 with the consideration of grazing activity. For the whole area, the
total above-ground productivity was up to 3.815 ˆ 105 tC. The regional average ANPP was calculated
to be 483.47 kgC/ha, with values ranging from a lowest ANPP of 7.67 kgC/ha in sparse pastures
to a highest ANPP of 3869.76 kgC/ha in herbaceous wetlands. As shown in Table 4, the areas with
higher regional average ANPP mainly located in herbaceous wetlands, peatlands, and wet meadows.
Meadows and prairies, covering the largest areas in Zoige County, generally had the ANPP of
100–500 kgC/ha, with the regional average ANPP of 422.46 kgC/ha and 389.71 kgC/ha, respectively.
Sparse pastures had a smaller area and lower ANPP, and the regional average ANPP was 328.84 kgC/ha.
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Table 4. The regional average ANPP of the different land cover types in Zoige County considering
grazing (ANPPg) and without considering grazing (ANPPug).

Land Cover Types Area (ha) ANPPg (kgC/ha) ANPPug
(kgC/ha)

Difference between
ANPPug and ANPPg

(kgC/ha)

Herbaceous Wetland 95,181 680.4 882.93 202.53
Peatland 45,906 794.97 823.46 28.49

Wet Meadow 50,450 733.32 892.56 159.24
Meadow 318,793 422.46 667.48 245.02
Prairie 270,143 389.71 614.50 224.79

Sparse Pasture 4543 328.84 576.41 247.57

4.3. Effect of Grazing on ANPP

If grazing was not considered, as shown in Figure 5b, the ANPP simulation results had a similar
spatial pattern with those considering the grazing activity, but the former values were slightly larger
than the latter ones. The maximum and minimum values of ANPP without considering grazing
would be, respectively, 3880.44 and 109.76 kgC/ha. For the whole area, the regional ANPP in Zoige
County would be overestimated by 44.4%, up to 5.51 ˆ 105 tC and the regional average ANPP was
698.3 kgC/ha.

As seen in Figure 5c, the regional average difference of ANPP between the non-grazing and
grazing scenarios was about 214.84 kgC/ha and the total difference of regional ANPP was up to
1.695 ˆ 105 tC. For different land cover types (Table 4), the variation in ANPP under different grazing
conditions mainly occurred in the dry grasslands (e.g., meadow, prairie, and sparse pasture), with the
difference of ANPP above 200 kgC/ha. Compared with the simulated ANPP without considering
grazing, the regional average ANPP while considering grazing in peatlands did not change much as
the difference was 28.49 kgC/ha.

With the change of the grazing intensity levels, if grazing was considered, the values of ANPP
would vary more greatly than ones without considering grazing. As seen in the Table 5, light to
moderate grazing would make ANPP decrease 100–300 kgC/ha and heavy grazing would reduce
ANPP more. When the grazing intensity in grass growth period was less than 1 SUD/ha (Table 5), the
ANPP would increase or remain unchanged. Especially for peatlands would remain almost pristine
marsh due to less human activity.

Table 5. The regional average grazing intensity, the regional average ANPP considering grazing
(ANPPg) and without considering grazing (ANPPug) for different grazing intensity levels in
Zoige County.

Grazing Intensity
Levels

Grazing Intensity
(SUD/ha) ANPPg (kgC/ha) ANPPug

(kgC/ha)

Difference between
ANPPug and ANPPg

(kgC/ha)

Very Light Grazing 0.433 1020.425 880.461 ´139.964
Light Grazing 2.92 715.017 811.052 96.035

Moderate Grazing 6.282 325.851 639.460 313.609
Heavy Grazing 12.404 275.251 640.739 365.488

Very Heavy Grazing 26.621 239.253 602.701 363.449

5. Discussions

5.1. Credibility of the Derived Grazing Parameters

Using time-series remote sensing data, this paper proposed an approach to estimate regional
grazing parameters (i.e., grazing intensity and grazing period). Compared with previous studies, the
method used in this study had some characteristics to make the derived grazing information credible.
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This method combining RI and RDI would be more suitable for identifying grazing areas than
other methods used in studies such as [27]. Specifically, the RI/RDI constituted by the NDVI of grazing
and non-grazing areas could reduce some impact of environmental factors, avoid the errors caused
by setting the threshold values and prevent using one grazing intensity/period for one place in a
whole year.

Significantly, the spatial variation of grazing intensity could be present in this study. The regional
annual average grazing intensity was 2.745 SUD/ha, with the range from 0.559 SUD/ha in peatlands
to 4.419 SUD/ha in sparse pastures (Table 6), which were close to the grazing intensity (2.83 SUD/ha)
calculated from the stock carrying capacity of Zoige County in [60]. Therefore, it is reasonable to
believe that the values of the grazing intensity calculated in this paper are convincing. Significantly,
this method can avoid using low-resolution grazing intensity input into ecological models to estimate
ANPP. For instance, the GLW (available at [61]), developed by Food and Agriculture Organization
(FAO) in collaboration with the Environmental Research Group Oxford (ERGO), is the data about the
distribution of livestock, with spatial resolution of 0.05˝. Although the GLW data had been used in
estimating the grazing intensity [19], it could not reflect the real grazing intensity in Zoige County
for its low-resolution (Figure 6a). On the contrary, the grazing intensity calculated from time-series
remote sensing data in this paper can offer high-quality data for regional scales, with spatial resolution
of 250 m (Figure 6b). It is obvious that the grazing intensity used in this paper can illustrate the spatial
distribution of the grazing intensity better than the data from FAO.

Table 6. Annual average grazing intensity and annual grazing period for different land cover types.

Land Cover Types Grazing Intensity (SUD/ha) Grazing Period (day)

Herbaceous Wetland 2.520 81.314
Peatland 0.559 7.110

Wet Meadow 2.039 70.588
Meadow 3.325 159.843
Prairie 3.599 159.166

Sparse Pasture 4.419 166.426

Simultaneously, the time-series grazing intensity and the grazing period, which had been hardly
reported in previous studies [8,17,25,27,28] and could not be provided by FAO (Figure 6a), were also
provided in this study. It allows us to quantify the temporal changes of grazing intensity in nomadic
grazing patterns and analyze the types of pastures.

For one whole year, the average grazing intensities of Zoige County varied from 2.58 SUD/ha
to 3.95 SUD/ha (except the 353rd day) (see Figure 7), which were also verified by the stock carrying
capacity of Zoige County in the paper [60]. From the 17th day to the 337th day, the values of grazing
intensity decreased first, and then increased, up to the peak in January or December. Among them, the
average grazing intensity in 177th day was 3.687 SUD/ha, even more than ones in January. This is
reasonable because it is consistent with the results of the previous research [62], which documented
that the day-grazing time in summer was longest and the stocking rate was too high in summer
pastures. Another reason for the high grazing intensity in summer might be that abundant production
was stored in summer to feed the livestock in other season. On the contrary, the grazing intensity
in the 353rd day was calculated to be more than 300 SUD/ha, which was obviously unreasonable
because the grass yield of one hectare could not feed so many sheep in Zoige County [60]. This error
was associated with the limited above-biomass and the small variation of the vegetation NDVI for
whole study area in winter, which might make the grazing intensity over-estimated.
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In addition, the spatial distribution of the grazing period in Zoige County was presented in
Figure 6c, with average grazing period of 118.82 days. For different land cover types, the grazing
period for wetlands and moisture grasslands was generally less than the grazing period for other land
cover types (Table 6). Especially for peatlands, the annual grazing period was 7.110 days, which was
much shorter than other land cover types. This is also consistent with the actual situation in Zoige
County. For example, the peatlands locate in the national wetland nature reserve, where the grazing
is strictly limited. Moreover, the peatlands are too wet to fit for the livestock grazing [32]. Therefore,
it is reasonable to believe that the grazing period calculated in this paper could be used to monitor
the spatial distribution of the different types of pastures in nomadic grazing systems. As shown in
Figure 6d, all-year pastures, summer, and winter pastures accounted for 73.4%, 10.6% and 8.3% of the
Zoige County, respectively. The area of the all-year pastures was far more than other types of pastures.
These might corroborate that the average area of pastures each family held in Zoige County (less than
10.15 ha) [63] was not large enough to be divided into several regions for grazing rotation.

5.2. Error Sources of Regional ANPP Simulation

Compared with the model-simulated ANPP without considering grazing activity, although the
accuracy of model-simulated ANPP while considering grazing impact could be improved significantly
with R2 of 0.75, there are still some errors between the model-simulated ANPP and the observed
data with RMSE of 122.86 kgC/ha. This might be because there are a number of uncertainties
deriving from the initial input parameters in simulating process [64]. In our previous work [65], some
input parameters of the DNDC model, such as the daily temperature [66], root biomass C/N ratio
and annual nitrogen demand [67], atmospheric background CO2 concentration, land use type, and
soil type, had been proved to have a significant impact on the accuracy of the model simulation
results. The low resolution or accuracy of these input parameters would directly result in poor
model simulation results. For example, soil type from the map at the scale 1:1,000,000 would bring
errors into regional ANPP simulation result for their low resolution, and regional meteorological data
derived from the interpolation method could not provide enough precise information by lack of the
observation stations [68]. Therefore, the development of high-quality datasets of regional ecological
parameters is essential for highly accurate regional model simulations [19]. In addition, no matter what
circumstances, there was still a large uncertainty introduced in the analysis of terrestrial C dynamics
for model deficiencies, uncertain parameters over large areas or other factors, especially at regional
scale [69]. Thus, the data assimilation approaches, which could effectively combine the observation
information and process-based models to improve parameterization of biogeochemical models and
the accuracy of simulation [70], should be explored to obtain the accurate simulation results in the
future work.

5.3. Merits and Limitations of Current Work

Due to the lack of enough grazing data at regional scale, there is little research studying the
influence of grazing on the regional ANPP [71]. This study tried to combine the time-series remote
sensing data with the process model to develop a methodology to simulate the grazing effects on
grassland ANPP at regional scale. Compared with previous studies, this method has some merits in
simulating the grazing effects on ANPP. On the one hand, it could avoid being constrained by the
field observations and provide high-resolution data about the regional grazing intensity and grazing
period. Furthermore, it would allow us to monitor the temporal changes of grazing intensity in
nomadic grazing patterns and analyze the grazing period of the pastures. On the other hand, it could
successfully simulate the grassland ANPP under grazing conditions and investigate the response
of grassland ANPP to grazing. For example, compensatory or overcompensatory growth existing
between ANPP and grazing [18] and over-grazing could easily be expressed in the time-series remote
sensing data. Moreover, the grazing would be confirmed to have influence on ground cover in a short
term [72], and very light grazing could improve the ANPP [19].
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Although the method above has been proved to have many advantages for estimating the grazing
effects on regional ANPP, there are still questions needed to be solved in future work.

According to the Equations (1)–(3), the calculation of grazing parameters assumes that the
deviation from the non-grazed temporal dynamic of the NDVI was only induced by the grazing
activity. However, in fact, the variation of the vegetation NDVI between the grazing and non-grazing
areas might be due to meteorological, soil, and topographical conditions [73], especially for the
different years. And the NDVI time-series profile of non-grazing areas would directly affect the
accuracy of the grazing parameters calculation results. Therefore, in order to reduce the influence of
these environmental factors on vegetation NDVI and employ reasonable NDVI threshold values, it
needs enough field investigations of non-grazing areas for each year to ensure reference NDVI curve
in non-grazing areas representative and adequate for the study area. However, for a large region, it
is impossible to obtain enough field samples. If a perfect NDVI curve in non-grazing areas could be
created through the plant growth models or by other means, it might be able to ensure that the grazing
intensity/period is more reliable.

Obviously, the accuracy of the grazing period estimated in this paper would be affected by the
time of the NDVI data. In this paper, the grazing parameters came from the MOD13Q1 vegetation
indices product, which is generated by the Constrained View angle—Maximum Value Composite
(CV-MVC) method. The CV-MVC method tends to select pixel observation with the highest NDVI
value to represent the entire period (16 days). In the extreme case, there would be one day or 30 days
between two adjacent NDVI images and there would be large errors in the grazing period. Thus,
the daily NDVI data (e.g., MODIS MOD09GQ) was suggested to be an alternative data in estimating
the grazing parameters. However, due to the interrupt of clouds or cloud shadow, aerosol and data
transmission errors, etc., it might be also hard to obtain a perfect grazing intensity/period. Therefore,
it is worth exploring how to improve the calculation accuracy of the grazing parameters (i.e., grazing
intensity and grazing period) in our future work.

In addition, lacking the spatial and temporal grazing information on Zoige County, it is hard to
verify the accuracy of the grazing intensity or grazing period in this paper. In future work, the field
experimentations needs to be developed, such as GPS tracking [25], plant community surveying [74],
livestock fecal material evaluating [74], livestock surveying [75], or other approaches to obtain the
validation data of the grazing. Moreover, some changes associated with ANPP and the livestock
grazing, such as soil properties, micrometeorology, and water [76], also need to be explored by
combining the remote sensing with the filed samples in the future work.

6. Conclusions

Taking the Zoige Plateau grassland-wetland ecosystem of China as a case, this study proposed
an approach to simulate the grazing effects on ANPP using time-series remote sensing data and a
process-based ecosystem model. Compared with the ANPP simulation results without considering
grazing, the ANPP estimated had more significant relationship with the observed ANPP, with R2

of 0.75, RMSE of 122.86 kgC/ha, and average RE of 8.77%. Therefore, this method can successfully
estimate the grassland ANPP under grazing conditions at regional scale.

In Zoige County, the total regional ANPP in 2012 was up to 3.815 ˆ 105 tC. If grazing activity
was not considered in simulating the ANPP, the regional ANPP would be overestimated by 44.4%, up
to 5.51 ˆ 105 tC. For the whole study area, livestock grazing and ANPP would change with the land
cover types. For instance, peatlands had remained almost pristine marsh due to less human activity,
with average ANPP of 794.97 kgC/ha. Herbaceous wetlands and wet meadows also had higher
above-ground productivity (more than 800 kgC/ha). For lower grazing intensity (<2.6 SUD/ha) and
shorter grazing period (less than 82 days), the ANPP of herbaceous wetlands and wet meadows were
680.4 kgC/ha and 733.32 kgC/ha, respectively. Meadows, prairies, and sparse pastures, accounting for
75% of the study area, were considered to be major grazing pastures, with the annual average grazing
intensity more than 3.3 SUD/ha and the grazing period more than 159 days.
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In conclusion, the combination of the time-series remote sensing data and a process-based
ecosystem model could provide high resolution data about the regional grazing intensity and grazing
period, monitor the spatial variations of the grazing intensity, identify the kinds of the pastures,
simulate the grassland ANPP under grazing conditions, and investigate the response of grassland
ANPP to grazing. If following our method, it is worth paying close attention to how to obtain the perfect
vegetation indices’ curves for non-grazing areas without the disturbance of the environment factors.
Meanwhile, it is essential to try to use the proper NDVI data and high quality drive data (including
meteorological, soil and vegetation data) at the regional scale in simulating regional above-ground
biomass. In addition, the grazing data and the grassland ANPP at regional scale should be further
verified through the field experimentations or by other means (e.g., remote sensing). Moreover, the
mechanisms about ANPP and grazing still need to be explored by combining the remote sensing with
the field samples in future work. Lastly, the data assimilation approaches should be explored to obtain
accurate simulation results in the future work.
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