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Abstract: The Velodyne LiDAR series is one of the most popular spinning beam LiDAR 

systems currently available on the market. In this paper, the temporal stability of the range 

measurements of the Velodyne HDL-32E LiDAR system is first investigated as motivation 

for the development of a new automatic calibration method that allows quick and frequent 

recovery of the inherent time-varying errors. The basic principle of the method is that the 

LiDAR’s internal systematic error parameters are estimated by constraining point clouds of 

some known and automatically detected cylindrical features such as lamp poles to fit to the 

3D cylinder models. This is analogous to the plumb-line calibration method in which the 

lens distortion parameters are estimated by constraining the image points of straight lines to 

fit to the 2D line model. The calibration can be performed at every measurement epoch in 

both static and kinematic modes. Four real datasets were used to verify the method, two of 

which were captured in static mode and the other two in kinematic mode. The overall results 

indicate that up to approximately 72% and 41% accuracy improvement were realized as a 

result of the calibration for the static and kinematic datasets, respectively. 
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1. Introduction 

Spinning multi-beam light detection and ranging (LiDAR) systems allow continuous acquisition of 

three-dimensional (3D) point clouds, which is important for many applications, such as unmanned 

vehicle navigation, mobile mapping and moving object tracking. The system is usually composed of an 

array of laser diodes that rotate continuously about the system’s central vertical axis. The Velodyne 

LiDAR series is one of the most popular of this kind; the HDL-32E is the subject of this paper. The 

HDL-32E is the second smallest LiDAR in the series, having a size comparable to a large standard coffee 

mug. It has been installed in many different platforms, including the Centaur2 and KRex robotic 

rovers [1] developed by the National Aeronautics and Space Administration (NASA) in the United 

States. In Canada, Clearpath Robotics Inc. uses the HDL-32E in their robotic vehicles for obstacle 

detection [2]. On the other hand, the HDL-32E is also widely used as the main optical sensor for mobile 

mapping systems (MMSs), for examples: the Mandli MMS [3], the ScanLook MMS by LiDAR USA 

Inc. [4], and the VISAT™ system [5] jointly developed by the University of Calgary and its industrial 

partners. Due to its compact size, the HDL-32E can be also readily installed on a backpack to form a 

compact MMS [6]. For object tracking, Cho et al. [7] used the HDL-32E to track human walking 

trajectories. Koppanyi and Toth [8] tracked a moving aeroplane by estimating the heading from the point 

clouds captured by the HDL-32E. 

High LiDAR measurement accuracy is always desired for some important applications such as 

deformation monitoring, rail monitoring, and so on. More often, sub-centimetre accuracy is required and 

this is usually achieved by carrying out user in situ calibration for every mission. Different calibration 

methodologies have been developed for the Velodyne LiDAR series. Muhammad and Lacroix [9] 

calibrated the HDL-64E S2 using manually-extracted wall surfaces. Sub-centimetre improvements were 

found in the standard deviations of the check plane data after the calibration. Atanacio-Jiménez et al. [10] 

developed two large empty cuboid control targets with different sizes for the HDL-64E S2 calibration. 

Based on the manufacturer’s model, Glennie and Lichti [11] calibrated the HDL-64E S2 by conditioning 

groups of points lying on planar features. The calibration requires the LiDAR to be placed at different 

positions between several rectangular buildings, with distinct azimuths and inclinations. Temporal 

stability of the same LiDAR was reported in [12], with two sets of self-calibration results. The temporal 

analysis suggested that periodic recalibration is necessary for the LiDAR to maintain high accuracy. 

Glennie [13] performed the self-calibration for the HDL-64E S2 in kinematic mode using  

manually-extracted planes after the HDL-64E S2 was integrated into a terrestrial mobile mapping 

system. A similar plane-based self-calibration for the HDL-32E was reported in [6] in which the scanner 

was installed on a balloon as an airborne system. In order to automate the calibration of the Velodyne 

LiDAR, Chen and Chien [14] applied a random sample consensus (RANSAC) approach to extract 

vertical walls for their proposed calibration method. However, one of the limitations for this method is 

that the LiDAR has to be inclined to some predetermined angles to ensure the calibration planes are 

either parallel or orthogonal to the LiDAR’s rotation axis.  

Using additional sensors to provide calibration references is another common approach for the 

Velodyne LiDAR calibration. Gordon and Meidow [15] estimated the planar parameters for the 

calibration by using the reference planar point clouds captured by another scanner with higher accuracy. 

The discrepancy between the HDL-64’s point clouds and the reference point clouds for the planar 
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features are minimized. Mirzaei et al. [16] and Gong et al. [17] developed a LiDAR-camera calibration 

approach for calibrating the HDL-64E S2 simultaneously with the Ladybug spherical camera system. 

The former captured a planar object with the HDL-64E S2 and a Ladybug2 camera with 40 different 

configurations to calibrate both sensors simultaneously. The latter used the Ladybug3 spherical camera to 

capture a trihedral object comprised of two tilted vertical planes and one horizontal plane to calibrate both 

the sensors. Park et al. [18] calibrated the exterior orientation parameters (EOPs), i.e., the rotational and 

translational parameters for an HDL-32E and interior orientation parameters of a RGB two-dimensional 

(2D) camera simultaneously using the corresponding vertices extracted from several polygonal planar 

targets (triangular and rhomboidal boards).  

These calibration methods require artificial targets, manually extracted features, specific scanning 

orientations or additional sensors such as video cameras, requirements that limit the flexibility for 

performing the calibration. Furthermore, none of them specifically address the problem of temporal 

instability of the multi-beam spinning LiDAR measurements. Systems with measurement instability 

should be calibrated frequently and automatically in order to maintain high point cloud accuracy over 

time during persistent data collection. In this paper, the temporal stability of the range measurement of 

the Velodyne HDL-32E is first investigated as motivation for the development of a new automatic 

calibration method that can be performed at every measurement epoch without the need to setting up 

any artificial targets, using manually-extracted features or relying upon additional sensors. The proposed 

method utilizes vertical cylindrical features, such as pillars and poles, which can be readily found in 

many urban scenes, which are automatically extracted from the point clouds. The method is flexible as 

it can be performed with the LiDAR operating in either static or kinematic mode. Although planar 

features are currently the most common reference features for in situ calibration, there are still scenes 

having no or rough planar features but some cylindrical features. Therefore, a calibration method which 

is independent of planar features is always desired as an alternative. This is particularly true for the 

calibration in kinematic mode as lamp poles can be more readily found around highway corridors 

compared to façades. 

2. The Velodyne HDL-32E and Its Temporal Stability 

2.1. Velodyne HDL-32E LiDAR System  

The HDL-32E was introduced in 2011 as an ultra-compact and a more cost-effective version of the 

Velodyne HDL-64E S2. The HDL-32E has approximate dimensions of 8.5 cm × 8.5 cm × 15 cm  

(L × W × H) and a net weight less than 2 kg. It comprises a vertical array of 32 radially-oriented laser 

diode rangefinders (Figure 1) installed on a small panel. The whole panel rotates about the z-axis 

continuously when power is connected. It has approximately 41.3° and 360° fields of view (FOV) in the 

vertical and horizontal directions, respectively. Its data capture rate is approximately 700,000 points/s 

for the 7 Hz pre-set spinning rate [19]. The spinning rate is adjustable in the latest version. The effective 

measurement range is from approximately 1 m to 70 m. A slimmed-down Velodyne version of the  

HDL-32E, the VLP-16, features of 16 laser diode rangefinders and has 30° vertical FOV.  

According to the user manual [19], the positioning equation of the HDL-32E in the scanner frame  

(s-frame) for point i captured by laser j at scanning position k is given by: 
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where ρ and θ are the range and horizontal angular position (horizontal angle) observations, respectively, 

and α is the fixed vertical angle of laser j.  

 

Figure 1. Thirty-two radially oriented lasers embedded inside the Velodyne HDL-32, with 

the modified manufacturer laser labelling. 

2.2. Temporal Stability of the Range Measurement 

The temporal stability of the measurement of the scanner indicates how the errors vary with time and, 

thus, reflects how frequently the scanner should be calibrated. In order to independently observe the 

temporal stability of the HDL-32E, a 26 cm × 26 cm Spectralon target with 99% reflectance was placed 

approximately 2 m away from the LiDAR to collect measurements (ρ and θ) for a 2.5 h period 

(Figure 2a). Two different HDL-32E systems were tested.  

  

(a) (b) 

Figure 2. Experimental setup for examine the temporal stability of the range measurement 

(a) and its diagram on the xy-plane (b) for temporal stability analysis. 
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The LiDAR was inclined several times in order to capture all 32 lasers’ measurements to the target. 

The averaged range measurements of all the 32 lasers between the LiDAR and the centre of the target 

within a small angular window (0.25° as seen in Figure 2b) are plotted in Figure 3. A thirty-minute 

warm-up period was observed between acquisition periods for any two inclination settings. The temporal 

stability of the horizontal angle is difficult to quantify since a thin vertical reference object cannot be 

captured. Therefore, only the range stability is discussed herein. 

 

Figure 3. Range measurement for a fixed Spectralon target versus time. The range 

measurements are plotted in groups of eight adjacent rangefinders according to the 

numbering system shown in Figure 1. 

As can be seen from Figure 3, none of the lasers has stable range measurements over the 2.5 h period. 

Many of them fluctuate by more than 0.05 m, which is at least 3 times greater than the 1.42 cm thickness 

of the Spectralon target assembly, and at least one varies by 0.10 m. Randomly-occurring transients are 

visible in many of the time series. Similar range measurement trends were observed when the experiment 

was performed on the second HDL-32E. Consequently, the self-calibration methods which assume the 

errors are time-invariant may not be able to provide an optimal calibration solution to a spinning LiDAR. 

Therefore, a calibration method that allows frequent estimation of the systematic range error is required. 

3. Proposed Automatic Calibration Methodology  

An in situ calibration method that can be performed rapidly and frequently for correcting the point 

cloud collected at each epoch is proposed. The principle of the proposed method is that the error 

parameters along with the model parameters of cylindrical features, are estimated by constraining the 

corresponding point observations to fit to the vertical cylinder model [20] according to the weighted 

least-squares criterion. The cylindrical features such as pillars and poles can be automatically identified 

and extracted from a scene.  
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This principle is similar to that of the plumb-line calibration for cameras, in which lens distortion 

parameters are estimated by constraining image coordinate measurements of linear features to fit the 

straight-line model [21]. A cylindrical pillar and a lamp pole can be treated as a magnified plumb-line 

(Figure 4) as they can be modelled as linear features [22]. Based on this analogy, structural concrete pillars 

(Figure 5) can be used for the proposed calibration with static point clouds while roadside lamp/electrical 

poles (Figure 6) are used for calibration with kinematic point clouds captured by an MMS.  

 

Figure 4. (a) Plumb line, (b) pillar, (c) lamp poles. 

 

Figure 5. Proposed automatic calibration method in static mode. 

The proposed calibration in static mode is potentially useful for object tracking and monitoring over 

a long period of time. For example, the calibration may help enhance people-tracking accuracy [23,24] 

with the Velodyne scanner in a scene having cylindrical pillars. On the other hand, since the Velodyne 

LiDAR systems can capture point clouds persistently, they are more often installed on mobile platforms 

such as vehicles for navigation or mobile mapping. The calibration in the kinematic mode should be 

performed as frequently as possible to maximize the system’s accuracy but without relying upon 

artificial reference targets distributed along the system’s trajectory. Lamp/electrical poles are abundant 

and evenly distributed in road corridors, so they can be used as reference objects to allow frequent 

calibration. Similar to the calibration in static mode, the kinematic mode calibration is also performed 

in the s-frame. The proposed calibration method is supported by a novel automatic cylinder segmentation 

technique from the Velodyne point cloud, which is described in Section 3.3. 
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Due to the similarity between the proposed method to the plumb-line calibration, it inherits some of 

important advantages: (1) only one single instrument station is needed for calibration; (2) only one 

cylindrical feature is required but more can be used; (3) no overlap of the feature point clouds is needed; 

and (4) no a priori information of the scanner EOPs is needed. The following advantages are specific to 

the kinematic mode calibration: (1) only data captured in one drive line are needed as no overlap of the 

feature point clouds is required and (2) global navigation satellite system (GNSS)/inertial measurement 

unit (IMU) measurements are not needed since the calibration is performed in the s-frame. 

 

Figure 6. Proposed automatic calibration method in kinematic mode. 

3.1. Functional Model for the Calibration  

The measured 3D point coordinates from the segmented pillars/poles, augmented with additional 

parameters (APs), are constrained to fit to the cylindrical model according to the weighted least-squares 

criterion. For m cylinders used to calibrate n lasers at time t, the calibration parameter vector is 

T
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(xc, yc) are the centre coordinates of the cylinder; ω and ϕ are the tilt angles of the cylinder about the  

x-axis and y-axis, respectively, and rq is the radius of the cylinder. The vertical angle, α, is not estimated 

in the proposed calibration. Frequent calibration of the vertical angles is not necessary since the laser diodes 

are rigidly mounted at fixed vertical angles during the system assembly. If conical poles are used, a gradient 

factor, k, should be included and estimated in Equation (5) where rq is replaced by (rq − kzijk) [25]. The 

boresight angle matrix for rotation between the s-frame and the body-frame (b-frame) is defined as  

R = Rb 
s  (The boresight angle matrix is system dependent, in our case, Rb 

s  = R3(yˈ)R1(rˈ)R2(pˈ) where rˈ, 

pˈ and yˈ are roll, pitch and yaw, respectively) for calibration in kinematic mode, while for calibration 

in static mode, R = I. The boresight matrix can be obtained from an independent plane-based system 

calibration [26,27]. 

3.2. Calibration Configuration 

Since the calibration is done from only one instrument location, it is not possible to simultaneously 

estimate both the cylinder position and all rangefinder offset parameters. Likewise, it is not possible to 

estimate the cylinder orientation and all angular offset parameters. The analogous situation in the plumb 

line calibration is the inability to simultaneously estimate the principal point co-ordinates and the line 

parameters. Four constraints must therefore be added to overcome the associated rank defects in the 

single-station, spinning beam LiDAR calibration. Consequently, two sets of the offset parameters, those 

at the maximum and minimum elevation angles as illustrated in Figure 7, should be held fixed while the 

others can be rigorously estimated along with the cylinder parameters in the calibration adjustment. The 

choice of which lasers to constrain was made by analyzing the condition number (Equation (7)) of the 

adjustment normal-equations matrix (N) for different choices. The outermost pair of lasers (shown in 

red in Figure 7) are constrained as it gives the smallest condition number and thus results in the most 

rigorous parameter estimation. 

 

Figure 7. Configuration for constrained lasers for the calibration (red for the constrained 

lasers, blue for the lasers with error offsets estimated in the calibration). 

  1cond  NNN  (7) 

  



Remote Sens. 2015, 7 10488 

 

 

3.3. Cylindrical Feature Detection for the Calibration 

In [28–30], the point clouds of pillars and poles were broken down into multiple horizontal slices for 

processing and recognition. This horizontal slice decomposition principle is particularly efficient for 

processing the Velodyne point clouds as they comprise slices (i.e., layers of points) due to the fixed radial 

orientation of the individual lasers. In our approach, the cylindrical objects consist of multiple circular 

slices (or nearly circular slices due to the errors) that are detected by the generalized Hough transform 

(GHT; [31]). The GHT is used because it is generally robust to incompleteness and distortion of the target 

shapes and the presence of noise. Uncorrected Velodyne point cloud slices are subject to all of these 

conditions. For detecting circles or arcs from a 2D image using the GHT, the candidate segment 

coordinates are transformed into sets of circle centre coordinates and radii, then those segments with higher 

centre and radius count will be considered as circle/arc. Although cylindrical features can be detected in 

point clouds by directly transforming the whole point cloud into a five-dimensional (5D) Hough space, 

this is computationally inefficient. Rabbani and van den Heuvel [32] decompose the 5D space into two 

sub-spaces (a 2D space for the cylinder rotations and a 3D space for the centre and the radius) in order to 

improve the search efficiency for detecting cylinders from point clouds. However, their approach is not as 

straightforward as the slice-based Hough circle detection method which is a nearly-2D search method (with 

input of the approximate radius, otherwise, it is purely 3D). The advantage of the proposed method is that 

computational effort can be greatly reduced by processing points in 2D for the circle identification criterion 

instead of processing points in 3D. 

The key steps of the proposed cylindrical object segmentation method with the static data are depicted 

in Figure 8. The Velodyne point cloud is generated from the raw observation (Figure 8a). The horizontal 

layer (the layer of points captured by the laser at 0° vertical angle) of points is extracted and a range 

threshold is applied to keep the points within the area of our interest. (Figure 8b). The point cloud layer 

is then resampled as a 2D edge image. Since cylinders appear as circular arcs in the 2D image, they can 

be detected with the GHT as shown in Figure 8c. This is followed by the radius histogram check 

method [33] applied to each detected circle to determine if they are over-segmented by the GHT 

(Figure 8d). Finally, the detected circle in the horizontal layer is buffered and projected into the other 

data layers to form a 3D cylinder window and allow segmentation of the cylinder from the point cloud 

(the green dash lines in Figure 8e). This is followed by RANSAC cylinder fitting to remove outliers; the 

final result is shown in Figure 8f. 

One of the challenges for segmenting poles from kinematic point clouds is that the point density is 

generally lower due to the small radius of the poles and short scanning time of the moving system. The 

low point density creates an ambiguity in the GHT’s centre and radius votes, and therefore another 

approach should instead be used. A variant of the proposed method, based on least-squares circle fitting 

for recognizing the low density circular arcs, was adopted. The least-squares circle fitting was applied 

to individual point layer segments obtained by using basic region growing in which points separated by 

the Euclidean distance less than a threshold (5 cm) were grouped as a segment. Similar to the pillar 

detection shown in Figure 8, the key steps of the proposed method for detecting poles from the kinematic 

Velodyne point cloud at each epoch are depicted in Figure 9. 
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Figure 8. Proposed vertical cylinder segmentation for the static Velodyne point cloud.  

(a) whole point cloud; (b) point layer extraction; (c) Hough circle detection; (d) radius 

examination; (e) cylinder extraction; (f) segmented cylinders (pillars). 

 

Figure 9. Proposed vertical cylinder segmentation for the kinematic Velodyne point cloud. 

(a) whole point cloud; (b) segmentation using range thresholds; (c) candidate arc 

identification; (d) pole arc segmentation; (e) pole extraction; (f) segmented poles. 



Remote Sens. 2015, 7 10490 

 

 

4. Experiment 

4.1. Static Mode Calibration Dataset 

Two datasets were captured by the same HDL-32E at two different locations on the University of 

Calgary campus (Figure 10a,b). Both scenes have four large concrete pillars (with radii approximately 

40 cm and 50 cm, respectively). The pillars were successfully segmented using the proposed method for 

one-second intervals over a 10 s period. The average distance between the scanner and the pillars was 

approximately 4.5 m in both datasets. The recognition rate is 100% for four pillars for both Datasets 1 

and 2. The extracted cylinders from each second of data were then passed to the proposed calibration in 

static mode. 

 

Figure 10. Two scenes contain vertical pillars at University of Calgary campus, Canada 

(a) for Dataset 1 (b) for Dataset 2. 

4.2. Kinematic Mode Calibration Dataset 

The Velodyne HDL-32E was installed on the VISATTM [5] mobile mapping system. Two datasets 

(Datasets 3 and 4) of two different road scenes containing some cylindrical features (shown in  

Figure 11a,b respectively) were captured by the system. The data collection was performed at the  

City of Calgary, Canada, at around 51°3′6″N, 114°5′41″W. Ten epochs (10 spinning rotations,  

1 epoch ≈ 0.14 s) from datasets were calibrated with the proposed method in kinematic mode. The system 

has travelled about 21 metres with speed of 50 km/h for both Datasets 3 and 4. For Dataset 3, two 

cylinders and one cone were recognized on average in each epoch over a two-second period. The overall 

recognition rate was approximately 89% (40 poles were recognized from 45 available poles) within the 

calibration zone (8 m radial distance from the b-frame centre). For Dataset 4, two cylinders and one cone 

were recognized on average in each epoch over a two-second period. The overall recognition rate was 

approximately 92% (35 poles were recognized from 38 poles available). The recognition rate was lower 

because only small portions of some poles were scanned due to the obstacles attached to the poles such 

as traffic lamp panels. 
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Figure 11. Two scenes contain some lamp poles at the City of Calgary, Canada (a) for 

Dataset 3 (b) for Dataset 4. 

5. Results and Discussion 

5.1. Static Mode Calibration 

5.1.1. Estimated Parameters 

For both static Datasets 1 and 2, the estimated error terms and their corresponding precisions for the 

ten-second period are plotted in Figures 12–15. It can be seen in Figure 12a,b that for Dataset 1, Δρ 

varies from several millimetres to approximately 1 cm (Laser 14, α = −1.33°) over the  

ten-second period. The variations of the estimated Δρ for each laser do not follow a specific trend over 

the period. The precisions vary within a 0.5 mm interval and are slightly lower in the higher and lower 

vertical angles as the corresponding range observations are longer for capturing vertical cylinders.  

For the same dataset (Dataset 1), the variation of the estimated Δθ is up to approximately 0.05° 

(Laser 30, α = 9.33°) over the ten-second period as shown in Figure 13a. The corresponding precision 

shown in Figure 13b varies in a similar trend as the Δρ precision, and the values fall within a 0.007° 

window. Zig-zag patterns can be observed in precision of both Δρ and Δθ. They are caused by differences 

in point density of the captured cylindrical surfaces by the neighbouring lasers. The fluctuation in 

precision is approximately 0.5 mm and 0.005° for Δρ and Δθ, respectively. 

For the static calibration of Dataset 2, the estimated Δρ of the lasers vary within a slightly larger 

window (1.3 cm) compared to the 1 cm window of Dataset 1, and the corresponding precisions also vary 

with a similar trend and range as shown in Figure 14. Similar to the horizontal angle offset result of 

Dataset 1, the estimated Δθ of the lasers vary, within a range of 0.04°, with precisions varying within a 

range of 0.07° (Figure 15). Comparing the results of the two datasets, the estimated error parameters are 

consistent in terms of the order of magnitude. The results are also consistent with the results reported by 

Glennie and Lichti [12] for another Velodyne Scanner (Velodye HDL-64E S2) in terms of order of 

magnitude. Their results are obtained by performing two calibrations at two different times, and the 

laser’s rangefinder offsets vary up to 3 cm while the horizontal angle offset vary within a 0.02° window. 
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Figure 12. Estimated Δρ for Dataset 1 over a 10 second period ((a) top). The standard deviations 

of estimated Δρ by the calibration for Dataset 1 over a 10 second period ((b) bottom). 

 

Figure 13. Estimated Δθ for Dataset 1 over a 10 second period ((a) top). The standard deviations 

of estimated Δθ by the calibration for Dataset 1 over a 10 second period ((b) bottom). 
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Figure 14. Estimated Δρ for Dataset 2 over a 10 second period ((a) top). The standard deviations 

of estimated Δρ by the calibration for Dataset 2 over a 10 second period ((b) bottom). 

 

Figure 15. Estimated Δθ for Dataset 2 over a 10 second period ((a) top). The standard deviations 

of estimated Δθ by the calibration for Dataset 2 over a 10 second period ((b) bottom). 
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5.1.2. Calibration Accuracy 

To verify the accuracy of the proposed calibration method in static mode, the estimated parameters were 

used to reconstruct the point cloud of four check planes which are outside the calibration zone in Datasets 1 

and 2. The check planes are some known, natural, planar objects in the scenes and the corresponding point 

clouds were extracted manually using the Leica Cyclone 7.0.2. Least-squares fitting was used to quantify the 

accuracy of the reconstructed check planes, which was improved after the calibration in all cases. For both 

datasets, the root mean square (RMS) values of the check plane misclosures for an individual laser having 

the highest RMS improvement rate for the calibration over the ten-second period are shown in Table 1. Up 

to approximately 2 cm improvement was achieved. The improvement rates are very significant, reaching 

82.4%. The highest averaged improvement rate is 71.7%. 

Table 1. RMS of the check plane fitting misclosures for an individual laser in static calibration. 

Epoch 

Dataset 1 Dataset 2 

Before 

(m) 

After 

(m) 

Improvement 

(%) 

Before 

(m) 

After 

(m) 

Improvement 

(%) 

1 0.0220 0.0066 67.0 0.0172 0.0055 65.8 

2 0.0220 0.0066 67.0 0.0272 0.0066 82.4 

3 0.0238 0.0068 71.4 0.0180 0.0059 66.1 

4 0.0238 0.0068 71.4 0.0299 0.0076 80.6 

5 0.0232 0.0086 62.7 0.0179 0.0060 73.0 

6 0.0217 0.0078 64.1 0.0276 0.0060 79.8 

7 0.0248 0.0087 65.2 0.0190 0.0068 64.5 

8 0.0248 0.0087 65.2 0.0250 0.0076 69.7 

9 0.0254 0.0079 69.0 0.0189 0.0060 64.8 

10 0.0254 0.0083 69.0 0.0273 0.0071 70.7 

Mean Improvement (%)  67.8  71.7 

5.2. Kinematic Mode Calibration 

5.2.1. Estimated Parameters 

The estimated parameters and their precisions for Datasets 3 and 4 are shown in Figures 16 and 17, 

respectively, in error bar representation. As can be seen, some of the parameters at some high/low 

elevation angles could not be estimated since laser returns were not received from the pole for every 

laser beam while the system was travelling. As the system was moving, the ranges, scanning angles, 

incident angles, the number of poles detected, and number of lasers capturing the same pole all varied. 

These factors affect the accuracy and precision of the estimated parameters epoch by epoch. Therefore, 

it can be seen that the overall variations in the estimated parameters and the precisions are significant 

and no specific variation trend can be observed. However, most of the estimated rangefinder offsets for 

both datasets are bounded by ±5 cm, while the estimated horizontal offset is ±0.3°. The estimated 

rangefinder offsets have the same orders of magnitude as those estimated in the static calibration. For 

the horizontal angle offset, the kinematic calibration results are mostly at least four times higher than the 

estimates from the static calibration. On the other hand, when the data redundancy is reduced in the 
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horizontal direction (poles have small radius), the beam divergence issue becomes more significant. This 

results in poorer estimation of the horizontal angle offsets.  

 

Figure 16. Estimated parameters and their precisions by the proposed calibration in 

kinematic mode for Dataset 3 over 10 epochs (10 rotations, ~1.4 s). 
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Figure 17. Estimated parameters and their precisions by the proposed calibration in 

kinematic mode for Dataset 4 over 10 epochs (10 rotations, ~1.4 s). 

5.2.2. Calibration Accuracy 

Similar to the evaluation of the static calibration, two to four check planes extracted from each epoch 

were used to evaluate the accuracy of the proposed method in kinematic mode. The RMS values of the 

check plane misclosures for an individual laser having the highest RMS improvement rate using  
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Dataset 3 and 4 are tabulated in Table 2. Among the results for both datasets, up to about 62% and 7 mm 

improvements in the RMS were realized. The highest overall accuracy improvement rate is about 40%, 

which is approximately 60% of the static case. This lower accuracy improvement rate can be mainly 

attributed to the much lower data redundancy in the horizontal direction due to the small radius of  

the poles. 

Table 2. RMS of the check plane fitting misclosures for an individual laser in  

kinematic calibration. 

Epoch 

Dataset 3 Dataset 4 

Before 

(m) 

After 

(m) 

Improvement 

(%) 

Before 

(m) 

After 

(m) 

Improvement 

(%) 

1 0.0621 0.0489 21.2 0.0224 0.0120 46.4 

2 0.0320 0.0238 25.6 0.0216 0.0151 30.1 

3 0.0211 0.0143 32.3 0.0298 0.0130 56.4 

4 0.0298 0.0162 45.6 0.0224 0.0189 15.6 

5 0.0328 0.0228 30.5 0.0218 0.0105 60.0 

6 0.0090 0.0043 52.6 0.0147 0.0065 56.2 

7 0.0133 0.0074 44.7 0.0082 0.0063 22.6 

8 0.0196 0.0122 37.9 0.0157 0.0076 51.3 

9 0.0205 0.0081 60.7 0.0282 0.0245 13.1 

10 0.0119 0.0045 62.1 0.0372 0.0182 51.1 

Mean Improvement (%)  41.3  39.5 

6. Conclusions 

In this paper, a novel cylinder-based automatic in situ calibration for a multi-beam spinning LiDAR 

system—the Velodyne HDL-32E, for both static and kinematic applications, is proposed. The temporal 

stability of the HDL-32E was first investigated. This motivated the development of the new calibration 

method that can support rapid and frequent recovery of the error parameters for such a system. The 

proposed method uses cylindrical features detected around the system as calibration references. A novel 

cylindrical feature detection method with its variant for the Velodyne point cloud was also proposed, 

based on 2D circular arc detection from the point cloud slices captured by individual lasers embedded 

in the LiDAR. For indoor applications, the LiDAR could be calibrated using circular pillars. For outdoor 

mobile mapping applications, the LiDAR could be calibrated using roadside lamp/electrical poles along 

the system trajectory. The basic principle of the proposed method is analogous to that of the plumb-line 

calibration of cameras so it inherits the major merits from the plumb-line method. The proposed method 

was verified with four real datasets (two for static and two for kinematic modes). The overall calibration 

accuracy was improved; up to approximately 72% and 41% accuracy improvement rates has been 

achieved for the calibration in static and kinematic modes, respectively. Even though the proposed 

method is a post-processing technique, it could be potentially implemented for real-time calibration. This 

can be the focus of the future research. 
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