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Abstract: Automatic extraction of ground points, called filtering, is an essential step in 

producing Digital Terrain Models from airborne LiDAR data. Scene complexity and 

computational performance are two major problems that should be addressed in filtering, 

especially when processing large point cloud data with diverse scenes. This paper proposes 

a fast and intelligent algorithm called Semi-Global Filtering (SGF). The SGF models the 

filtering as a labeling problem in which the labels correspond to possible height levels. A novel 

energy function balanced by adaptive ground saliency is employed to adapt to steep slopes, 

discontinuous terrains, and complex objects. Semi-global optimization is used to determine 

labels that minimize the energy. These labels form an optimal classification surface based 

on which the points are classified as either ground or non-ground. The experimental results 

show that the SGF algorithm is very efficient and able to produce high classification 

accuracy. Given that the major procedure of semi-global optimization using dynamic 

programming is conducted independently along eight directions, SGF can also be paralleled 

and sped up via Graphic Processing Unit computing, which runs at a speed of  

approximately 3 million points per second. 
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1. Introduction 

Since the 1990s, airborne Light Detection and Ranging (LiDAR) has been an important technological 

innovation in remote sensing and mapping science. LiDAR is capable of directly acquiring high-accuracy 

3D coordinates of discrete points on the earth’s surface. The extraction of Digital Terrain Models (DTM) 

from airborne LiDAR point cloud has been an attractive research topic [1]. As both ground and non-ground 

objects (e.g. buildings, vegetation, and vehicles) reflect laser light, the first step towards generating a 

DTM from a LiDAR point cloud is classifying the point cloud into ground and non-ground points. This 

task is referred to as filtering. With the variations in scene complexity, LiDAR data filtering can be a 

difficult task, and its quality control procedure may consume approximately 60% to 80% of the total 

processing time [2,3]. Moreover, filtering is challenging for real-time applications or large-volume  

data processing. 

Many techniques for separating ground and non-ground points from airborne LiDAR have been 

developed. The typical algorithms of filtering can be roughly categorized as follows: slope-based [4–7], 

linear prediction-based [8–10], mathematical morphology-based [11–13], progressive Triangulated 

Irregular Network (TIN)-based [14–16], and segmentation-based [17–19]. The merits and drawbacks of 

these methods have been reported [3,11,13,20]. The methods that estimate the properties of a local 

surface have been proven better than those that only detect elevation discontinuities [2]. This case 

implies that using the context of a wider range of points benefits filtering because such a context can 

employ more information to improve the classification accuracy. How to integrate different information 

into a certain extent of the point cloud plays an important role in the algorithm design. From this 

perspective, some algorithms (linear prediction [8–10]) use the local extent of the point cloud. This group 

of methods defines a local discriminant function based on which points are classified as ground and  

non-ground by the parameters or thresholds calculated from the neighboring points. The key to such 

algorithms is extracting ground or non-ground features from a group of neighboring points. Such an 

extraction is generally based on the assumption that the slope between a ground point and its neighboring 

ground point is gradual rather than abrupt. Generally, these algorithms perform effectively on flat 

terrains. However, discontinuities often happen on steep terrains, such as terraced fields, scarps, and 

steep forested areas [3]. Therefore, ground with discontinuities may be filtered out, which may cause a 

decline in accuracy [1]. To address such problems, global-based methods have been developed. Thin plate 

spline [1] and active shape model [21] model the ground point extraction from airborne LiDAR as a global 

optimization problem. The authors of [22,23] use the Markov Random Field (MRF) to label each point 

with different classes. On the one hand, global-based methods can use both the local and global features 

extracted from a larger extent of a point cloud. Experiments have shown that these methods can extract 

the smooth bare ground while preserving the discontinuities of steep terrains. In fact, the accuracy of the 

best known algorithms sometimes exceeds the demands of the application [24,25], especially when 

processing a large volume of data (tens of millions of points). On the other hand, global-based methods 
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often suffer from expensive computational cost and memory consumption [24,26]. Thus, our task is to 

reliably and quickly filter a large point cloud of complex scenes (or terrains) for DTM generation. 

This paper aims to develop a fast and intelligent algorithm that can deal with large point clouds of 

complex scenes (terrains). Although scan line and 1D-analysis-based methods [5,27] can be accelerated 

by using Graphic Processing Unit (GPU), they are not suitable for dealing with complex scenes because only 

the information in one direction is utilized. Inspired by the Semi-Global Matching (SGM) 

algorithm  [25,28], we model the filtering task as a labeling problem in which an optimal classification 

surface close to the bare ground is computed by minimizing a novel energy function. The classification 

surface is then used to classify the points into either ground or non-ground. Energy function is optimized 

based on a semi-global search using Dynamic Programming (DP) from multiple 1D directions.  

The merits of the proposed method are two-fold. The well-designed energy (objective) function is 

adaptively balanced by the ground saliency produced from elevation segmentation. Given that the search 

takes place in multiple directions independently, it can be implemented by parallel or GPU computing. This 

novel algorithm is called Semi-Global Filtering (SGF). The rest of the paper is organized into three sections. 

Following the Introduction, Section 2 presents the details of the proposed algorithm. Section 3 describes the 

experimental results and discusses the quality and computational performance of the proposed algorithm. 

Finally, Section 4 concludes the study. 

2. Semi-Global Filtering 

2.1. Algorithm Overview 

SGF tries to identify an approximate ground surface (called classification surface) from discrete 

height levels at the horizontal grid cells of data. To achieve this objective, SGF performs three major 

operations: (1) forms discrete grid data from the raw point data and sets up possible height levels (labels) 

of each grid cell; (2) applies semi-global optimization to determine the optimal height level (label) of 

each grid cell, through which the classification surface is obtained; and (3) uses the classification surface 

to categorize the raw point data into ground and non-ground points. 

Figure 1 shows the workflow of SGF. The raw point data is first discretized into a regular grid G. For 

each grid cell p = (x, y), the grid cell point Gp is taken as the lowest elevation of all points within this 

grid cell. The empty cells without points are left blank and ignored during subsequent processing. The 

resolution of G is related to the density of the raw point data. As illustrated in the section view of Figure 1, 

the set of height levels for each grid cell lp is defined as: 

0{ | }

where [( ) / ]

i i

N
p p p p i

p p

l l l S i d

N G S d
 (1) 

where d is the unit height and N is the number of possible height levels in grid cell p. Sp is the height of 

grid cell p from the start surface S. The start surface is a horizontal plane with height that is equal to the 

lowest elevation of all points in the raw point data. 

Considering a regular grid G of size W × H, SGF can be represented as a labeling problem in which 

the labels correspond to different height levels. As illustrates in the section view of Figure 1, the 

optimization procedure of SGF aims to assign an optimal label for each grid cell. This optimal label is 
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the approximate ground height. To avoid clutter in subsequent sections, height levels are represented as 

labels. SGF optimizes the energy function as follows: 

* ( ) ( ( ) ( ))arg min arg min data reg

l l

l E l E l E l  (2) 

where l is the set of possible labels for all grid cells, and l* denotes the optimal labels that minimize 

energy function E(l). The optimal labels l* form a classification surface C, based on which the raw points 

are classified as either ground or non-ground. The data term Edata(l) and regularization term Ereg(l) are 

balanced by ground saliency γ, which is discussed in the following section. Details about the data term and 

regularization term are presented in Section 2.3. For convenience in description, the desired DTM accuracy 

is defined as Da. 

 

Figure 1. Workflow of SGF algorithm and the section view of a row from the regular grid 

(to avoid clutter, we draw possible labels for only one grid cell). 

As mentioned in the Introduction, energy function is equally optimized in a 1D manner from all 

directions. Figure 2 demonstrates that eight independent directions (Figure 2b) are used to assign each 

grid cell p (Figure 2a) with a label llp. These directions are +x, −x, +y, −y, +x+y, −x−y, +x−y and −x+y 

(Figure 2c). It is noteworthy that all the subsequent sections operate over these eight independent 

directions equally. 
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(a) (b) 

 
(c) 

Figure 2. Optimization directions: (a) a regular grid grayed by the corresponding image; (b) 

and (c) eight optimization directions used in SGF. 

2.2. Computation of Ground Saliency for Adaptively Balancing the Energy Function 

Optimization methods often define energy function with a data term and a regularization (smoothness) 

term balanced by a constant coefficient [22,23,29]. LiDAR filtering algorithm segments height 

differences to roughly detect the local saliency of ground features because abrupt height changes indicate 

a high possibility that the features are non-ground. In this paper, we use ground saliency γ to adaptively 

reconcile the energy function (2). At the onset of the experiment, the ground saliency γp for each grid 

cell p is set as 1.0 γp is then updated by two steps: segmentation and subtraction. Without loss of 

generality, assume that we are sweeping the window from left to right for a given row y in the regular 

grid G. The grid cell point Gp is first segmented into segments according to the height difference with 

the grid cell point before it. Figure 3 illustrates the segmentation procedure for a given row when the 

window is swept from left to right. If the segment has a significant height discontinuity with the segment 

that comes after it, then the ground saliencies of all grid cells in this segment subtract a constant value 

of 0.125 (=1.0/N, N is the number of directions (i.e., eight directions in this paper)). Figure 4 displays a 

simulated example of the subtraction procedure for a given row when the window is swept from left to 

right and from right to left. The segmentation threshold Sthro in Figure 3 is equal to Da and the subtraction 

threshold Gthro in Figure 4 is equal to 3 × Da. The segmentation and subtraction procedures are conducted 

in all eight crossing directions independently as shown in Figure 2. These steps operate extremely fast 

because they only perform simple computation (height comparison).  
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(a) (b) (c) 

  
(d) (e) 

Figure 3. Cross section of the segmentation procedure when the window is swept from left 

to right: (a) cross section of a given row from the regular grid; (b), (c) and (d) grid cell points 

are segmented into different segments according to height difference with the grid cell points 

before them; and (e) segmentation result. 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 4. Cross section of the subtraction procedure: (a), (b) and (c) segment has a 

significant height discontinuity with the segment after it in this sweep direction (left to right), 

the ground saliencies of all grid cells in this segment subtract a constant value (0.125) in this 

simulated example; (d), (e) and (f) show the similar operation from right to left. 

Each grid cell has a unique ground saliency calculated according to the height differences between 

grid cell points. The ground saliency has nothing to do with the possible labels. Figure 5 exhibits an 

example of ground saliency results. Both the building and vegetation cells are highlighted, and they have 

relatively small ground saliencies (Figure 5b). The calculation of ground saliency does not mean a precise 

classification of each grid cell. Instead, it is used to adaptively balance the energy terms in (2) other than 

using a constant coefficient. Given that the building and vegetation cells have relatively small (even 0) 

ground saliencies, the regularization term (in Equation (2)) of these places is dominant. This case can 

prevent the classification surface from being attracted to large low buildings and vegetation.  
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Figure 5. Ground saliency results: (left) is the corresponding image of point cloud (right); 

(right) is grayed by (1.0 − γp) × 100. 

2.3. Semi-Global Optimization 

2.3.1. Semi-Global Matching 

Semi-Global Matching is an efficient algorithm for dense stereo matching [25,30–32]. The energy 

function of SGM can also be expressed as (2). SGM divides global optimization into multiple 1D 

optimization processes, which are straight lines that run through the image in multiple directions (Figure 6). 

Each direction is performed separately, the costs are then summed to choose a labeling (in stereo: disparity 

map) for the image [32]. Let Lr be a path that is traversed in the direction r. The cost Lr(Dp) of pixel p at 

disparity D is defined recursive as: 

( ) ( ) min { ( )+ ( , )}
p r

r p p r p r p r p
D

L D D L D D D  (3) 

where φ(Dp) is the data term (matching cost) defined by Mutual Information (MI), and φ(Dp-r, Dp) is the 

regularization term (smoothness cost) defined over the edge. 

The aggregation of directional costs is summed in all directions r: 

( ) ( )p r p

r

S D L D  (4) 

Finally, a pixel label is obtained by defining: 

arg min ( )
p

SGM
pp

D

D S D  (5) 

Above is a simple generalization of SGM described by Hirschmüller and more details can be found 

in [25,28]. 
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(a) (b) 

Figure 6. Cost aggregation of SGM: (a) minimum cost path in disparity space;  

and (b) eight directions that go through the red pixel p. 

2.3.2. Cost Aggregation of SGF 

The data term in (2) is the filtering cost expressed by a function of the distance between Gp and a 

given label llp:  

2( )( ) 1.0 pG l
dataE l e  (6) 

This function makes the optimal labels (classification surface) attracted to G. Such an attraction force 

is strong if the label is close enough to a true ground cell point. The grid cell points belong to non-ground 

objects leave the classification surface unaffected. As shown in Figure 7a, the grid cell points from 

vegetation and buildings are too far from the classification surface to attract it. 

The regularization term is the path cost calculated from the labels of neighboring grid cells: 

| arctan( ) |      if | |
( ) 2

| |                  otherwise 

p q p q

reg

p q

l l l l
E l

l l
 (7) 

  
(a) (b) 

Figure 7. (a) Cross-section of a scene: the classification surface is attracted to the ground 

while the tree and building points are too far to attract the classification surface; (b) q is the 

grid cell before p along a direction. 
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Unlike the traditional 4-connected and 8-connected neighborhoods, q in this case refers to the grid 

cell before p along a direction (Figure 7b). This term adds small and large penalties to labels with little 

or great elevation changes, respectively. A small penalty for small elevation changes permits an 

adaptation to a gentle slope. Contrarily, a large penalty for large elevation changes preserves steep 

terrains, such as terraced fields and scarps. 

Optimization procedure aims to determine an optimal label, which minimizes energy function (2), for 

each grid cell. The off-the-shelf solvers for identifying the minimum of global energy function differ. 

The directional optimization method DP [33,34] minimizes the energy function along each direction 

individually. However, DP solutions easily suffer from streaking [25]. The high-performing methods, 

including Graph Cuts [35] and Belief Propagation [36–38], operate in two dimensions (2D). The  

layered [36,37,39] and Block Coordinate Descent (BCD) approaches [24] are iteratively optimized. This 

paper minimizes the energy function E(l) via semi-global optimization, which is inspired by SGM [25,28]. 

A comparative study (http://vision.middlebury.edu/stereo) revealed that the semi-global optimization 

methods are not as accurate as state-of-the-art ones in solving the stereo matching of indoor scenes. 

Nevertheless, the semi-global optimization is faster and more robust than most other approaches, 

particularly when dealing with aerial data [30].Semi-global optimization performs cost aggregation as an 

approximation of the global optimization via DP from eight directions (Figure 2b). The cost C(p, l) for a 

grid cell p and a label llp is calculated by summing the costs of eight minimum cost directions that end 

in grid cell p at label llp. Only the path cost of DP is required rather than the path itself. Finally, the 

label of each grid cell with the lowest total cost is selected to form the final classification surface. This 

semi-global optimization does not iterate and only converges at the summation of eight directional 

minimal costs.  

The quality and computation performance of semi-global optimization are compared with those of the 

state-of-the-art approaches via BCD, a fast MRF solver [24], to optimize energy function (2). BCD has 

been proved fast and trivially parallelizable when dealing with global optimization problems [24]. As this 

algorithm is iteratively optimized, the regularization term (4) should be changed into the following form: 

| arctan( ) |      if | |
( ) 2

| |                  otherwise p

p q p q

reg

q N
p q

l l l l
E l

l l






  

  
 

  (8) 

where Np is the 4-connected neighborhood. The results are shown in Section 3. 

2.4. GPU Acceleration of SGF Algorithm 

SGF divides global optimization into multiple 1D optimization processes. Different 1D paths run at 

different directions to approximate a global optimization. Each line and direction is executed 

independently, implying that SGF can be paralleled via GPU. This semi-global optimization proposes a 

new alternative technique that achieves results similar to those of global methods while maintaining a 

reduced execution time [40]. In this paper, Compute Unified Device Architecture (CUDA) [41] is used 

to implement parallel computing in GPU.  

Figure 8 demonstrates that the filtering cost (data term of (3)) computation and cost aggregation are 

executed in various threads of GPU. The other procedures, including grid resample, generation of 
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possible labels, computation of ground saliency, generation of classification surface, and classification, 

are implemented in Central Processing Unit (CPU). In our implementation, eight cost aggregation 

kernels corresponding to eight directions are designed. The cost aggregation kernel shown in Figure 8 is 

an example of direction +x, where N is the number of possible labels in each grid cell. 

 

Figure 8. (Left) workflow of GPU acceleration, (right) implementation of the GPU kernels. 

2.5. Point Filtering and Parameter Setting 

Point filtering (classification) is performed by comparing the raw data with the generated 

classification surface. The points close enough (i.e., half of the desired DTM accuracy Da) to this surface 

are classified as ground points. 

There are five parameters in the proposed SGF, including the desired DTM accuracy Da, the 

resolution of the regular grid G, the unit height d, the segmentation threshold Sthro, and the subtraction 

threshold Gthro. The desired DTM accuracy Da is set according to the needs of the users. In Section 3, 

the desired DTM accuracy is 0.5 m. The resolution of the regular grid is equal to the area of the raw data 

coverage divided by the number of points. The segmentation threshold is equal to Da and the subtraction 

threshold is 3 × Da. 

To form a fine classification surface, the unit height d in (1) should be as small as possible. However, 

SGF may suffer from unacceptable computation cost and memory consumption because the set of 

possible labels is huge. To solve this problem, the SGF algorithm is performed twice. In the first 

execution, the unit height d is set as a relative large value (i.e., 5 m). In the second execution, the unit 
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height d   is set as a small value (i.e., half of Da) and the possible labels for each grid cell 
pl are then 

recalculated as follows: 

*

0

*

{ | }

where [( ) / ]

i i

N

p p p p i

p p

l l l l i d

N G l d


      

 
 (9) 

where 
*

pl  is the optimal label that selected in the first execution. A few possible labels exist in the second 

execution because 
*

pl  is close to the bare ground. 

3. Experimental Results and Discussion 

3.1. Quality Assessment on ISPRS Test Data Set 

We first apply the SGF algorithm to the benchmark dataset provided by the International Society for 

Photogrammetry and Remote Sensing (ISPRS) Commission III/WG3 (http://www.commission3. 

isprs.org/wg3/) and compare the filtering accuracy of SGF with those of eight classical filtering  

methods [2], parameter-free algorithm [1], Terrasolid TerraScan, and BCD. The ISPRS dataset is 

composed of 15 samples with different terrain features and point spacing. The details of this dataset are 

presented in [2]. Each sample is considered “difficult” for filtering [2]. Filtering accuracy is measured 

by considering the Type I error, which is the percentage of rejected bare ground points; the Type II error, 

which is the percentage of accepted non-ground points; and the total error, which is the overall 

probability of points being incorrectly classified.  

The eight classical filtering methods were published in 2004 and there have been improvements in 

them since then. We also compare our results with the state-of-the-art parameter-free algorithm [1] and 

the most popular commercial software TerraSolid TerraScan. TerraScan uses the TIN-based filtering 

method. This software produces a significantly low average total error when a set of tunable parameters 

of the data is passed to the algorithm [42]. Compared with the tested algorithms, the proposed SGF 

produces the second type I error and total error, as indicated in Table 1. The low type I error indicates that 

using SGF can properly maintain the terrain details. The average total error of SGF ranks second and is 

very close to the best one (4.85% of SGF vs. 4.82% of Axelsson). This situation can be attributed to the 

integrated use of ground saliency computed via the segmentation of height differences and the well-defined 

energy function, which properly combines all information into the framework of the semi-global 

optimization. Figure 9 shows a detailed comparison with Axelsson’s algorithm [14], parameter-free 

method (Mongus), BCD, and the proposed SGF algorithm across the 15 samples. The results indicate that 

although the total average error of SGF is only slightly higher than that of Axelsson’s algorithm,  

the SGF and BCD yield more consistent accuracy over different samples, showing the tendency of better 

stability. Sample31 and Sample42 have the lowest total errors while Sample11 and Sample53 have the 

highest total errors for SGF. Figure 10 shows the error distribution of the SGF and Axelsson’s algorithm 

on Sample11, Sample31, Sample42 and Sample53. Although SGF and Axelsson’s algorithm have very close 

average total error, they exhibit different error distributions. SGF produces more sparse distributions of error 

points while Axelsson’s algorithm yields more clusters of type I error (see Sample11 and Sample 53), which 

may result in the loss of important terrain features in the DTM. 
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Table 1. Comparison of average accuracy among the eight classical filtering methods, 

parameter-free method (Mongus), TerraScan, BCD, and the proposed SGF algorithm for all 

benchmark study samples (the number in boldface indicates the smallest value in each error 

type, implying the corresponding method has the best performance). 

 Type I Error (%) Type II Error (%) Total Error (%) 

Elmqvist  39.43 1.96 20.73 

Sohn 9.94 8.59 9.35 

Axelsson 5.55 7.46 4.82 

Pfeifer 10.82 3.32 8.02 

Brovelli 36.77 1.88 25.78 

Roggero 17.12 3.11 12.35 

Wack 16.52 1.58 12.04 

Sithole 24.59 2.08 17.48 

Mongus 4.5 6.5 5.49 

TerraScan 11.05 4.52 7.61 

BCD 5.69 3.41 4.88 

SGF 5.25 4.46 4.85 

 

Figure 9. Detailed comparison of Axelsson’s algorithm, parameter-free method (Mongus), 

BCD, and the proposed SGF algorithm across 15 samples. 
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Figure 10. Error distribution of SGF and Axelsson’s algorithm on Sample11, Sample31, 

Sample 42, and Sample53. 

3.2. Computational Performance 

The algorithm has been implemented for using CPU and GPU by C++ under the Microsoft Windows 

7 operating system. A personal computer with Intel Core i7 3.6GHz CPU, 8GB memory, and an NVIDIA 

GeForce GTX690 GPU with 3072 stream processors is used for testing. The second data set, which is 

obtained from the city of Foshan in Guangdong Province of China, is selected to evaluate the 

computational performance. This dataset includes steep slopes, discontinuities, complex scenes, and 

outliers, which are considered difficult for filtering [2]. The point density is 0.94 points/m2.  
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SGF checks each LiDAR point in its eight cardinal directions independently. Such a property  

allows GPUs to be utilized efficiently. Other methods, including TIN-based methods, interpolation-based 

methods, and global optimization-based methods, classify each LiDAR point according to the attributes 

calculated from the neighboring points to a relatively large extent. Such properties make these algorithms 

unable to be parallelized or, at least, not parallelized in an easy way. TerraScan is used to compare 

 the CPU performance, and BCD is adopted to compare the CPU and GPU performance. Table 2 indicates 

that compared with TerraScan, the proposed method saves almost 60% of CPU time. For  

the GPU-accelerated SGF, a processing speed of approximately 3 million points per second is achieved, 

making this method approximately three times faster than BCD. The reason for this condition is  

that BCD needs to run about 5–7 times over two directions while considering 4-connected neighborhoods, 

whereas SGF runs 1–2 times over eight directions. The experiments reveal that SGF is useful when a 

highly-efficient DTM production is needed, such as mapping for large areas, disaster response, and real-time 

site inspection. 

Table 2. Comparison of computational performance between TerraScan, BCD, and SGF. 

Test Dataset 

Sample Sample1 Sample2 Sample3 Sample4 Sample5 

Number of 

Points (million) 
5.4 10.3 24.3 40.2 48.6 

TerraScan 
CPU (s) 15.1 31.4 75.8 115.4 140.3 

GPU (s) * * * * * 

BCD 
CPU (s) 28.24 60.53 148.69 224.85 278.91 

GPU (s) 5.32 9.25 22.47 32.54 41.61 

SGF 
CPU (s) 9.67 19.21 44.54 75.38 89.62 

GPU (s) 1.91 3.52 8.11 12.36 15.42 

* TerraScan tested cannot be executed in GPU mode. 

3.3. Discussion 

In this section, some of the difficult terrains in the test data are discussed to validate the proposed 

method. The free software FugroViewer (http://www.fugroviewer.com/) is used to create the gray 

images rendered on the triangulated DTMs.  

Case 1: Steep slopes 

As previously mentioned, steep slopes and discontinuities are difficult to handle when separating bare 

ground and objects. Therefore, points with significant height differences from their neighbors are 

assumed to be non-ground objects. This assumption may not be true when the terrain slope is high. 

Considering that the proposed method optimizes a cost function, which adds a small penalty for points 

on gentle slopes and a large penalty for points on steep slopes (4), the method permits both small and 

large height differences. The test results show that SGF can preserve steep slopes (Figure 11). 

Case 2: Discontinuities 

Generally, objects can be filtered out because they are discontinuous from the bare ground. However, 

breaklines on the bare ground are an exception to this assertion [2]. These discontinuities should be 

preserved for high-quality DTM generation. These kinds of discontinuity are not continuous in the 2D view 



Remote Sens. 2015, 7 11010 

 

 

(Figures 12a,b), but they may be continuous from some directions in 1D view (Figure 12c). Since the cost 

function of SGF is optimized from eight directions, the final classification surface is selected by the 

information provided from all these directions. This case implies that the breaklines may not be detected 

from one direction (Figure 12a), but they can be detected from other directions (Figure 12c). The results 

are presented in Figure 12. 

Case 3: Complex objects 

Complex objects (e.g., large, low (Figure 13a), and attached (Figure 13c)) are difficult to separate 

from bare ground. Given that both the local elevation difference and global information of the point 

cloud are considered, and the point cloud is pre-classified by the ground saliency, SGF can remove 

complex objects. The ground saliency calculation step is essentially a segmentation algorithm by which 

building roofs and areas with breaklines can be segmented. When the segmented information is 

integrated into the optimization function (2), it enables a better selection of the classification surface to 

deal with the combination of vegetation, buildings, and steep terrains. Some examples of complex object 

removal are shown in Figure 13. 

  
(a) (b) 

  
(c) (d) 

Figure 11. Preservation of steep slope: (a) and (b) are the cross sections; (c) is the raw point 

data; (d) is the DTM generated by SGF. 
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(c)                                                                (d) 

  

(e) (f) 

Figure 12. Preservation of terrain discontinuities: (a), (b) and (c) are cross sections; (d) is 

the terrain details; (e) is the raw point data; (f) is the DTM generated by SGF. 

  
(a) (b) 

  

(c) (d) 

Figure 13. Cont. 

(a) 

(b) 
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(e) (f) 

Figure 13. Removal of complex objects: (a), (b), (c), and (d) are cross sections; (e) is the 

raw point data; (f) is the DTM generated by SGF. 

4. Conclusions 

This paper proposes a novel SGF algorithm that can efficiently classify the ground and non-ground 

points over various complex scenes. The classification accuracy of this algorithm is almost the best one 

(second place on overall error rate) based on the standard benchmark datasets, but it runs fast and 

produces competitive results. Semi-global optimization balances the quality and computational cost 

well. This undertaking can be easily achieved via parallel computing because of its independent 

computation along different directions. SGF can achieve a speed of approximately 3 million points per 

second via GPU computing. Overall, SGF is a fast and intelligent filtering algorithm that can process 

large volumes of data with good classification accuracy. Thus, this algorithm has significant potential 

for generating DTMs from airborne LiDAR data. 
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