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Abstract: The region near Dujiangyan City and Wenchuan County, Sichuan China, including 

significant giant panda habitats, was severely impacted by the Wenchuan earthquake. Large-

area landslides occurred and seriously threatened the lives of people and giant pandas. In this 

paper, we report the development of an enhanced multi-temporal interferometric synthetic 

aperture radar (MTInSAR) methodology to monitor potential post-seismic landslides by 

analyzing coherent scatterers (CS) and distributed scatterers (DS) points extracted from 

multi-temporal L-band ALOS/PALSAR data in an integrated manner. Through the 

integration of phase optimization and mitigation of the orbit and topography-related phase 

errors, surface deformations in the study area were derived: the rates in the line of sight 

(LOS) direction ranged from −7 to 1.5 cm/a. Dozens of potential landslides, distributed mainly 

along the Minjiang River, Longmenshan Fault, and in other the high-altitude areas were 

detected. These findings matched the distribution of previous landslides. InSAR-derived 

results demonstrated that some previous landslides were still active; many unstable slopes 

have developed, and there are significant probabilities of future massive failures. The impact 
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of landslides on the giant panda habitat, however ranged from low to moderate, would 

continue to be a concern for conservationists for some time in the future. 
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1. Introduction 

Landslides are defined as the movement of a mass of rock, earth, or debris on hillslopes due to gravity 

and other triggering factors [1]. As one of the major natural disasters in the world, they cause serious 

damage to the natural environment and infrastructure, and considerable loss to the economy and of 

human and animal lives. In the Sichuan province China, home to China’s Giant Panda Habitat World 

Heritage site, widespread active faults, frequent earthquakes, cracked lithology, steep and rough 

topography, and localized torrential downpours render the province particularly vulnerable to landslides. 

To-date, more than 100 thousand landslides affecting over 100 cities have been recorded [2]; almost half 

of the total number of county-towns in Sichuan and habitats utilized by the giant panda has been affected. 

The destructive Wenchuan earthquake (Ms 8.0) that occurred on 12 May 2008 resulted in thousands of 

casualties and rendered a million people homeless [3]; it induced more than 5600 landslides covering a 

total area of 41,750 km2 [4]. The strong tremors loosened and shattered bedrock, produced numerous 

cracked slopes that became unstable after the quake, and released a large number of falling stones. The 

frequency and scale of landslide occurrence increased significantly in the post-seismic period, compared 

to the pre-seismic period [5]. 

To reduce the effect of landslides, risk analysis and susceptibility assessment are crucial [6]. 

Deformation of unstable slopes is often used as the indicator for landslide characterization, mapping and 

prediction [7]. Resolving the kinematics before or after an event is a priority for better understanding 

potential landslides. However, the use of traditional investigation methods, such as leveling, GPS and 

geophysical prospecting [8], are severely limited in mountainous areas where there are no access roads 

or paths. Due to their all-weather, day-night, broad coverage, and high spatiotemporal resolution 

capabilities [9], differential synthetic aperture radar interferometry (DInSAR) has great potential for 

landslide deformation monitoring [10]. The first application of DInSAR dates back to the mid-1990s [11]; 

since then it has become widely used and, more recently, multi-temporal DInSAR (MTInSAR) techniques 

(represented by Permanent Scatterers—PSInSAR [12], Small Baseline Subset—SBAS [13] and 

SqueeSAR [14]), capable of high-precision measurements (cm to mm range) and time series analysis, 

have become popular. MTInSAR techniques rely on processing of time series, repeat-pass SAR images, 

and identification of radar targets providing regularly measurable phase signals. They have been 

successfully applied in many areas of landslides [7,15–24]. 

Classical techniques have limitations for complex regions where few SAR images are available. 

PSInSAR is not applicable to outside urban regions due to the scarcity of permanent scatterers (PS). 

SBAS focuses on coherent scatterers (CS) by utilizing high-quality interferograms with small spatial and 

temporal baselines. Its use for sites with rough terrain and vegetation cover is quite challenging. 

Analyzing distributed scatterers (DS), allow the extraction of plenty of point targets in vegetated regions 

using the SqueeSAR approach; but a large number of SAR images (e.g., more than 25 scenes) is needed 
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for a robust inversion. When using DInSAR for landslide applications several challenges, such as serious 

decorrelation caused by the vegetation cover, rough terrains, and large deformation gradients [25–27], 

phase propagation anomalies due to atmospheric variability [28,29], and geometric distortions in 

mountainous areas caused by the side-looking imaging must be addressed and resolved. Moreover, the 

complexity of landslide dynamics and various error sources could greatly increase the probabilities of 

deformation estimations and interpretations being incorrect [30]. 

In this study, in order to monitor slope instability phenomena in the vegetated, steep terrain of Sichuan 

giant panda habitats, we developed an enhanced landslide-oriented MTInSAR methodology for areas 

where availability of SAR images are limited by taking advantage of existing SBAS and SqueeSAR 

technologies. We derived a surface deformation field in the area using our methodology. Up to now, in 

our study area remote sensing techniques have been used to investigate landslide distribution and their 

destructive effects mainly for past landslides [31–34]. In contrast, our methodology enables the detection 

of slope instabilities for potential, future landslides by monitoring displacement anomalies, thereby 

significantly improving hazard prediction and risk mitigation capabilities. 

Due to its coherence preservation capability (as shown by many successful landslide monitoring 

studies [35–37]), we used L-band ALOS PALSAR images. In this paper, we first introduce the study 

area and the data used; then we explain the entire processing chain of our approach and the improvements 

and advantages it brings to landslide detection and monitoring in comparison to classical techniques. We 

have analyzed the application of MTInSAR to landslide monitoring in combination with other  

multi-source data (e.g., Google earth images, ICESat/GLAS altitude data, survey control points, and 

field surveying) and discussed the deformation characteristics of landslides and their impacts on the giant 

panda habitat. Based on our analyses we have drawn conclusions that may be investigated in future studies. 

2. Study Area and Data 

2.1. Study Site 

The study area is situated in the Dujiangyan City and Wenchuan County, Sichuan province, China 

(see inset in Figure 1). It is near the earthquake’s epicenter and belongs to the maximum meizoseismal 

area, especially close to the Yingxiu Town, where 80% of the houses collapsed due to the quake [38].  

In a total area of about 4200 km2, the terrain is very rugged and the elevation ranges from 500 m to more 

than 5000 m, with slope gradients reaching 72° in some places (Figure 1). The Minjiang River flows 

north-to-south through the deep valley and, after the Zipingpu reservoir, it drains into the Chengdu plain. 

Longmenshan Fault, trending northeast and consisting of the Mao-Wen, Yingxiu-Beichuan, and Guanxian-

Anxian Faults, passes through the study area and runs parallel to the ridges and valleys.  

The rocks mainly comprise shale, sandstone, limestone, slate, granite, and basalt, from Precambrian to 

Cretaceous times [31]. The area is subtropical and receives humid monsoonal rains; annual mean air 

temperature is about 15 °C and yearly precipitation 1200 mm. 50%–70% of the rainfall occurs during 

the period from June to September [38], which is a significant factor triggering instability of the slopes 

and frequent landslides [39]. 
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Figure 1. (a) SRTM-derived topographic map of the study area. The black triangles indicate 

locations of landslides; (b) Distribution of giant panda habitats in China and the location of 

our study area. 

The study area is well known as the Giant Panda Habitat World Heritage site. The Wenchuan 

earthquake is estimated to have destroyed about 20% of the forest in the Wolong protection zone which 

is a key component of the World Heritage site [40]. Loss of forests fragmented the giant panda habitat 

and increased the number of habitat patches to more than six times than that before the earthquake [41]. 

The post-seismic disasters also threaten the survival of giant panda, and it’s reported that at least one of 

them was killed by the debris flow. The photos in Figure 2 illustrate the scale of frequent large-area 

landslides in our study area. 

 

Figure 2. Photos of landslides from locations along the Minjiang River indicated by black 

triangles in Figure 1: (a) Yangdianjie; (b) Luoquanwan; (c) Yinxing; (d) Yingxiu. 
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2.2. Data 

In order to monitor potential landslides and evaluate their influences on human and giant panda 

habitats and lives, this study employed 11 scenes of L-band (radar wavelength of 23.6 cm) post-seismic 

ALOS PALSAR SLC images for SAR interferometry analysis (see Table 1). They were acquired in the 

ascending mode with a center incidence angle of about 34°, during the period from 22 June 2008 to  

13 February 2011. Among them, six were acquired in the fine beam single polarization (FBS, range 

bandwidth of 28 MHz) (HH) mode and the others were acquired in fine beam dual polarization (FBD, 

14 MHz) (HH + HV) mode. In order to carry out interferometric processing with two different modes, 

FBD HH images were doubly oversampled to FBS geometry with pixel spacing being 3.17 m in the 

azimuth direction and 4.68 m in the slant range direction, respectively. The three arc-second (spatial 

posting of 90 m) shuttle radar topography mission (SRTM) digital elevation model (DEM) [42] was 

collected for the topographic phase removal and InSAR-derived productions’ geocoding. Google earth 

images and ICESat/GLAS data were used for the underlying graphs of exhibition, analysis, and validation 

of the results. 

Table 1. ALOS PALSAR images used in this study and their spatial/temporal baselines in 

comparison to the master image (20091110). 

No. 
Acquisition Time 

(yyyymmdd) 
Polarization 

Perpendicular 
Baseline (m) 

Temporal 
Baseline (days) 

1 20080622 HH 244.8 −506 
2 20090207 HH −1102.5 −276 
3 20090625 HH/HV −439.5 −138 
4 20090810 HH/HV −662.9 −92 
5 20090925 HH/HV −184.1 −46 
6 20091110 HH 0 0 
7 20091226 HH 316.2 46 
8 20100210 HH 807.6 92 
9 20100628 HH/HV 1157.7 230 

10 20101229 HH/HV 1954.1 414 
11 20110213 HH 2573.3 460 

3. Methodology 

To monitor landslides over a large region of rough terrain and dense vegetation, an enhanced 

MTInSAR methodology was developed by taking advantage of existing approaches to overcome certain 

limitations. The entire data processing chain is shown in Figure 3. Basic interferometric processing 

(including SLC SAR image calibration, SAR image co-registration, multi-looking, interferogram 

generation, removal of topography and flat earth phase, as well as 3D phase unwrapping) was carried 

out using GAMMA software. For other processing requirements, including extraction of CS/DS, phase 

optimization, reforming interferograms, modeling and removal of orbit/topography related errors and 

deformation inversion, we developed appropriate programs implemented in MATLAB and C++. 
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Figure 3. Data processing flowchart of the enhanced MTInSAR methodology combining 

coherent scatterers (CS) and distributed scatterers (DS). 

3.1. Combination of CS and DS 

Measurable targets are few and unevenly distributed over vegetated mountainous regions. Their scarcity 

hampers the application of prevalent MTInSAR techniques in slope instability monitoring. Generally,  

at least a density of five points per km2 is needed to ensure reliable estimation of atmospheric delay 

phase and deformation parameters. PS points are few in the natural scenario of the study site; and the 

occurrence of CS points is also limited due to severe temporal decorrelation caused by vegetation cover. 

DSs reflect surfaces extending uniformly over a large area and where neighboring pixels of their images 

have similar backscattering characteristics. They are widespread particularly on slopes covered by low 

vegetation or debris. 

To increase the point density per area, we synergistically analyzed CS and DS. A total of more than 

1.8 million measurable points (CS plus DS) covering the study area was extracted except for unfavorable 

radar looking regions, e.g., layovers and shadows. Several studies had proposed identification and 

denoising algorithms for such unfavorable areas [14,43,44]. In this study, analogous approaches of 

SBAS and SqueeSAR were applied for the extraction of CS and DS points. To identify CS, a complex 

multi-look operation (two in range and six in azimuth) was first performed producing pixels with ground 

range dimensions of about 20 m × 20 m. Then we generated a total of 36 interferometric pairs with small 

orbital and temporal separations (spatial baseline threshold 1500 m and temporal threshold 365 days) 

(Figure 4). Coherence maps were estimated for each interferogram and pixels with mean values higher 

than the assumed threshold of 0.3 were picked out as CS. Results showed that their distribution is 
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extremely uneven; density differences ranged from hundreds of points in the flat urban area to a single 

point in mountainous regions. 

 

Figure 4. Spatial and temporal baselines of the interferograms. Circles represent  

SAR acquisitions.  

To extract DS, homogeneous pixels should be identified first, for which a Kolmogorov-Smirnov test 

was applied to the time series amplitude data. In the 20 × 20 (pixels) moving windows the pixels with 

more than 180 homogeneous neighbors were taken as DS candidates, and the number of points extracted 

was more than that for CS. Unlike PS and CS, no dominant point targets exist in the dimensions of DS 

pixels, and they usually maintain low coherence and signal-to-noise-ratio (SNR) in the interferograms. 

To improve the qualities of DS-derived parameter estimations, a sophisticated phase filtering processing 

is needed [43,45,46]. Ferretti et al. [14] used the maximum likelihood (ML) method to estimate the 

likeliest phases of each image to replace the original values as follows: 

{ }1ˆ ˆ ˆλ argmin ( )H C C
−

λ
= Λ Λ

 
(1) 

where λ = [0, ϑ , …ϑ ]  represent the new phase values of N images to be solved when the phases of 

first image are assumed to be zeros. ⋀ = exp	( λ), λ is the original value of λ,  is the complex coherence 

matrix based on the homogeneous pixels. To solve this equation, LBFGS (Limited memory Broyden-

Fletcher-Goldfarb-Shannon) algorithm was adopted, which is a popular optimization algorithm in 

familiar quasi-Newton methods and has great advantages in dealing with large nonlinear problems due 

to its efficiency and lower consumption of computer memory [47,48]. The effect of phase optimization 

is shown in Figure 5. 
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Figure 5. Comparison of original and optimized phases. Results covering part of the study 

area are shown, superimposed on the averaged intensity imageries. (a)–(c) are the original 

phases of selected regions in our study area, and (d)–(f) are their corresponding optimized 

results. The interferometric pairs are indicated by the black fonts. 

3.2. Parameter Estimation by SBAS Solution 

After synergistically analyzing CS and DS, unknown parameters (e.g., motion and residual heights) 

were estimated by the SBAS solution. Differential interferograms were available after the removal of 

topography and earth flat phases. Estimating the integer ambiguities of the wrapped phase, so-called 

phase unwrapping, is the most crucial step in deriving surface deformation estimates. Decorrelation and 

phase discontinuity in the order of 2π caused by the combination of low density of points, large 

topography and high displacement rates are mainly responsible for unwrapping errors. 3D unwrapping 

algorithm (including in temporal and spatial domains) [49] was applied owing to its tested performance 

for large amount of small-baseline interferograms. A reference point assumed to be stable  
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(in the Dujiangyan city and away from landslides) was required to transform the differential phase to 

absolute value. 

After the processing mentioned above, the deformation phase was still mixed up with orbit errors, 

atmospheric artifacts and residual topography errors. For the long-wavelength ALOS satellite, the orbit 

errors could reach 30 cm [50], and would seriously bias estimates of changes in topography. In the 

mountainous areas such errors could be amplified several folds. Atmospheric path delay can be divided 

into two parts: one arising from the turbulent mixing process and the other due to elevation-dependent 

stratified component [25]. The latter is usually misinterpreted as either topography or deformation [29,51]. 

Topography errors, related to perpendicular baselines, were firstly removed using the algorithm of SBAS. 

Then, we applied a combined model [52] comprising a biquadratic model for orbital phase errors [53,54] 

and a linear model for the elevation dependent errors (stratified atmospheric delay and topography 

errors) [55] to further reduce the artifacts from orbit, residual topography and atmospheric disturbance. 

The combined model is described as follow: 

∅( , ) =  +	 	 +	 +	 +  +	  +	 ℎ( , ) +	ε( , ) (2) 

where  and  indicate the range and azimuth coordinates; ℎ is the elevation; ε represents the random 

phase error;  are coefficients to be estimated. After correctly unwrapping and removing phase errors 

mentioned above, a temporal and spatial filter was applied again. Finally, deformation rates and time 

series displacements were derived by the least squares solution. 

3.3. Improvements and Advantages 

The improvements and/or innovations of the proposed MTInSAR processing chain can be summarized 

as follows. First, taking advantage of SBAS and SqueeSAR, a landslide oriented MTInSAR chain was 

developed for monitoring slope instability in a vegetated, steep terrain including important habitats of 

the giant panda. A ground deformation field in the area was derived due to the MTInSAR data processing 

chain that we have developed. A large number of measurable points (including CS and DS) were 

extracted. The point density is an important factor that restricts the application of MTInSAR in suburban 

vegetated regions. By synergistically analyzing CS and DS, we extracted 1.8 million points (that is four 

times more than SBAS). The LBFGS algorithm was introduced to improve the efficiency of the 

procedure of phase optimization. The merit of SBAS was introduced to generate multi-master 

interferograms, overcoming the limitation of SqueeSAR applications for SAR images based on more 

than 20–25 scenes. We also introduced an enhanced model to remove elevation-dependent phase errors 

that makes our methodology more robust than classical MTInSAR approaches, particularly for studying 

mountainous terrains. 

4. Results, Validation and Discussion 

4.1. Application to Landslide Monitoring 

There are many factors that need to be taken into account when using SAR interferometry to monitor 

landslides. Besides point selection, density, removal of the various errors and incomplete unwrapping 

mentioned above, the relationship between SAR imaging geometry and topography requires careful 
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interpretation. DInSAR techniques only detect the change of the sensor-target distance, corresponding 

to the component of actual displacement projected onto LOS direction. This single-direction measuring 

mode limits the displacement sensibility to the plane approximately orthogonal to orbit direction [30]. 

ALOS satellite operates on a nearly polar orbit with an inclination angle of 98.2°, and the geometry of 

its right-looking ascending track enables easy monitoring of gentle slopes facing east; but deformations 

along the north-south direction become very difficult to detect. Based on the geometric relations, the 

regions of low sensibility can be extracted using the following equations (see Figure 6): 

Facing north: (β > θ/2) & [336.8° < δ < 360° || δ < 6.8°] (3) 

Facing south: (β > θ/2) & [156.8° < δ < 186.8°] (4) 

where	β is slope gradient, θ is LOS direction and δ represents the slope aspect clockwise from the north. 

The slopes facing west and steep slopes facing east are severely affected by layover and shadow [56], and 

we extracted them with GEO module in the Gamma software (see Figure 6). In these regions SAR signal 

is useless. It is clear that low sensibility and layover/shadow are widespread, and account for about 12% 

and 9% of the area with slope gradients bigger than 10°, respectively. This means that assuming an even 

distribution of landslides at least one in five landslides would go undetected. 

 

Figure 6. Layover/shadow and low sensitivity regions in our study area. Red rectangles, 

indexed from I to V indicate the regions where deformation results were illustrated in detail 

in Section 4.3. Routes of field campaigns after the Wenchuan earthquake are shown by  

white lines. 

Additionally, the slope gradient and aspect affect the presence of measurable points, and about 70% 

of them are on slopes of gradients 10°–50° and aspects 30°–180° (northeast to south). Very few points 

are located on aspects of 180°–300° due to the effect of layover; and this influence becomes greater as 
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the slope gradients increase (see Figure 7a).The incidence angle (about 34°) of PALSAR sensor determines 

that radar is more sensitive to the vertical than horizontal deformations [25]. More than three independent 

datasets (including ascending and descending) are needed to acquire the 3D displacement. For landslide 

monitoring, the LOS displacement is usually transferred to the down-slope direction assuming that the 

movement is translational along the slope, and in accordance with the equations used in [37]. In this 

paper, LOS displacement was preserved for landslide analysis. 

 

Figure 7. (a) Distribution of detected points related to slope gradient and aspect; the right 

legend indicates the occurrence percentage of the total number of points; (b) point height 

differences between SRTM DEM and InSAR-derived elevations based on the ICESat/GLAS 

data; (c) InSAR-derived deformation rates on survey control points. 

4.2. Validation 

Several methods were used to validate the InSAR-derived results. First, we used Google earth images 

as the base maps for deformation illustration and landslide identification, on which landslide regions are 

clearly visible with much brighter tones than the original surfaces. Our study demonstrates that the 
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occurrence of unstable points is consistent with the distribution of large-scale landslides from the past. 

At a local scale, we found that slope instabilities often occur close to, or in areas with similar contours 

to previous landslides. Through these analyses we could make sure that the InSAR-derived results are 

validated. Several field surveys were undertaken after the Wenchuan earthquake with the specific routes 

marked by white lines in Figure 6. Though away from the main disaster regions, we still could see 

landslides everywhere and some of them even blocked the highways. 

Additionally, ICESat/GLAS elevation data was used to check the results of height correction that is 

not only the auxiliary product of MTInSAR but also an important index of accuracy assessment. 

Especially in mountainous regions, like our study area, wrong height is the primary error source of 

deformations. The GLAS footprints on the ground are approximately 72 m in diameter and 172 m in 

spatial interval. Its accuracy of elevation is probably 14 cm [57], but the value becomes extremely 

unreliable in mountainous regions. Considering this problem and the distance between laser footprints 

and measureable InSAR points (smaller than 100 m), only 50 points were preserved. Figure 7b shows 

the height differences of SRTM DEM and InSAR-corrected heights based on ICESat/GLAS data. It is 

clear that the InSAR-corrected values are more consistent with the reference values (that is, 16.7 m 

averaged absolute difference with 9.4 m standard deviation of InSAR VS. 20.5 m and 14.2 m of SRTM 

DEM), indicating the validity of height correction obtained. There were seven survey control points 

(black triangles in Figure 6) in the study area, which were assumed to be absolutely stable. To compare 

it with the MTInSAR results, we calculated the mean deformation values of five adjacent InSAR 

measurable points. The results show that the mean absolute deformation rates of control points is  

0.46 cm/a (see Figure 7c), which confirms the reliability of MTInSAR deformation results. 

4.3. Deformation and Landslides Analysis 

Among the InSAR products, the backscattering characteristics, coherence map and DEM are usually 

used to distinguish sudden and massive landslides [32,37], while the deformation map was good for 

identifying the potential, gradual, and longer-term slope failures. In this experiment, using MTInSAR-

derived deformation we have detected dozens of landslides in an area of approximate  

4200 km2, mainly distributed along the Minjiang River and the Longmenshan Fault, as well as some 

high-altitude regions. The LOS deformation on important regions “I, II, III, IV and V” (see Figure 6) 

rather than the whole study area are shown in this paper for convenience, with velocity rates primarily 

ranging from −7 to 1.5 cm/a. The minus values mean that targets are moving away from the radar sensor, 

and considering the radar geometry and slope aspect, they indicate potential landslide events. A further 

analysis of regional deformation and landslides is shown below. 

4.3.1. Minjiang River 

Minjiang is an important left-bank tributary of the upper Yangtze River. Its 1279-km-long main 

stream flows in a southern direction. The watershed is larger than 130,000 km2. Large volume and an 

over-3-km drop of the water flow has made possible tens of hydropower stations, including the ancient 

Dujiangyan irrigation system (another World Heritage site) and the modern Zipingpu reservoir. In the 

upper reaches of Minjiang River, just before the Yingxiu Town, earthquakes and landslides are frequent. 

Lava, clasolite, and carbonatite dominate the lithology in this region. Translational landslides, i.e., mass 
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movements with little rotation or backward tilting [1], occurred on almost every slope in the river valley, 

resulting in considerable surface fragmentation and serious deterioration of vegetation. Due to the 

geometric distortion (layover on the east bank, shadow on the west bank)  

and decorrelation caused by drastic displacements, the measurable points are sparse, and mainly 

concentrated on the unbroken surface and/or the landslide regions where relatively stable  

conditions had been maintained during the period for which SAR images were obtained. Through the  

MTInSAR-derived deformation map (see Figure 8a), we could identify dozens of potential landslides 

along the 40-km-long valley, such as those shown in Figure 8b–d. A large number of landslides of 

various magnitudes develop at altitudes from 2000 down to 1200 m. Small landslides tend to converge, 

generating large landslides. In the 5-km-long valley shown in Figure 8b, most serious landslides occurred 

at low altitudes close to the river, covering more than half the surface, with the largest size up to 400 m 

wide and 700 m long. Mean LOS deformation rate with approximately −3 cm/a pointed to the instability 

of this region and the recurrent possibility of landslides. The whole surface of a slope (southeast aspect 

with approximately 40° average gradient, Figure 8c), from the mountain-top to the foot, had been cut 

into pieces by landslides, with maximum lengths up to 1 km. Deformation results reveal that the points 

lying just below the landslides are more unstable than those close to the river valley. The slope in Figure 

8d is located near Yinxing Town, facing east and characterized by the mean gradient of approximately 

50°. It can be divided into two parts, both of which have been severely damaged by falling stones. The 

lower boundaries (black lines shown in Figure 8d) of previous landslides are exactly parallel to the 

boundary of InSAR-derived unstable slopes. Mean deformation rate of approximately −5 cm/a indicated 

that previous landslides here were still active, and massive movement could occur continuously, because 

large numbers of stones and lots of mud had been accumulated after the previous landslide events, 

reactivating or triggering new translational landslides because of the downward loading of loose 

overlying mantles. We chose three profiles in representative regions for the deformation analysis (EE’, 

FF’ and GG’, see Figure 8d), as illustrated in Figure 9. Potential landslides can be clearly distinguished 

through deformation differences, such as sections marked by dotted red-lines along profiles EE’, FF’ 

and GG’, respectively. In addition, a deformation zone with values ranging from −2 to −4 cm/a in the 

lower-left of Figure 8d was also observed and corresponds to areas impacted by engineering and 

construction activities such as roads and houses. Figure 8 shows the displacement time series of three 

typical points from unstable slopes with velocity rates up to −4.3, −1.7 and −3.4 cm/a respectively. It is 

clear that there is a deceleration trend due to the degraded effect of Wenchuan earthquake after 2009. 

Hence, Minjiang River valley is the region most affected by the landslides, which can be attributed to 

erosion due to the river, fragile lithology and steep topography. Fortunately, most residential areas are 

located at the gentle slopes away from the possible landslides. But infrastructure in the valley floor is 

vulnerable to landslides. 
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Figure 8. Deformation maps along Minjiang River (region I); (a) whole map superimposed 

on the averaged SAR intensity imagery; (b), (c) and (d) are images of three typical landslide 

regions superimposed on Google earth images, with their locations indicated by 1, 2, and 3 

in (a) respectively; temporal displacement evolution of the points A, B, and C (indicated in 

Figure b, c and d respectively); The blue line in (a) is the Minjiang River; In (d) black solid 

lines represent the lower boundaries of previous landslides, and dotted blue lines (EE’, FF’ 

and GG’) indicate the profiles of deformation analysis (see also Figure 9). 
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Figure 9. (a)–(c) illustrate the variation in point LOS deformation rates (in cm/a) along 

profiles EE’, FF’ and GG’ (in Figure 8d), respectively at their corresponding altitudes  

(in m). The sections marked by dotted red lines indicate the boundaries of the potential  

landslide regions. 

4.3.2. Longmenshan Fault 

The Longmenshan Fault comprises three parts; where the Wenchuan earthquake caused no ruptures 

(Mao-Wen), major ruptures (Yingxiu-Beichuan) and minor ruptures (Guanxian-Anxian), respectively [31]. 

The dominant lithology is demarcated by the faults, mainly comprising lava, clasolite, limestone, 

malmstone, and mudstone. In the segment from Wenchuan to Caopo Town, the Mao-Wen Fault is 

undercut by the Minjiang River, rendering rocks in the Fault exposed and prone to erosion. Figure 10 

shows the region southwest of Caopo, where few landslides occurred. The distribution characteristics of 

previous landslides here is discontinuous, small scale and low density, probably due to the occurrence 

of shallow valley landscapes. On the east side, the points are sparse due to the radar layover effect, while 

on the west side the gentle slopes are facing east and good results were obtained. The deformation result 

reveals that there are two extremely unstable valleys (see Figure 10a, region (1) and (2)), each a few-

kilometers long and where average rates exceed −5 cm/a. More than ten villages are located at the valley in 

Figure 10b, with the maximum slope gradient exceeding 60°. In the 6 km-long valley, dozens of landslides 

occurred with lengths of individual slides varying from several hundred meters to over 1 km. 

The valley presented in Figure 10c is about 8 km long with the altitudes ranging from 1600 to 2400 m 

and slope gradients from 20° to 50°. Villages named Dengcaoping, Changheba, and Zhangyagang are 

located here. This place used to be safe and suitable for human habitation, and very few landslide 

imprints were found in Google earth images. Because of this, a large number of houses have been built 

in the flat valley floor after 2008 for the homeless people displaced by the Wenchuan earthquake. 
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However, deformation results showed that the slopes were becoming unstable, especially in the region 

with low altitude and close to places where engineering activities were concentrated. The appearance of 

the instability can be attributed to the consequences of human activities. Figure 10d shows a slope near 

Sanshenghao Village, facing south, with a gradient of about 40°, and it is divided by a deep groove.  

On the west part, the points are situated above the previous landslides. The mean deformation rate is 

approximately −2.3 cm/a, and the absolute values increase at lower altitudes indicating that regions 

closer to landslides were more unstable. The same phenomenon can be seen in the east; the unstable 

points are mostly concentrated around landslides rather than on sections above them. It is also worth 

noting that the deformation on this slope is significantly underestimated because radar is not sensitive to 

the component along the north-south direction. 

 

Figure 10. Deformation maps along Mao-Wen Fault (region II). (a) The whole map 

superimposed on the averaged SAR intensity imagery; (b)–(d) show three typical landslide 

regions superimposed on Google earth images, with their locations indicated by 1, 2, and 3  

in (a) respectively; Blue lines in (d) indicate the regions where previous landslides  

were concentrated. 

The deformation map of region III, including the town of Yingxiu and the Zipingpu reservoir, was 

shown in Figure 11. Yingxiu-Beichuan Fault and Zipingpu reservoir are linked to the epicenter of the 
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Wenchuan earthquake, and this region is characterized by seismically-induced giant landslides, often 

more than 2 km in length and approximately 800 m in width. The landslide distribution varies greatly in 

space; much less occurred on the southeast of Yingxiu due to the gentle gradient. Generally, the frequencies 

of landslides decrease as altitudes reduce. From the deformation results it is clear that some regions are 

still unstable. The most significant region is Yingxiu (see Figure 11b), which was the most vulnerable 

area in 2008. Few landslide imprints as well as large deformations can be found on adjacent slopes. 

Numerous points of negative deformations are observed at the valley floor, where a large number of 

disaster relief-houses were constructed. Considering that this region is gentle and close to the river, and 

that the houses were built in a hurry, the negative impacts could probably be attributed to engineering 

induced subsidence rather than landslides. Figure 11e shows the deformation variation along a profile 

through Yingxiu with subsiding regions highlighted by the red ellipses. Translational landslides were 

prevalent in areas surrounding the Zipingpu reservoir, particularly on the steep north shore where massive 

seismically-induced landslides were clearly visible. Rockfalls, i.e., abrupt movements of rocks and boulders 

due to the presence of interstitial water from precipitation, were also widespread.  

A comparison between the Zipingpu Dam, a stable engineering construct (11c) and a typical landslide 

body on the south of the reservoir (Figure 11d) was also undertaken. 

 

Figure 11. Deformation maps along Yingxiu-Beichuan and Guanxian-Anxian Fault  

(region III). Figure (a) the whole map superimposed on the averaged SAR intensity imagery; 

Figures (b)–(d) show the typical regions superimposed on Google earth images, with their 

locations indicated by 1, 2, and 3 in (a) respectively; In (d) the red ellipse indicates a 

landslide area; Figure (e) shows the variation in point LOS deformation rates (in cm/a) along 

profile AA’, and red ellipses indicate the subsiding regions. 
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4.3.3. High-Altitude Mountains 

Some potential landslides were also found in high-altitude mountain region, such as those shown in 

Figure 12. The region in Figure 12a is located about 9 km southeast of Wenchuan County, and the terrain 

is rather rough with the altitudes up to 4500 m and perennial snow cover in shady areas. Many slopes 

have been broken up due to landslides of various sizes, especially at the mountain-tops where most 

landslides originated. From the deformation results we can clearly discriminate the unstable regions, 

which were mainly located at the upper section of the slopes. This is in accordance with the distribution 

of the previous landslides, and it means that potential landslides are originating from mountain-tops. 

Figure 12c shows a mountain-top with an elevation of 4000 m, and giant landslides were evident on all 

the slopes with various orientations. The deformation results showed that this large region was 

characterized by a rate of about −3 cm/a but included areas with values exceeding −5 cm/a. The occurrence 

of unstable points implies that the previous landslides were still active. Figure 12d shows another 

mountain-top with imprints of previous landslides clearly visible on Google earth images. Unstable points 

were detected on the east side and no points laying on the west side due to the layover. 

 

Figure 12. Deformation maps of region IV (a) and region V (b) superimposed on the 

averaged SAR intensity imageries; (c–f) showing the typical landslide regions superimposed 

on Google earth images; with their locations indicated by 1 and 2 in (a);  

3 and 4 in (b); respectively. The deformation time series of a point marked by the red circle 

is illustrated in (e); indicating an acceleration motion trend since 2010. Blue lines in (d) and 

(e) indicate the regions where previous landslides were concentrated. 
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The region in Figure 12b has a similar topography and landscape condition as that in Figure 12a, but 

no massive landslides were detected there. Additionally, the deformation results demonstrate that this 

region is still stable except for a few small slopes, such as those present in Figure 12e,f. The unstable 

slope in Figure 12e faces southeast and would at times be covered by a thin layer of snow during winters. 

A few small landslides measuring dozens of meters occurred under those unstable points. Note that the 

thin snow cover (e.g., less than 10 cm) would not affect the deformation monitoring for the slope 

considering the penetration capability of L-band SAR waves. However, the melt-water from snow could 

accelerate the erosion of steep slopes, increasing slope instabilities which show an acceleration motion 

trend since 2010 as measured on a representative point (marked by the red circle) in Figure 12e. In contrast, 

high elevation, north facing slopes in Figure 12f were covered by thick snow all year-long, and several 

hundred-meters-long landslide imprints appeared on the snow surface, indicating the potential of future 

landslides in the region. 

4.3.4. Giant Panda Habitat 

In Sichuan province the giant panda habitat is affected by human activities like logging, grazing, 

construction of roads, poaching as well as natural disasters such as earthquakes and landslides.  

Past landslides affected 1.06% of the total giant panda habitat up to 2006 [58]. They were mainly  

small-to-medium landslides, resulting in the reduction of habitat quality and an occasional death of 

individual animals. The Wenchuan earthquake resulted in the disappearance of 5.95% of the total area 

of the giant panda habitat (65,584 hm2) [59]. The habitat was also more fragmented because movement 

corridors and access to water-sources were cut-off by landslides [60]. Note that these negative impacts 

would persist over the short-to medium-term. 

Figure 13 shows the circumstances of the giant panda habitat and landslide distribution in the study 

area. Two major giant panda habitats, the Minshan Mountain, and Qionglai Mountain, account for 

41.66% and 26.47% of total habitat areas, and their densities of giant panda population are 0.074 and 

0.072 per km2, respectively. Based on the deformation results, we extracted approximately 50 potential 

landslides, among which 20 were located within the Giant Panda Habitat World Heritage site, and all of 

them were confirmed by Google earth images. Most of them were distributed along the river and fault 

valley, bringing in little effect to the giant panda because pandas normally prefer higher altitudes. 

Compared with the landslide occurrence in the Minjiang River valley (defined as the reference layer 

with extremely-dense landslides), the density of landslides in giant panda habitats can be qualitatively 

divided into five grades (from rare to extremely dense) by analyzing the spatial distribution of past 

landslide via Google earth images and InSAR-derived results. Statistical analysis of the distribution of 

the five grades of landslides showed that: (1) the landslides in Minshan Mountain were much denser 

than that in Qionglai Mountain, indicating that the giant pandas in Minshan were more vulnerable to 

impacts of landslides; (2) there was a correlation between the landslide density and the altitude; density 

of landslides decline as altitudes decrease. However, it is fortunate that most giant pandas frequented 

areas where sparse or medium-density landslides occurred. 

In brief, landslide analysis by MTInSAR in this study could facilitate the effective management of 

the giant panda habitat, particularly in identifying priority areas for surveys following an earthquake and 
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for designing and implementing measures to mitigate excessive habitat fragmentation and facilitate 

panda movements during post-seismic periods. 

 

Figure 13. Giant panda habitats in Minshan/Qionglai Mountains and landslide distribution 

derived by analyzing Google earth images and InSAR-derived results. 

5. Conclusions 

In this paper we report findings of studies on landslides over a large region including in the Giant 

Panda Habitat World Heritage site in Sichuan China. MTInSAR techniques used in this study are 

powerful in monitoring subtle deformations as well as the landslides. Other approaches have limitations 

when the monitored site is large and complex as the one in our study and the SAR dataset available is 

small. An enhanced landslide-oriented MTInSAR approach described in this paper could be effective 

for landslide monitoring in Sichuan including in the giant panda habitats by an integrated use of CS and 

DS points and the analyses of ensuing results. Dozens of potential landslides were detected in detail in 

a large area of approximately 4200 km2, distributed mainly along the Minjiang River and Longmenshan 

Fault, as well as in some high-altitude mountain regions at and above 4500 m. Considering their 

capability to detect and monitor potential landslides, MTInSAR approaches have value for hazard 

prediction and risk mitigation. Our results confirm that places of past landslides would continue to be 

geohazards in the short-to-medium term. New slides could easily be triggered in such locations. Even 

where landslides were small there is the risk of several small landslides aggregating to create a massive 

one. The impact of landslides on the giant panda habitat however, was low-to-moderate; nevertheless 

impacts of future landslides on giant-panda habitats may be of a different scale, and hence continuous 

monitoring and regular assessments are encouraged. 
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