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Abstract: Synthetic Aperture Radar (SAR) has been successfully used to map wetland’s 

inundation extents and types of vegetation based on the fact that the SAR backscatter signal 

from the wetland is mainly controlled by the wetland vegetation type and water level 

changes. This study describes the relation between L-band PALSAR σ଴ and seasonal water 

level changes obtained from Envisat altimetry over the island of Île Mbamou in the Congo 

Basin where two distinctly different vegetation types are found. We found positive 

correlations between σ଴	and water level changes over the forested southern Île Mbamou 

whereas both positive and negative correlations were observed over the non-forested 

northern Île Mbamou depending on the amount of water level increase. Based on the analysis 

of σ଴	sensitivity, we found that denser vegetation canopy leads to less sensitive σ଴ variation 

with respect to the water level changes regardless of forested or non-forested canopy. 

Furthermore, we attempted to estimate water level changes which were then compared with 

the Envisat altimetry and InSAR results. Our results demonstrated a potential to generate  

two-dimensional maps of water level changes over the wetlands, and thus may have substantial 

synergy with the planned Surface Water and Ocean Topography (SWOT) mission. 
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1. Introduction 

Tropical wetlands are one of the most important sources of global carbon and methane emissions,  

and play a significant role in regulating water balance and maintaining biodiversity [1–3]. Hydrologic 

conditions are extremely important for the maintenance of a wetland’s structure and function [4]. The 

Congo Basin in Africa is the third largest basin in terms of its size (~3.7 million km2), and second only 

to the Amazon River in discharge (~40,200 m3·s−1 annual average). However, only few studies have 

focused on its hydrology and hydrodynamics due to limited in situ data resulting from its historical 

political instability and poor civil infrastructure. Over the past few years, remote sensing became a viable 

tool to investigate Congo’s terrestrial water dynamics and fluvial processes with Interferometric 

Synthetic Aperture Radar (InSAR) [5], satellite-derived precipitation datasets [6], satellite radar 

altimetry and the Gravity Recovery and Climate Experiment (GRACE) data [7]. 

The capability of InSAR to explore the hydrologic changes in wetlands was first demonstrated by [8] 

using L-band HH-polarized SIR-C data over the Amazon floodplain, and further utilized to spatially 

map the passage of a flood wave from the Amazon floodplain using L-band JERS-1 data [9]. Later, 

Wdowinski et al. [10] also used the JERS-1 SAR data to study the water level changes over the 

Everglades wetlands in Florida. Besides the L-band SAR data, Lu and Kwoun [11] found that 

interferograms generated with C-band Radarsat-1 and ERS SAR data can also maintain adequate 

coherence under medium-low canopy closure over the Louisiana swamp forests. The advantage of this 

InSAR technique is that it provides highly accurate (centimetric) water level changes over the vegetated 

wetlands with high spatial resolution (usually 10~30 m). However, there exist several shortfalls as well. 

Firstly, a coherent SAR pair, constrained by temporal and spatial baselines and surface scattering 

characteristics, is required to generate the interferogram [12]. Secondly, the interferograms may only be 

generated over the wetlands with stable trunks of vegetation (e.g., swamp forests) [8,10,11] or 

structures [13] which enable the reflected radar signal to follow the double-bounce travel path. Finally, 

the interferograms generated from InSAR can only provide a spatially relative gradient of water level 

changes. Vertical reference data is needed to convert the relative changes into absolute changes [13,14]. 

Apart from InSAR which utilizes interferometric phase differences between two SAR scenes, SAR 

backscattering coefficient (σ଴) has been widely used to classify flooded and non-flooded areas with their 

vegetation types based on the fact that hydrological changes over wetlands can result in variations in SAR 

backscattering coefficients [15,16]. Accordingly, there have been efforts to quantify the relation between 
hydrologic conditions and σ଴ using theoretical scattering models. For example, Kasischke et al. [17] tried 

to correlate C-band ERS-2 σ଴ with regional hydrologic changes, vegetation types, and biomass in the 

Everglades wetlands of Florida. They found that the ERS-2 σ଴ is closely related to both soil moisture 

and water level changes in the Marl Prairie sites which seasonally experience complete dry condition. 

Later, Grings et al. [18,19] used C-band Envisat ASAR scenes and electromagnetic models with field 

work data to examine SAR backscatter responses to water level changes over marshes of the Parana 

River Delta. In addition, Trung et al. [20] studied changes in land cover classes in the Tonle Sap 
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floodplain using PALSAR and MODIS data with a land cover model as a function of water level. 

Recently, Kim et al. [21] has investigated relationships between L-band PALSAR σ଴ and water level 

changes from in situ gauge over the Everglades freshwater marshes. The relations were then used to 

estimate a reference water level change to convert relative water level changes obtained from PALSAR 

interferograms to absolute water level changes. However, the Everglades may be the only wetland in the 

world equipped with a dense network of water gauges installed for its restoration project, while most of 

the wetlands in the world lack cost-prohibitive in situ water gauges. 

Alternatively, satellite radar altimetry has been successfully used to monitor water level changes over 

rivers, lakes, and wetlands [22,23]. For example, Envisat altimetry [7] has been used to highlight the 

hydrodynamic differences between the Congo wetlands and the Amazon floodplains. Although satellite 

altimetry is a nadir-looking one-dimensional profiling instrument and thus needs an intersection with a 

water body, it is currently the only remote sensing instrument that can provide periodic water level 

changes from space [24]. In this study, we used the wetland water level changes obtained from Envisat 

altimetry instead of in situ data to investigate its relationship with the L-band PALSAR σ଴. In addition, 

because the radar backscattering mechanism depends on vegetation types as well, the Vegetation 

Continuous Field (VCF) [25,26] product derived from the Moderate Resolution Imaging 

Spectroradiometer (MODIS) was used to investigate the PALSAR backscattering sensitivity to different 

vegetation fields under hydrologic changes. Finally, we attempted to estimate wetland water level 

changes based on the relationship between backscattering sensitivity to water level changes and VCF 

data, which were compared with water level changes obtained from InSAR and Envisat altimetry. 

2. Study Area 

The Congo River is the largest river in Africa with a large number of islands. The largest number of 

channels and islands are found in the Malebo Pool, located upstream of the Livingstone Fall. The Malebo 

Pool is surrounded by extensive palms and papyrus swamps along the edges and floating mats of 

Eichhornia frequently pass through [27]. The annual amplitude of water level change in the Malebo Pool 

is about 3 m, and water flows quickly towards the ensuing Livingstone Fall with an average flow of 

30,000 m3·s−1 and 60,000 m3·s−1 in flooding time [28]. The biggest island in the Malebo Pool is called 

the Île Mbamou, which is our study area (Figure 1). It separates the Congo River into two channels, and 

most of the water flow through the channel south of the Île Mbamou to the Livingstone Fall. 

Figure 1a shows the 3-arcsecond resolution C-band Shuttle Radar Topography Mission (SRTM) 

Digital Elevation Model (DEM) over our study region. Interestingly, we observe that the SRTM DEM 

values are distinctly different over the southern and northern parts of the Île Mbamou. Since this SRTM 

DEM is generated with C-band (5.6 cm wavelength) SAR data which cannot penetrate vegetation 

canopy [11,29], the measured scattering phase center is usually above bare ground and lower than tree 

height [30]. Consequently, the SRTM elevations are biased upward above the ground into the tree 

canopy, and not representing the bare-earth topography. Therefore, it is likely that the higher SRTM 

DEM values over the southern island partly represent its higher canopy height. It is consistent with the 

land cover map shown in Figure 1b from the GLCNMO (Global Land Cover by National Mapping 

Organizations) 2008 [31]. The southern part of the Île Mbamou is dominated by “broadleaf evergreen 

forest” while the northern part of the Île Mbamou is occupied by “herbaceous vegetation” and “open 
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canopy”. However, an old French literature found in [32] indicates that the topography between the 

southern and northern parts of the island may be indeed different. 

 

Figure 1. (a) Envisat’s pass 143 (black line) over our study area. The central island 

represents the Île Mbamou. Background is the C-band SRTM DEM; (b) Land cover map 

from GLCNMO2008 [31]. 

3. Data Sets 

3.1. Envisat Radar Altimetry 

In this study, we used Envisat RA2 Geophysical Data Record (GDR) of pass 143, from the period of 

October 2002 (cycle 10) to September 2010 (cycle 93). The ascending pass 143 flies over the Malebo 

Pool from south to north, sequentially intersecting the southern reach of the Congo River, the Île 

Mbamou, and northern reach of the Congo River (Figure 1a). The Envisat RA2 GDR contains 18-Hz 

(~350 m along-track sampling) retracked range observations using OCEAN, ICE-1, ICE-2, and SEA 

ICE retrackers. Among these, we chose the ICE-1 retracker [33]. The instrument corrections, media 

corrections (dry and wet troposphere corrections from the European Centre for Medium-Range Weather 

Forecasts model, and the ionosphere correction based on Global Ionosphere Maps), and geophysical 

corrections (solid Earth and pole tides) were applied. In addition, the 5.6 m level Ultra Stable Oscillator 

(USO) anomalies for cycles 44–85 were corrected using the European Space Agency’s correction table. 

3.2. PALSAR Backscattering Coefficients 

We used fourteen ALOS PALSAR images obtained at ascending direction with a look angle of 34.3°, 

spanning from June 2007 to February 2011, as listed in Table 1. Seven of them were obtained with Fine 

Beam Single (FBS) mode (HH polarization) while the other seven were obtained with Fine Beam Dual 

(FBD) mode (both HH and HV polarizations) [34,35]. We adopted images with HH polarization mode 

because it is known to be more sensitive to water level changes beneath vegetation [35,36] and provides 

better interferometric coherence [14]. We processed all PALSAR raw data to obtain single look complex 
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(SLC) images. It is noted that different bandwidths of FBD and FBS data lead to different ground range 

resolutions, i.e., 28 MHz for FBS data and 14 MHz for FBD data [37]. To obtain consistent resolutions, 

the FBD images were oversampled by a factor 2 in the range direction. The SLC images were then  

co-registered to a common SLC image obtained on 13 December 2008. To reduce the effects of radar 

speckle noises, we applied a 4 × 9 multi-look factor to all of the SLC images. As a result, the spatial 

resolution of the multi-looked mages becomes approximately 30 m × 30 m. The backscattering 

coefficient (σ଴) can be computed with absolute calibration factors such as: 

σ଴ ൌ 10 logଵ଴ሺܰܦଶሻ ൅ ܨܥ ሺdBሻ (1)

where DN is the digital number of the intensity image, and CF is the radiometric calibration factor  

(−51.9 dB for FBS HH data, and −51.8 dB for FBD HH data) [38]. A median filter with 3 × 3 window 

was also applied to further reduce speckle noises. Since the topography is quite smooth over the study 
area, gamma naught (଴: σ଴	divided by the cosine of the incidence angle) is not considered in this study. 

Finally, all the σ଴ images were geocoded using 3-arcsecond SRTM DEM oversampled to 1-arcsecond 

resolution. However, it is noted that 1-arcsec SRTM DEM over Africa is now freely available [39]. 

Table 1. List of PALSAR scenes used this study. 

Scene ID Operation Mode Date Path Frame Polarization Mode 

ALPSRP073347100 FBD 10 June 2007 607 7100 HV/HH 

ALPSRP086767100 FBD 10 September 2007 607 7100 HV/HH 

ALPSRP093477100 FBS 26 October 2007 607 7100 HH 

ALPSRP100187100 FBS 11 December 2007 607 7100 HH 

ALPSRP127027100 FBD 12 June 2008 607 7100 HV/HH 

ALPSRP153867100 FBS 13 December 2008 607 7100 HH 

ALPSRP180707100 FBD 15 June 2009 607 7100 HV/HH 

ALPSRP194127100 FBD 15 September 2009 607 7100 HV/HH 

ALPSRP207547100 FBS 16 December 2009 607 7100 HH 

ALPSRP214257100 FBS 31 January 2010 607 7100 HH 

ALPSRP234387100 FBD 18 June 2010 607 7100 HV/HH 

ALPSRP247807100 FBD 18 September 2010 607 7100 HV/HH 

ALPSRP261227100 FBS 19 December 2010 607 7100 HH 

ALPSRP267937100 FBS 3 February 2011 607 7100 HH 

3.3. MODIS VCF 

The MODIS 250 m VCF collection 5 product was used in this study to represent the spatial 

heterogeneity of vegetation in the Île Mbamou. The VCF product is derived from all seven bands of the 

MODIS data [25,26]. It contains proportional estimates for vegetative cover types, including woody 

vegetation, herbaceous vegetation and bare ground, and thus is useful to show how much of a land cover 

such as “forest” or “grassland” exists [26]. The VCF data is available from 2000 to 2010, and we 

calculated mean VCF value from them which is shown in Figure 2. We can observe a clear difference 

in VCF over the northern (10%–20%) and southern (50%–70%) parts of the island. It indicates that the 

northern part is mostly covered with non-forest areas whereas forest is dominant over the southern part. 
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Figure 2. Map of MODIS VCF averaged using VCF data from 2000 to 2010 over the Île 

Mbamou. Envisat 18-Hz nominal footprints with their numbers are also plotted which are 

referred in Section 5.2. 

After all, distinctly different vegetation types over the northern and southern parts of the island, along 

with the intersecting Envisat track make the Île Mbamou an ideal domain to test a regression model 

toward estimating water level changes based on σ଴ changes and MODIS VCF. Hereinafter, the northern 

Île Mbamou refers to the non-forested areas and the southern Île Mbamou refers to the forested areas. 

4. Envisat Altimetry and Interferometric SAR Data Processing 

4.1. Water Level Changes from Envisat Altimetry over the Malebo Pool 

Typically, several high-rate (e.g., 18-Hz in case of Envisat altimetry) measurements obtained over 

intersections of satellite track and water bodies (river, lake, reservoir, wetlands) are spatially averaged 

to generate water level change time series. Figure 3 illustrates the surface height profiles along Envisat 

pass 143 obtained from several Envisat cycles over the Malebo Pool. We can observe fluctuations in the 

water levels over the southern Congo reach, and southern and northern parts of the Île Mbamou (marked 

with “1”, “2”, and “3”, respectively, in Figure 3). We then generated water level change time series by 

combining successive overpasses. Figure 4a shows the time series over the southern reach of the Congo 

River using multiple 18-Hz Envisat altimetry measurements (“1” in Figure 3). After editing out spurious 

data, we observe its overall good agreement with daily in situ gauge data obtained at Brazzaville 

(Figure 1a) with a root-mean-square error (RMSE) of 34.9 cm and correlation coefficient of 0.95 using 

the daily in situ measurements temporally closest (black dots) to the Envisat altimetry measurements 

(Figure 4a). Part of the RMSE would be due to the fact that Brazzaville is located where the northern 

and southern Congo River meet, which resulted in higher amplitude of in situ time series. Similarly, we 

generated water level change time series by spatially averaging several 18-Hz Envisat altimetry 
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measurements over the southern and northern parts of the Île Mbamou (“2” and “3” in Figure 3, 

respectively), which both revealed 2–3 m of distinct seasonal variations (Figure 4b). Interestingly, we 

also observe from Figure 4b that the water over the forested area stays for a longer period of time than 

the water over the non-forested area (roughly 3 or 4 months), which may indicate that the forested land 

has a longer residence time. 

 

Figure 3. Water level fluctuations referenced to EGM08 geoid over the Île Mbamou along 

Envisat pass 143. The regions “1”, “2”, and “3” indicate the southern Congo River, 

the southern part of the Île Mbamou, and the northern part of the Île Mbamou, respectively. 

The yellow, red, and white colors along the pass in Figure 1 represent areas “1”, “2”, “3” 

shown above.  

 

Figure 4. Cont. 
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Figure 4. (a) Time series of water level changes from Envisat altimetry over the southern 

Congo River (region “1”, blue) and from the daily in situ gauge at Brazzaville (red).  

The black dots indicate the daily in situ data temporally closest to the Envisat altimetry data, 

which are used to compute RMSE and correlation coefficient; (b) Time series of water level 

changes from Envisat altimetry over the southern (region “2”) and northern (region “3”) 

parts of the Île Mbamou. Error bars represent 95% confidence intervals. 

4.2. Comparison of Water Level Changes from Envisat Altimetry over the Everglades and in Situ Data 

In order to demonstrate Envisat altimeter’s capability of measuring water level changes over these 

vegetated wetlands in the Île Mbamou where no in situ record exists, we first performed indirect 

verification by comparing the Envisat altimetry derived water level changes and in situ records over the 

Everglades wetlands in Florida, USA. We also performed a comparison between Envisat altimetry 

derived water level changes and InSAR-derived water level changes over the forested southern the Île 

Mbamou which will be shown in Section 5.3. Figure 5 shows Envisat ground tracks over the Everglades 

with its VCF as background. We generated six water level change time series using the 18-Hz ICE-1 

retracked measurements from passes 194 and 465, and compared them with nearby gauge data. As 

summarized in Table 2, VCF values extracted over the Envisat stations indicate that stations EnvP194_1, 

EnvP194_2, EnvP194_3, EnvP194_4, and EnvP465 are covered with non-forested vegetation and 

station EnvP194_5 is covered with forested vegetation. Figure 6 and Table 2 show that all of the Envisat 

altimetry time series agree very well with in situ data regardless of the canopy density. The unstable 

performance of Envisat altimetry over EnvP194_3 in 2007 and 2009 is expected to be due to the dry 

conditions of the surface that persisted about three months as can be seen from in situ data. After all, 

although the forest types in the Everglades and the southern Île Mbamou may be different, this 

comparison study over the Everglades shows that Envisat altimetry can measure water level changes 

beneath both non-forested and forested land cover accurately. 
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Figure 5. VCF Map of the Everglades with Envisat ground tracks. The Envisat stations and 

adjacent in situ gauges are indicated with red and white triangles, respectively. 

 

Figure 6. Cont. 
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Figure 6. Time series of water level changes from Envisat altimetry (blue) and nearby  

in situ gauges (red). The black dots indicate the in situ data temporally closest to the Envisat 

altimetry data, which are used to compute RMSE and correlation coefficient. 

Table 2. Comparison between water level changes obtained from Envisat altimetry and  

in situ data over the Everglades wetlands. 

Altimetry 

Time Series 

In Situ 

Gauges 

Distances between the Altimetry 

Station and Gauge (km) 
RMSE (cm) 

Correlation 

Coefficient 
VCF (%) 

EnvP194-1 P34 10.7 12.2  0.83 25 

EnvP194-2 S344-T 3.2 8.6 0.92 19 

EnvP194-3 3A10 5.1 17.1 0.87 27 

EnvP194-4 TMC 2.3 8.0 0.97 29 

EnvP194-5 NR 4.4 9.8 0.75 48 

EnvP465 EDEN12 2.1 8.6 0.96 21 

4.3. Water Level Changes over Each Envisat’s High-Rate Nominal Footprint 

Next, we generated water level change time series over each of Envisat’s 18-Hz nominal ground  

track location using the high-rate stackfile method (for details, refer to [22,40]). Each Envisat high-rate 

(18-Hz) stackfile bin serves as the 18-Hz nominal ground track to which the 18-Hz water level change 

time series are referred. For each GDR record from a given Envisat cycle and pass, the corresponding 

row is predicted based on an equator crossing table which is computed by interpolating the precision 

orbit ephemeris (POE) of Envisat. In other words, for example, for an ascending pass, the row can be 

computed such as [41]: 

௔௦௖ݓ݋ݎ ൌ
௔ܶ௦௖ െ ௘ܶ௤஺௦௖

Δܶ
 (2)

where, ௔ܶ௦௖ is the time tag on the ascending pass of a surface height measurement, ௘ܶ௤஺௦௖ is the time tag 

when the ascending pass crosses the equator and Δܶ  is the time spacing of the surface height 

measurements. The equator crossing tables are the basis of mapping transformation between time tags 

in GDR record and row-column addresses of the low-rate (1-Hz) stackfile bins (for details, refer to 

Chapter 2 of [41]). If the predicted 1-Hz stackfile row-column address is equivalent to the given bin 

address of the empty stackfile array, then for each 1-Hz stackfile bin, 18-Hz stackfile bins (or 18-Hz 

nominal ground tracks), in which the water levels are “stacked”, are created. The latitudes and longitudes 
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of the 18-Hz bins (or ground tracks) are calculated by linearly interpolating two adjacent 1-Hz nominal 

ground track latitudes and longitudes, which are stored in the 1-Hz stackfile bin header. The 18-Hz 

nominal ground tracks over the Île Mbamou are plotted in Figure 1a. 

4.4. Water Level Changes from InSAR 

To be compared with the water level changes from altimetry, we generated two differential 

interferograms using PALSAR pairs obtained on 26 October 2007–11 November 2007 (water increasing 

period) and 16 December 2009–31 January 2010 (water decreasing period), and obtained their spatial 

gradient of the water level changes between the acquisition dates (results in Section 5.3). Perpendicular 

and temporal baselines of the interferograms are summarized in Table 3. After flat-earth phase removal, 

the interferometric phase mainly contains contributions from the topographic relief and surface 

deformation in the radar range direction. The differential interferogram, which presumably contains 

phase changes only due to wetland water level changes [8,11,14] which correspond to the contribution 

from the deformation, were generated after removing the topographic phases using the SRTM DEM. 

Because inaccurate orbit vector information provided in the PALSAR metadata often leaves residual 

fringes in the interferograms, we modeled the baseline error using the best-fitting polynomial to remove 

the artifacts due to the orbital error. The differential interferograms were then smoothed using adaptive 

filtering to enhance the fringe visibility, and finally geocoded to yield the displacement maps using the 

look-up table generated from existing geocoded SRTM DEM and SAR image orbital information [42]. 

Considering the radar wavelength and incidence angle of the PALSAR images, 1.0 radian of 

interferometric phase is equivalent to 2.4 cm of vertical water level change [12]. 

Table 3. Description of InSAR pairs used to generate interferograms. 

Attribute Water Increasing Season Water Decreasing Season 

Perpendicular Baseline 116 m 79 m 

Ambiguity height 439 m 645 m 

Date 
26 October 2007 16 December 2009 

11 December 2007 31 January 2010 

5. Estimating Wetland Water Level Changes Based on σ૙ Changes 

5.1. Temporal Variation of σ଴ 

Figure 7 shows the geocoded PALSAR σ଴ images over the study region. It is clear to see the temporal 

variations in the backscattered intensity, but with distinctly different patterns over the northern and 

southern parts of the Île Mbamou. For example, in June (10 June 2007 or 12 June 2008) which 

corresponds to the low-water season, the entire island reveals similar intensity while in December (11 

December 2007, 13 December 2008, or 16 December 2009), the high-water season, the southern part 

appears much brighter than the northern part. This can be explained if the northern part of the island has 

mainly non-forested low canopy vegetation whereas the vegetation on the southern part is mainly highly 

dense forest as indicated by the VCF map in Figure 2. During the high-water season, the northern Île 

Mbamou (non-forested) would be mostly submerged and little radar energy would be backscattered to 
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the satellite due to specular scattering. On the other hand, over the southern Île Mbamou (forested), 

increasing water level would lead to stronger double-bounce backscattering. 

As shown in Figure 8, the σ଴	over the northen and southern Île Mbamou (over the black boxes in the 

averaged σ଴ map in Figure 7) show seasonal variations which are expected to be related to the water 

level changes. Mostly, the peaks and troughs of the non-forested land σ଴ variation correspond to the 

troughs of peaks of the forested land σ଴ variation, respectively. In case of the forested land, increasing 

water level leads to stronger radar return due to enhanced double-bounce backscattering. On the contrary, 

the radar backscattering over the non-forested land is governed by the specular scattering during  

high-water season, leading to weaker radar return. However, stronger radar return is observed during  

the low-water season due to the double-bounce backscattering [11,21] or multipath backscattering [17] 

in non-forested vegetation. From Figure 8, it is also noted that σ଴ over the non-forested northern Île 

Mbamou reveal stronger temporal variation than those over the forested southern Île Mbamou. 

 

Figure 7. Images of PALSAR σ଴ used in this study. PALSAR σ଴ values over the northern 

part of the island, and the southern part of the island marked with black boxes in the 

“Average” image are used for Figure 8. 
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Figure 8. Variations of PALSAR σ଴ over the northern and southern parts of the island, 

averaged over the 31 × 31 black boxes shown in Figure 7. Error bars represent 95% 

confidence intervals. 

It is noted that another important driver of temporal variation in L-band σ଴  over non-forested 

vegetation is variation in soil moisture [17]. It is expected that σ଴ would increase if the surface soil 

condition transits from dry to wet. Although the northern Île Mbamou may experience seasonal dry 

condition, we expect that the σ଴ variation observed in Figures 7 and 8 is not likely due to the soil 

moisture variation based on Figure 9 which compares the time series of Envisat water level changes and 

PASLAR σ଴ changes over the northern Île Mbamou. As can be seen, PALSAR σ଴ increases when the 

water level decreases. In other words, when we observe the increase in PALSAR σ଴ occurs not during 

the dry or early wet period, but during the decreasing water period due to the enhanced double-bounce 

(or multipath) backscattering. Therefore, the PALSAR σ଴  data that we used in this study (listed in 

Table 1) do not show variation due to the soil moisture increase, at least over the Envisat altimetry 

footprint locations. 

 

Figure 9. Time series of water levels from Envisat altimetry (blue, left-axis) and 

backscattering coefficient from PALSAR (green, right-axis) over the non-forested  

northern Île Mbamou. 
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5.2. Effects of Water Level Changes on PALSAR σ଴ 

5.2.1. Relationship between Envisat Water Level Changes and PALSAR σ଴ Changes 

Here, we performed linear regression analysis between water level changes from Envisat altimetry 

and PALSAR σ଴  changes over each Envisat’s 18-Hz nominal ground track (or footprint) location.  

The σ଴  changes over the ground track locations were obtained by performing a bilinear spatial 

interpolation. The water level changes generated over each of the 18-Hz stackfile bins are linearly 

interpolated to each PALSAR acquisition dates using two consecutive water level changes obtained 

before and after the acquisition dates, and compared with the corresponding PALSAR σ଴  changes.  

For each Envisat’s 18-Hz nominal footprint, we used the lowest water level as a reference and performed 

regression analysis between the changes of water levels and σ଴ as shown in Figures 10 and 11. From 

Figure 10, we observe positive correlation between the changes of water levels and σ଴, which indicates 

that increasing water levels lead to stronger σ଴ over the forested lands. The stronger σ଴ can be explained 

by the enhanced double-bounce backscattering due to the increasing water levels. On the other hand, 

from Figure 11, we also observe the positive correlation between the changes of water levels and σ଴ over 

the non-forested lands until the water surface reaches a certain level. This can also be explained by the 

stronger double-bounce backscattering. If the water level continues to increase, then the negative 

correlation between the changes of water levels and σ଴ is observed over the non-forested lands, which 

can be explained by the enhanced specular backscattering. A schematic plot illustrating these different 

backscattering mechanisms is shown in Figure 12. The VCF threshold used to distinguish between the 

forested and non-forested lands will be discussed in the following section. 

5.2.2. Distinguishing Forested and Non-Forested Lands 

In Figures 10 and 11, we used the mean VCF as a representative vegetation density value at each of 

Envisat’s 18-Hz nominal footprint location, so we can investigate the relation between the linear 

regression slopes and VCF as well (see Section 5.2.3). It is noted that the spatial resolution of VCF  

(250 m) is finer than the altimeter along-track footprint interval (~350 m). First of all, we need to 

determine a threshold to classify the forested and non-forested lands using VCF which is the percentage 

tree cover for every pixel. Various studies have used different VCF tree cover thresholds to determine 

forest land areas. For example, Nelson et al. [43] used a threshold of 25% and produced estimates of 

forested land area similar to inventory estimates for the entire United States (US) and for the 

conterminous US. Schmitt et al. [44] used 10% tree cover threshold and estimated global forest cover to 

be 39 million km2. Over the entire Congo Basin, Hansen et al. [45] used VCF Landsat training data and 

four years of MODIS inputs to classify “non-treed” cover with a threshold of <10%. In this study, we 

attempted to decide the threshold to distinguish between the forested and non-forested lands based on 

the regression relationships between σ଴  and water level changes over each of the Envisat 18-Hz 

nominal footprints. 
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Figure 10. Selected time series of water level changes from Envisat altimetry (blue in the upper panels) and σ଴ (green in the upper panels) over the 

forested land. Results of linear regressions between them are illustrated in the bottom panels. The amplitude difference of the water level changes 

between adjacent 18-Hz nominal footprint is partially due to the altimeter measurement error. Refer to Figure 2 for the location of the footprints. 
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Figure 11. Selected time series of water level changes from Envisat altimetry (blue in the upper panels) and σ଴ (green in the upper panels) over 

the non-forested land. Results of linear regressions between them are illustrated in the bottom panels. The blue and black lines represent the 

fitted line for “water increase I”, and “water increase II”, respectively. The amplitude difference of the water level changes between adjacent 

18-Hz nominal footprint is partially due to the altimeter measurement error. Refer to Figure 2 for the location of the footprints. 
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Figure 12. Different backscattering mechanisms over the (a) forested and (b) non-forested 

lands with different levels of water (modified from Figure 3 of [21]). 

Figure 10 shows the time series of PALSAR σ଴  and interpolated Envisat altimetry water level 

changes over, for example, some of the footprint locations (footprints 2, 3, 5, 6, 7, 8, 9 and 10) which 

have VCF > 20%. We observe that there exists positive correlation between σ଴ and Envisat altimetry 

water level changes over these locations. In other words, higher water level leads to higher σ଴. This 

indicates that higher water level can lead to enhanced double-bounce backscattering over wetlands with  

VCF > 20%. The results of linear regressions are summarized in Table 4. Except for footprint 4, all of 

the locations with VCF > 20% have positive regression slopes. On the other hand, Figure 11, for 

example, shows the time series of σ଴ and interpolated Envisat altimetry water level changes over some 

of the footprint locations (footprints 13,14, 16, 17, 19, 20, 21 and 25) which have VCF < 20%. 

Interestingly, we found that both positive and negative correlations exist between σ଴ and water level 

changes. As water level increases up to ~1 m, σ଴  also increases as in the case of wetlands with  

VCF > 20%. However, when the water level increases more than ~1 m, σ଴ then starts to decrease. This 

can be explained if the double-bounce backscattering is enhanced with increasing water level only until 

a certain stage, and then specular backscattering becomes dominant with higher water levels over  

non-forested land. This finding is different from previous studies of [17,21] which employed only one 

regression model with a negative slope. Accordingly, we fitted two linear regression models: one with a 

positive slope and the other with a negative slope as shown in the bottom panels of Figure 11. The water 

level change which leads to the highest σ଴ is used to split the water level change and σ଴ variables, so the 

two regression models can be applied separately. Our regression results for all of the footprint locations 

with VCF < 20% are summarized in Table 5. Based on these observed different sensitivities of σ଴, the 

VCF threshold of 20% will be used in the following sections to distinguish the forested and non-forested 

land covers. 
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Table 4. Linear regression results over the southern forested Île Mbamou. Locations of 

Envisat 18-Hz nominal footprints are illustrated in Figure 2. 

Envisat Footprint Latitude (Degree) Longitude (Degree) VCF (%) Slope Intercept R2 

1 15.4425 −4.2434 48.9 1.33 −9.29 0.15 

2 15.4419 −4.2404 49.4 1.75 −11.2 0.56 

3 15.4412 −4.2375 49.3 1.33 −8.86 0.32 

4 15.4406 −4.2346 51.2 −0.23 −7.83 0.01 

5 15.44 −4.2317 57.6 1.12 −10.17 0.41 

6 15.4393 −4.2288 59.4 1.25 −9.49 0.41 

7 15.4387 −4.2259 59.9 1.32 −7.6 0.31 

8 15.438 −4.223 54.9 0.8 −8.62 0.27 

9 15.4374 −4.2201 34.0 2.72 −15.69 0.4 

10 15.4368 −4.2172 21.3 2.03 −15.73 0.46 

Table 5. Linear regression results over the northern non-forested Île Mbamou. Locations of 

Envisat 18-Hz nominal footprints are illustrated in Figure 2. 

Envisat 

Footprint 

Latitude 

(Degree) 

Longitude 

(Degree) 
VCF (%) Slope 1 Intercept 1 R2 Slope 2 Intercept 2 R2 

11 15.4361 −4.2143 19.0 2.97 −16.71 0.74 −10.48 6.25 0.95 

12 15.4355 −4.2114 15.4 8.58 −23.68 0.66 −9.83 2.36 0.82 

13 15.4348 −4.2085 16.7 3.51 −10.49 0.64 −4.90 −1.35 0.96 

14 15.4342 −4.2056 15.7 2.87 −8.041 0.48 −2.93 −2.07 0.84 

15 15.4335 −4.2027 13.7 0.50 −8.48 0.02 −7.84 0.73 0.95 

16 15.4329 −4.1998 10.1 3.35 −8.67 0.22 −6.27 −5.56 0.84 

17 15.4323 −4.1968 11.4 4.21 −13.15 0.37 −8.08 −1.64 0.94 

18 15.4316 −4.1939 12.6 1.25 −8.95 0.44 −3.95 −6.69 0.66 

19 15.431 −4.191 12.5 0.49 −7.60 0.10 −7.26 6.84 0.96 

20 15.4303 −4.1881 14.7 3.36 −12.73 0.61 −5.29 −2.85 0.78 

21 15.4297 −4.1852 17.2 19.14 −11.36 0.95 −1.72 −8.02 0.85 

22 15.4291 −4.1823 15.6 2.33 −12.20 0.23 −6.34 −0.04 0.73 

23 15.4284 −4.1794 17.4 2.79 −10.91 0.81 −3.41 −4.20 0.50 

24 15.4278 −4.1765 15.8 −2.13 −7.28 0.22 −17.06 29.91 0.99 

25 15.4271 −4.1736 14.3 2.04 −9.94 0.16 −6.74 −1.27 0.86 

26 15.4265 −4.1707 16.1 1.98 −9.70 0.34 −5.22 −4.63 0.60 

5.2.3. Relationship between the σ଴ Sensitivity and VCF 

Different regression slopes (dB/m) summarized in Tables 4 and 5 over each of the footprints indicate 

varying sensitivities of σ଴ to water level changes over the forested and non-forested lands. For example, 

a steeper regression slope indicates higher σ଴ sensitivity to water level changes. Here, we examined the 

relation of the σ଴ sensitivity and VCF over the forested and non-forested lands, separately. Figure 13 

shows the relation between the regression slopes and VCF values over each of the footprints in forest 

(VCF > 20%). We observe that the regression slope (or σ଴ sensitivity) generally decreases with higher 

VCF (between 20% and 60%). This can be explained if denser canopy leads to higher volume scattering 

from the canopy and less double-bounce backscattering with less radar energy that penetrate through 
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denser canopy. In other words, although the same amount of water level increase occurs, a smaller 

amount of σ଴ increase is obtained if the area is covered with denser canopy. 

 

Figure 13. Regression analysis between the regression slope (dB/m) from Table 4 and  

VCF over the forested land. Black dot is treated as an outlier and excluded from the 

regression analysis. 

On the other hand, in the non-forested land, as mentioned above, σ଴ first increases, then decreases  

as the water level increases. Here, we have separated the σ଴  response to water level changes with  

respect to the water level increase which yields the highest σ଴. Saturation point of σ଴, which is described 

in  [46,47] is generally determined by above-water biomass and above-water canopy height. Figure 14 

shows the relationship between the water increase yielding the highest σ଴ (or “saturation height”) and 

the corresponding VCF value in the non-forested land (between 10% and 20%). Generally, we see that 

higher VCF results in higher saturation height. In fact, this positive correlation is consistent with the 

conclusion drawn from [46,47] which used above-water biomass and above-water canopy height. The 

positive correlation indicates that higher VCF area would need higher water level to reach the saturation 

biomass and hence higher saturation height. Next, to examine the σ଴ sensitivity in the non-forested land, 

we first divided the total span of water level increases into two parts: “water increase I” (0 < h < saturation 

height) and “water increase II” (saturation height < h < hmax), and performed linear regression between 

the σ଴ sensitivity and VCF as done in forest (Figure 13). Figure 15a shows the relationship between the 

σ଴ sensitivity to “water increase I” and non-forest VCF, and no obvious relationship can be observed. 

This indicates that the density of the non-forested vegetation do not have influence on the σ଴	sensitivity 

(or the double-bounce backscattering for “water increase I”). For “water increase II”, as shown in 

Figure 15b, a positive correlation between σ଴ sensitivity and VCF can be found, indicating that lower 

non-forested vegetation density leads to steeper regression (negative) slope. In other words, the specular 

scattering which leads to little radar return to the satellite is enhanced with less dense non-forested 

canopy. It should be noted that the regression slopes are all negative for “water increase II” when water 

level increase exceeds the saturation height because the specular scattering becomes dominant as the 

canopy becomes submerged, and there is little chance for radar signal to interact between canopy stems 

and water surface [48]. 
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Figure 14. Relation between saturation height and VCF in the non-forested land. The black 

dot is treated as an outlier and excluded from the regression analysis. 

 

Figure 15. (a) Regression analysis between the regression slope1 (dB/m) from Table 5 and 

VCF over the non-forested land for “water increase I”; (b) Regression analysis between the 

regression slope2 (dB/m) from Table 5 and VCF over the non-forested land for “water 

increase II”. Black dots are treated as outliers and excluded from the regression analysis. 

It is noted that the outliers excluded from the regression analyses in Figures 13–15 are caused by the 

altimeter measurement errors or by the coarse spatial resolution of the VCF product. 

5.3. Water Level Changes Estimated from σ଴ Changes and VCF 

In this section, based on the σ଴  sensitivities characterized over the Île Mbamou, we attempted  

to estimate water level changes between two pairs of SAR acquisition dates: one for the water  

increasing period (26 October 2007–11 December 2007) and the other for the water decreasing period  

(16 December 2009–31 January 2010), which are the same SAR pairs used to generate the two 

differential interferograms described in Section 4.4. We first arbitrarily selected 14 Envisat footprint 

locations among the 26 footprint locations: five over the forested, and nine over the non-forested lands  

(green circles in Figure 18) for the purpose of performing the regression analysis as shown in Figure 16 

on the σ଴ sensitivity (or the regression slope of dB/m) and VCF over forested and non-forested lands, 

separately, similar to the analysis done in Figures 13 and 15, respectively. The rest of the footprints will 

be used to perform comparison with the Envisat altimetry water level changes for validation purpose. 
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Next, using the regression result (dB/m versus VCF) from Figure 16, we computed the water level 

changes over the 18-Hz Envisat footprints which were not used for the regression analysis (purple 

diamonds in Figure 18) such as: 

∆݄ ൌ
∆σ଴

ሺܴ݁݃݊݋݅ݏݏ݁ݎ ሻ݁݌݋݈ܵ ∙ ܨܥܸ
ሺ݉ሻ (3)

where Δσ଴ (dB) is the σ଴ changes between the two dates, and the regression slope has a unit of 

dB/m/VCF(%) determined from Figure 16. 

 

Figure 16. Regression analysis between the regression slopes (dB/m) and VCF using five 

Envisat footprints over the forested land and nine Envisat footprints over the non-forested land. 

Before we compare the estimated Δ݄ from Equation (3) with Δh obtained from Envisat altimetry 

water levels, we first compared Δh from InSAR which has a centrimetric accuracy [49] and Δh from 

Envisat altimetry in order to further validate the altimetry results. Figure 17 shows the two wrapped 

differential interferograms generated over the forested area. Due to low coherences, the fringes over the 

non-forested area have been masked out, and we were able to validate altimetry measurements over the 

forested southern Île Mbamou only. The interferogram shown in Figure 17a reveals a spatial variation 

in water level change between 26 October 2007 and 11 December 2007 whereas the interferogram in 

Figure 17b shows negligible spatial variation in water level change between 16 December 2009 and 31 

January 2010. The differential interferometric phases along the Envisat 18-Hz footprints (black lines in 

Figure 17) have been extracted, unwrapped, and converted to vertical displacements. Since InSAR can 

measure only spatially relative water level changes, arbitrary constants (+0.766 m and −0.441 m for 

Figure 17a,b, respectively) have been added (red “+” in Figure 18) for better comparison with Envisat 

altimetry results in Figure 18. The InSAR and Envisat altimetry water level changes agreed quite well 

with Root-Mean-Square-Error (RMSE) of 18.3 cm and 9.7 cm for the interferograms in Figure 17a,b, 

respectively. This further validates altimetry’s capability of measuring water level changes beneath 

dense forest canopy. 
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Figure 17. Wrapped differential interferograms over the Île Mbamou representing water level 

changes over the southern forested land between (a) 26 October 2007–11 December 2007; and 

(b) 16 December 2009–31 January 2010. 

Next, we compared Δh obtained from Equation (2) and Envisat altimetry over the footprint locations 

indicated with purple diamonds in Figure 18. Their differences are listed in Table 6. We obtained mean 

RMSEs of 48.95 cm for the period of 26 October 2007–11 December 2007 and 64.69 cm for the period 

of 16 December 2009–31 January 2010 over the forested area. The large difference between Δh from 

Equation (2) and altimetry shown in red box in Figure 18, which indicates the boundary between the 

forested and non-forested areas, could be caused by the error of VCF product in distinguishing different 

vegetation densities with its coarser spatial resolution (~250 m) than PALSAR (~30 m). If we exclude 

those footprints (footprints 11 and 12), we obtain RMSEs of 37.86 cm for the period of 26 October  

2007–11 December 2007, and 58.80 cm for the period of 16 December 2009–31 January 2010 in  

the non-forested area which is comparable with the result in [19] that achieved 22 cm RMSE for the 

estimated water levels over marshes in the Parana Basin using Envisat ASAR σ଴ and electromagnetic 

models that address the vegetation structure and interaction mechanism. It is noted that our approach 

does not rely on any electromagnetic models requiring detailed vegetation properties [18,19] or in situ 

measurements [21]that may be rarely available over the remote river basins. 

 

Figure 18. Cont. 
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Figure 18. Comparison of water level changes obtained from Envisat altimetry (blue dots), 

InSAR (red pluses) and model predicted using Equation (2) (magenta diamonds). Green dots 

represent the footprint locations where Envisat altimetry water level changes and σ଴ are used 

to construct the regression model in Figure 16. 

Table 6. Differences of Δh obtained from Equation (2) and Envisat altimetry over the 

footprint locations indicated with purple diamonds in Figure 18. Values in parentheses 

indicate the differences over the footprints located in the boundary of the forested and  

non-forested lands that were excluded in the RMSE computation. 

 
Differences for the Period of  

26 October 2007–11 December 2007 (cm) 

Differences for the Period of  

16 December 2009–31 January 2010 (cm) 

Forested Land 

25.35 49.44 

−19.75 −86.56 

82.80 −39.20 

15.94 53.77 

61.97 −80.99 

RMSE 48.95 64.69 

Non-Forested 

Land 

(452.42) (−315.31) 

(−136.88) (54.33) 

55.48 −20.67 

57.98 −30.43 

23.87 −7.70 

10.06 40.32 

7.56 119.36 

RMSE 37.86 58.80 

6. Application Discussion 

In order to demonstrate that our method can be applied to other wetlands, we performed a similar 

sensitivity analysis over the Everglades wetlands. We utilized the regression slopes obtained using  

in situ water level changes and PALSAR σ଴ changes over six gauge locations (six red dots in Figure 19) 

in the non-forested, sawgrass-dominated Water Conservation Areas (WCAs) from Figure 4 of [21] 
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(using Path 149 results). We extracted the VCF values over those six gauge locations and performed a 

similar sensitivity analysis as we did in Figure 15. As can be seen from Figure 19, we obtained a similar 

positive correlation between the VCF and the regression slopes (dB/m) as we did in Figure 15b. 

Therefore, although it was not possible to perform similar analysis over other forested areas due to the 

lack of in situ data, it is expected that we can estimate water level changes over wetlands based on 

different L-band σ଴ responses to water level changes in different vegetation fields. 

 

Figure 19. Regression analysis between the regression slopes (dB/m) and VCF over the six 

gauges located over the sawgrass-dominated Everglades wetlands. The regression slopes 

were obtained from Figure 4 of [21]. 

7. Conclusions 

This paper describes the seasonal variations of PALSAR σ଴ over the wetlands in the island of Île 

Mbamou where two distinctly different vegetation types are found, and its relations with water level 

changes obtained from Envisat altimetry have been investigated. We obtained positive correlation 

between σ଴  and water level changes over the forested land whereas both positive and negative 

correlations are observed over the non-forested land depending on the amount of water level increase.  

It was shown that the PALSAR backscatter response is enhanced during early water increasing season 

and then diminished with more increase in water level over the non-forested land. We also performed 

the analysis of σ଴ sensitivity, and found that denser vegetation canopy leads to less sensitive σ଴ variation 

with respect to the water level changes regardless of the vegetation type (forested or non-forested). 

Furthermore, based on the σ଴ sensitivity analysis, we also attempted to estimate water level changes 

which were then compared with the Envisat altimetry measurements, and obtained respective mean 

RMSEs of 57 cm and 48 cm over the forested and the non-forested lands, obtained by excluding the 

boundary footprints. Possible error sources include Envisat altimetry interpolation error, speckle noise 

in σ଴, resolution mismatch between σ଴ and VCF, and uncertainties in linear regressions. However, if we 

consider most of the contemporary floodplain hydrodynamic modeling has a scale of several hundred 

meters [50,51] our overall mean RMSE of 53 cm at 30-m scale (SAR resolution), which can be 

interpreted as 5.3 cm RMSE at 300-m scale if the pixel-to-pixel noise is uncorrelated, shows that our 

method can be useful for calibration and validation of a hydrodynamic model. 
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For a future study, two-dimensional map of water level changes obtained from Equation (2) can be 

generated. To do so, it is noted that a more detailed VCF-like map, which has a high spatial resolution 

similar to that of SAR image, is needed to estimate the water level change at each of SAR pixel.  

Although the map will not have the centrimetric accuracy as the repeat-pass InSAR provides, it would 

be still useful over wetlands with low canopy such as the non-forested areas, where InSAR loses its 

coherence and thus interferograms cannot be generated. On the other hand, our method can also provide 

a useful independent dataset for the planned Surface Water Ocean Topography (SWOT) satellite mission 

which is a single-pass Ka-band radar interferometer that will provide simultaneous measurements of 

water levels and inundated area for inland water bodies. Currently, InSAR is the only tool that can 

provide comparable dataset for SWOT observations over the wetlands. However, again, as can be seen 

in Figure 17, interferometric coherence cannot be maintained over the non-forested land, and InSAR 

requires a stable corner-reflector such as tree trunks to maintain interferometric coherence over the 

wetlands [11]. 
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