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Abstract: Remote sensing is gaining considerable traction in forest monitoring efforts, with 

the Carnegie Landsat Analysis System lite (CLASlite) software package and the Global 

Forest Change dataset (GFCD) being two of the most recently developed optical remote 

sensing-based tools for analysing forest cover and change. Due to the relatively nascent state 

of these technologies, their abilities to classify land cover and monitor forest dynamics have 

yet to be evaluated against more established approaches. Here, we compared maps of forest 

cover and change produced by the more traditional supervised classification approach with 

those produced by CLASlite and the GFCD, working with imagery collected over Sierra 

Leone, West Africa. CLASlite maps of forest change from 2001–2007 and 2007–2014 

exhibited the highest overall accuracies (79.1% and 89.6%, respectively) and, importantly, 

the greatest capacity to discriminate natural from planted mature forest growth. CLASlite’s 

comparative advantage likely derived from its more robust sub-pixel classification logic and 

numerous user-defined parameters, which resulted in classified products with greater site 

relevance than those of the two other classification approaches. In light of today’s 

continuously growing body of analytical toolsets for remotely sensed data, our study 

importantly elucidates the ways in which methodological processes and limitations inherent 

in certain classification tools can impact the maps they are capable of producing, and 

demonstrates the need to understand and weigh such factors before any one tool is selected 

for a given application. 
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1. Introduction 

Remote sensing is becoming an increasingly indispensable tool in ecology and conservation 

biology [1–4], with growing traction particularly in forest monitoring. The opening of the U.S. 

Geological Survey’s Landsat archive, which harbours more than 2 million satellite images of the Earth’s 

surface dating back to 1972 [5], has revolutionised standards for the availability of Earth observation 

data and helped to facilitate the rise of forests as today’s most common large-area monitoring target [6]. 

Airborne light detection and ranging (LiDAR) technologies that emit laser pulses to obtain information 

in three dimensions, along with associated developments in LiDAR analytical techniques, have improved 

capacities to measure forest stand structure [7] and facilitated the production of high-resolution aboveground 

carbon density maps [8–10]. Very High Resolution (VHR) products (e.g., aerial photos, IKONOS, GeoEye, 

QuickBird) can feature sub-meter spatial resolutions that allow for the delineation of complex spatial 

heterogeneities in forest structure based on multi-scale segmentation [11] or texture-based [12,13] analytical 

approaches. The launch of many new Earth observation systems, greater access to their products, and the 

continued development of computational technologies for remotely sensed data are supporting satellite 

imagery-based global forest-cover analyses at ever higher spatial, temporal, and thematic resolutions, and 

testify to sustained progress in remote sensing-based forest monitoring today [14,15]. 

However, a number of challenges still impede the more widespread use of remote sensing 

technologies for natural resource monitoring, two of which we address here. First, end-users in natural 

resource monitoring fields may lack a technical understanding of remotely sensed datasets and their 

associated analyses, and thus rely upon remote sensing scientists to design and implement remote 

sensing-based projects [16,17]. The high level of expertise necessary to handle remotely sensed data and 

products is considered an outstanding challenge facing today’s ecologists and conservation biologists 

that has limited their ability to take full advantage of remote sensing technologies as real assets [18]. 

Secondly, globally (or even regionally) consistent maps of land-cover change remain unavailable 

because of a lack of consensus on appropriate analytical approaches [6]. Conservation planning, which 

often requires information on processes that occur over a range of scales, is a field for which broadly 

consistent data layer coverage is of high importance [19]. Indeed, the success of increasing numbers of 

international and national habitat monitoring systems today directly depends upon efficient and  

long-term biodiversity monitoring at the habitat and landscape levels [18,20]. 

Two of the most recent technologies that have emerged in the field of remote sensing for forest 

monitoring address these challenges of inaccessibility to non-expert users and limited availability of 

globally consistent products. The Carnegie Landsat Analysis System lite (CLASlite) is a semi-automated 

analysis environment in which users can process radiometric data from nine different satellite  

systems—including the Landsat series—to produce maps of deforestation and forest disturbance. 

CLASlite administers the following semi-automated central functions to achieve such products: 

(1) Image calibration of raw satellite imagery to apparent surface reflectance; (2) fractional cover 
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analysis of surface reflectance data into proportional estimates of photosynthetic and non-photosynthetic 

vegetation cover as well as bare substrate using an Automated Monte Carlo Unmixing (AutoMCU) 

model that draws from a representative library of reflectance spectra; (3) forest-cover classification of 

fractional cover data based on proportional cover of photosynthetic vegetation and bare substrate; and 

(4) change detection between multi-temporal fractional cover data to determine deforestation and forest 

disturbance over time (Figure A1). CLASlite’s AutoMCU spectral mixture analysis algorithm is reported 

to be capable of detecting changes in forest cover in increments as small as 1% of a Landsat pixel, which 

corresponds to roughly 10 m2 [21]. Thus, CLASlite offers the potential to overcome current challenges 

in detecting cryptic forms of tropical forest degradation such as surface fire and sub-canopy disturbances 

that often occur at such smaller scales [22]. The CLASlite software package became globally and freely 

available in December 2013; individuals may download CLASlite upon completion of an online training 

course [23]—the world’s first for deforestation and forest degradation mapping—that is specifically 

designed to empower those with limited training in remote sensing. CLASlite users have already 

demonstrated CLASlite’s suitability for analysing deforestation and logging in tropical regions [24–26]. 

The second product, the Global Forest Change dataset (GFCD), was made available for free public 

download in February 2014 and is the first medium- to high-resolution (30 m) downloadable data 

product detailing global forest extent, loss, and gain from 2000–2012 [27]. The GFCD is based on  

time-series analyses of 654,178 growing season scenes captured by the Enhanced Thematic Mapper Plus 

(ETM+) spectrometer on board the Landsat 7 satellite and processed in parallel using the Google Earth 

Engine cloud environmental analysis platform. Each Landsat scene used in the GFCD is a 

computationally generated mosaic of cloud-free 30 m × 30 m Landsat pixels. Considering all vegetation 

taller than 5 m in height as trees and defining forest loss as the removal of all trees within a pixel, 

the GFCD stratified pixels from Landsat growing season data into <25%, 26%–50%, 51%–75%,  

and 76%–100% tree-cover (in year 2000) classes and quantified the area of forest lost from 2000–2012 

within each tree-cover class. Per-band metrics employed by the GFCD to characterise forest cover and 

change included pixel reflectance and mean reflectance values at maximum, minimum, and selected 

percentile values over time. Data used to train the Landsat metrics were derived from high  

spatial-resolution data (e.g., QuickBird imagery) and various existing percent tree cover datasets. 

Validation for accuracy was performed against reference change data obtained from image interpretation 

of time-series Landsat, Moderate Resolution Imaging Spectroradiometer (MODIS), and high  

spatial-resolution Google Earth™ imagery, as well as reference canopy height change LiDAR data 

obtained from NASA’s Geoscience Laser Altimetry System (GLAS) instrument on board the IceSat-1 

satellite [27]. As a “globally consistent and locally relevant” record of forest change [27], the GFCD 

forms the basis of Global Forest Watch, a freely available forest monitoring and alerting database with 

demonstrated impacts on timely conservation action and response [28].  

It is clear that both CLASlite and the GFCD harbour not only valuable utility in modern forest 

conservation efforts, but also the immediate potential to remove some of the barriers preventing remote 

sensing technologies from fully integrating with conservation communities. However, because both 

CLASlite and the GFCD are both relatively nascent technologies, opportunities to assess their relative 

capacities to classify land cover and monitor forest dynamics remain. Comparing the classification 

abilities of CLASlite and the GFCD is of critical importance given the array of new land-cover data, 

products, and tools that are available—and still being developed—today. No single technology will be 
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optimal for all applications; rather, its suitability will depend heavily upon the requirements of the user 

with respect to, for example, thematic coverage, and spatial and temporal detail [29]. Because CLASlite 

and the GFCD differ with respect to these features as well as their inherent methodological and 

analytical frameworks, it is of special interest to investigate the ways in which these differences 

might afford either forest monitoring technology certain advantages over the other when assessing 

the dynamics of complex forested landscapes in ways that are meaningful to conservationists. 

Especially relevant to conservation studies today are technologies that can differentiate natural 

mature forest from mature tree growth with obvious anthropogenic origins, such as palm plantations. 

Technologies with the ability to make this distinction would be vital resources for zero net 

deforestation targets, which value both the protection of native forests and the planting of new ones, 

and zero gross deforestation targets, which are particularly concerned with gross loss of forest area 

over time and broadly aim for no deforestation anywhere [30]. Remote sensing technologies that can 

map tree plantations separately from native forests will also contribute to more effective monitoring and a 

greater understanding of the impacts of land conversion due to growth in commercial agriculture [31,32], 

and critically inform carbon credit schemes such as the United Nation’s Reducing Emissions from 

Deforestation and Forest Degradation (REDD) Programme [33,34]. 

To deepen our assessment of the relative utilities of CLASlite and GFCD in forest monitoring, we 

further compared their classification abilities with those of supervised classification, a more established 

and traditional pixel-based land classification technique. Supervised classification is predicated upon 

user knowledge of the realities of a given study site; clusters of training pixels in a satellite image that 

are representative of any number of user-defined land-cover categories of interest are first identified by 

the user, then used to train a specified classification algorithm to locate and identify similar pixels in the 

remainder of the image [35]. While the a priori input of information has been identified as the main 

disadvantage of the supervised approach due to its potentially difficult, subjective, and time-consuming 

nature [36], the site-specific scope of our study as well as our use of high-resolution Google Earth™ 

imagery to promote the accurate identification of training pixels (see Section 2.3 for more detailed 

methodology) mitigated these concerns. Other common classification methods such as unsupervised 

classification and object based image analysis (OBIA) were considered less optimal for this study when 

compared with the supervised approach. Unsupervised classification, in which a classification algorithm 

is used to automatically assign image pixels into a user-defined number of classes, still requires 

significant post-classification labelling and has been shown to produce suboptimal results when 

compared to supervised classification [37]. Meanwhile, OBIA involves segmenting an image into 

clusters of neighbouring pixels—or “objects”—that share similar spectral properties (i.e., digital values) 

as well as other semantically significant properties (e.g., size, shape, geography) [38]. However, OBIA 

is considered a more appropriate tool when segmenting and extracting features from VHR data, in which 

pixels are substantially smaller than the objects of classification interest (e.g., individual tree 

crowns) [39]. Not only are per-pixel based classification methods such as supervised classification 

considered more appropriate when using Landsat imagery [40], as was the case with our study, but 

supervised land classification is also considered a classic and the most widely used quantitative  

land-cover mapping approach [41,42]—a ubiquity which further supported our decision to employ 

supervised classification as a representative traditional classification approach, against which the more 

contemporary classification technologies of CLASlite and the GFCD could be compared. 
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In this study, we tested the inherent abilities of these three classification methodologies—supervised 

classification, CLASlite and the GFCD—to create accurate forest cover and change maps for a region 

of Sierra Leone in West Africa which included Gola Rainforest National Park (hereafter Gola) since 

2000. We expected that the different classification approaches fundamentally employed by the three 

methods would result in disparate map products, and aimed to ascertain the extent to which these 

differences reflected a greater utility of one approach over the others when monitoring forest dynamics 

over Gola. To quantify relative utility among these three classification approaches, we used the metric 

of extent of agreement between the predicted forest cover and loss maps generated by each of the three 

tools, and independently identified truth regions of forest cover and loss over the Gola area. The assessed 

value of each land classification approach was also heavily dependent upon its ability to make the 

difficult yet critical distinction between mature natural forest and mature anthropogenic 

plantations/agricultural areas, which is a growing urgency in the conservation sciences today. Thus, 

another key aim of our study was to create a methodology to test the ways in which the different 

classification algorithms and outputs inherent in the given framework of each classification approach 

(e.g., the binary forest/non-forest maps of CLASlite and the GFCD versus maps of any user-defined 

number of classes from the supervised classification) would be able to achieve this task. 

2. Experimental Section  

2.1. Study Area 

Land cover and change classification was conducted on satellite images of Gola and its neighbouring 

land, located near the south-eastern border of Sierra Leone with Liberia. Covering an area of 710 km2, 

Gola represents the largest remaining area of lowland moist evergreen high forest in Sierra Leone [43] 

and forms part of the western Upper Guinean forest ecosystem, a recognised global biodiversity 

hotspot [44]. Gola holds most of the region’s endemic, threatened, and near-threatened mammals and 

birds [45]. While Gola has been protected through conservation programs since 1989, encroachment by 

smallholder agriculturalists serves as the primary threat and driver of deforestation in the region due to 

a high proportion of the population engaging in subsistence agriculture; however, illicit gold and 

diamond mining activities, expansion of human settlements, sporadic farming, poaching, industrial 

agriculture (e.g., oil palm or coffee plantations), logging and woodcutting for domestic firewood also 

negatively impact the integrity of the reserve [46]. 

The natural vegetation type is predominantly moist evergreen lowland forest [43]. The area has a 

seasonal climate, with annual rainfall around 2500–3000 mm and a dry season lasting from November 

to April. The altitude of the park is 70–410 m. Other vegetation types within the park include moist  

semi-deciduous forest, freshwater inland swamp forest, secondary and disturbed forest, farmbush, 

herbaceous swamps, and floodplains [47]. Land cover outside of the park includes secondary and 

disturbed forest, farmbush and shrubland/savannah, plantation, and agriculture [48]. 

2.2. Landsat Satellite Imagery 

To determine land cover and change in and surrounding Gola, 30 m resolution Landsat satellite 

images of Gola taken in 2001, 2007, and 2014 were downloaded from the United States Geological 
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Survey Global Visualisation Viewer (GloVis) website [49]. Imagery from Landsat satellites are popular 

data sources for documenting changes in land cover and use over time due to their long history, 

reliability, and availability [15], while their 30 m resolution is considered adequate for characterising 

landscape patterns [50] and differentiating natural from human-induced land change [51]. The region of 

interest was covered by two Landsat image tiles representing Gola’s eastern and western portions, resulting 

in the use of six total Landsat images for this study—two from each of the three years of interest. Only 

images acquired in January and February were selected for use, as these months fall within the study area’s 

dry season when there is a greater probability of cloud-free images. Landsat imagery from 2001 and 2014 

were selected, as these years were the only years closest to the respective 2000 and 2012 starting and 

ending years of the GFCD for which we could find adequately cloud-free imagery during 

January/February. Also, the year 2007 was the year closest to the midway point between 2001 and 2014 

for which we could find adequately cloud-free imagery during January/February. Only images with 

relatively low reported cloud cover (<10%) were selected (Table A1), and all automatically received 

systematic, radiometric, geometric, and topographic corrections through GloVis prior to download. 

Satellite imagery were delivered with a projection of UTM Zone 29N using the WGS 1984 Datum.  

2.3. Method 1: Supervised Land Classification 

All image processing was conducted in ENVI 5.0 Classic (Exelis Visual Information Solutions, Inc., 

Boulder, Colorado). First, original digital number (DN) data stored for each pixel in each of the six raw 

Landsat image scenes of interest over Gola (Table A1) were automatically converted into  

top-of-atmosphere reflectance values using CLASlite v.3.1 (Carnegie Institution for Science, Stanford, 

California). On each of the resulting reflectance images, polygonal pixel clusters, or Regions of Interest 

(ROIs) belonging to six land-cover classes of interest were identified using careful visual interpretation 

and spectral assessments of the raw Landsat image and corroborated with high-resolution 

Google Earth™ imagery. The six classes were: (1) non-vegetation (e.g., bare substrate, exposed rocks, 

urban areas, villages), (2) mature forest (i.e., non-planted intact mature tree stands), (3) other vegetation 

(e.g., all other vegetative cover such as grassland and swampland, as well as tree stands with obvious 

anthropogenic influences such as palm plantations and agricultural land), (4) water, (5) clouds, and 

(6) cloud shadow. More specifically, the mature forest category comprised groups of trees identifiable 

through Google Earth™ imagery featuring spectral signatures characteristic of healthy and mature 

vegetation (as outlined in [24]). Any groups of trees whose anthropogenic influences were immediately 

apparent, such as recognisable monocultures or linear/otherwise unnaturally shaped plantations, were 

deliberately excluded from the mature forest category, and the other vegetation category was trained to 

include such tree stands instead. Image-edge pixels representing the boundaries of Landsat images were 

identified as a seventh land-cover category for ease of subsequent image processing.  

More than 10,000 pixels were selected for each of ROI classes 1-3 in order to encapsulate the spectral 

variation within these land-cover types. Roughly 1500 pixels were identified for each of classes 4–6. All 

ROIs were distributed as evenly as possible over each of the six Landsat scenes. The spectral properties 

of the ROIs were then used to train ENVI’s Maximum Likelihood algorithm, an effective and commonly 

used classifier [52,53], to classify the remaining area of each scene. This algorithm assumes a normal 

distribution of reflectance values for each user-defined class within each spectral band of the original 
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satellite image, and assigns each pixel to a specific class based on the probability of it belonging to that 

class. Due to geographic overlap between the eastern and western Landsat scenes, each of the three 

resulting classified maps of eastern Gola (which encompassed a greater extent of the study region) was 

mosaicked atop the classified map of western Gola from the same year, and clipped to a 25 km boundary 

around Gola. Final products from this process were three classified land-cover maps over Gola and its 

surrounding 25 km region from 2001, 2007, and 2014. 

Forest-cover change from 2001–2007 and 2007–2014 was determined by identifying differences 

between the 2001, 2007, and 2014 classified maps using thematic change analysis in ENVI. Default 

ENVI refinement parameters setting smoothing kernel size to 3 (i.e., 3 × 3 pixels) and aggregate minimum 

size to 9 pixels were employed to remove “salt-and-pepper” effects. Pixels in the land-cover change maps 

of 2001–2007 and 2007–2014 were classified as deforested if they changed from a state of mature forest 

into either of the other vegetation or non-vegetation categories. Deforestation pixels were then aggregated 

within Gola’s boundary and within the 25 km buffer surrounding Gola, exclusive of Gola itself.  

2.4. Method 2: Land Classification in CLASlite 

All six raw Landsat scenes of the eastern and western portions of Gola from 2001, 2007, and 2014 

(Table A1) were classified individually into forest cover using CLASlite. Default parameters for the first 

three of CLASlite’s four built-in steps were altered for some Landsat scenes in order to fully mask true 

water and cloud cover, as well as to ensure that the forest-cover products were accurately resolving the 

fractional cover values of forested areas from those of non-forested areas (Table A2). Resulting products 

included six each of intermediate reflectance, fractional cover, and forest-cover maps of Gola (i.e., three 

years for each of the eastern and western portions of the region) (Figure A1), as well as uncertainty and 

error maps associated with each of the fractional cover products (Figure A2). The two 2001  

CLASlite-derived forest-cover maps of eastern and western Gola were mosaicked together in 

ArcMAP 10.0 (ESRI, Redlands, California) for subsequent comparison with land-cover maps derived 

from the other two land-classification methods. 

To determine forest-cover change between 2001–2007 and 2007–2014, the six forest-cover products 

were analysed using CLASlite’s automated change-detection algorithm to produce two maps, one each 

for the eastern and western portions of the study region, detailing total forest-cover change in two distinct 

intervals between 2001 and 2014. Default parameters involving the removal of deforestation and forest 

disturbance artefacts as well as the aggregation of disturbance pixels with nearby deforestation pixels 

were preserved (Table A2). The two maps were then mosaicked into one map of forest-cover change 

over the entire region as recommended by [24] and clipped to the 25 km region surrounding Gola in 

ArcMAP. As in the supervised classification, deforestation pixels were aggregated within Gola’s 

boundary and within the 25 km buffer zone surrounding Gola, exclusive of Gola itself. 

2.5. Method 3: Land Classification Using the GFCD 

Raster files over the Gola region of tree canopy cover (in year 2000), year of gross forest-cover loss 

extent (in which each pixel is assigned a value of 0, representing no forest loss, or a value from 1 to 12, 

representing loss detected primarily in the year 2001–2012, respectively), and a data mask delineating 

bodies of water were downloaded from the GFCD website [54]. As in the other two classification 
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approaches, all raster files were clipped to the 25 km region surrounding Gola, in ArcMAP. To determine 

early 2001 forest cover for comparison with the other two land-classification approaches, pixels with 

>50% tree canopy cover in the year-2000 canopy cover map were reclassified as forest (based on [27] 

having related “forest gain” to percent tree crown cover densities >50%), with all other pixels being 

reclassified either as non-forest or water. To determine the area of forest lost from 2001–2007  

and 2007–2012, pixels from the year of gross forest-cover loss extent raster file were stratified into two 

categories: those for which forest loss had been detected primarily between the beginning of 2001 to the 

end of 2006 (i.e., pixels with values of 1–6) and those for which forest loss had been detected primarily 

between the beginning of 2007 to the end of 2012 (i.e., pixels with values of 7–12). As in the other 

analyses, deforestation data were aggregated within Gola’s boundary and within the 25 km buffer 

surrounding Gola.  

It should be noted here that, at time of manuscript submission, the GFCD featured forest change only up 

to 2012, although the Landsat scenes classified using the supervised and CLASlite approaches featured an 

end-date of early 2014—the period nearest to 2012 for which adequately cloud-free Landsat scenes were 

available on GloVis. 

2.6. Accuracy Assessment 

Relative accuracies of land-cover classification maps in this study were assessed by comparing  

per-class agreement and overall agreement of the predictions with simple randomly distributed 

“reference” or “truth” ROIs over the region of interest. Land-cover classification maps based on truthing 

units derived from a simple random sampling scheme can provide satisfactory results even over spatially 

diverse areas [55]. First, 25 points randomly distributed within Gola and its 25 km surrounding buffer 

region were overlain on the raw early 2001 Landsat images. Each point and the area immediately 

surrounding it were interpreted as representing one of three land-cover classes of truthing interest 

(mature forest, other vegetation, or non-vegetation, all as described above in Section 2.3) using careful 

visual interpretation and spectral assessments of the raw Landsat image and corroborated with references 

to high-resolution Google Earth™ imagery.  

Classification of these “truth” pixels continued as such until each of the three land-cover classes was 

represented by roughly 2500 pixels worth of polygonal truth ROIs, a truthing pixel number threshold used 

by [48] in their land-cover classification of Gola. Establishing 25 initial sampling locations was more than 

sufficient to surpass the 2500 threshold pixel number per class. These “truth” ROIs were then compared 

to the three generated 2001 land-cover maps to derive a contingency matrix and four accuracy measures: 

overall accuracy (the degree of agreement between truth pixels and classified maps, or the proportion of 

all pixels that are correctly classified), Kappa coefficients (a metric of overall accuracy that compensates 

for agreement arising by chance), producer’s accuracy (the probability that a pixel in a reference truthing 

class is correctly classified into that class on the generated map, i.e., a measure of omission error), and 

user’s accuracy (the probability that a pixel classified into a given category on the generated map actually 

belongs to that category in the reference truthing dataset, i.e., a measure of commission error).  

Although neither CLASlite nor the GFCD were designed to explicitly classify for an other vegetation 

land-cover category [24,27], an intended goal of this study was to test the ways in which the fundamental 

and inherent binary forest/non-forest classification outputs of CLASlite and the GFCD might handle the 
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classification of this more ambiguous land-cover class, which lies at the blurry nexus of the forest/non-

forest distinction. In other words, we were interested in quantifying the extent to which areas regarded 

as forest by the CLASlite and GFCD algorithms were truly areas of unplanted mature natural forest, or 

mature tree growth with clear anthropogenic origins/influences such as palm plantations. To this aim, 

we conducted two sets of accuracy assessments with the CLASlite and GFCD land-cover maps. First, 

we compared forest and non-forest areas on the classified maps with the forest and non-vegetation 

reference/truth regions, which allowed us to determine CLASlite’s and the GFCD’s basic capacities to 

distinguish vegetative from non-vegetative cover. Second, we compared forest and non-forest areas on 

the classified maps with the forest and other vegetation reference/truth regions, to ascertain the extent to 

which each classified product was classifying reference/truth areas of mature planted forest 

(a component of the other vegetation truthing category) as forest. Because an advantage of the supervised 

classification framework is that it inherently allows for the creation of any number of user-defined 

classes beyond the binary forest/non-forest paradigms of CLASlite and the GFCD, we capitalised upon 

this benefit by comparing the mature forest, other vegetation, and non-vegetation classes of the 

supervised classification product directly with the three reference/truth classes of mature forest, other 

vegetation, and non-vegetation, respectively. 

As with the 2001 land-cover maps, to evaluate the accuracy of the three generated land cover-change 

maps, a set of 25 points independent from those used to validate the land-cover maps was randomly 

distributed within Gola and its 25 km surrounding buffer region. Using spectral assessments and 

corroboration with high-resolution Google Earth™ imagery, these points and their immediate 

surroundings were identified, through concurrent display on raw Landsat images of the region from 2001, 

2007, and 2014, as representing regions that had either experienced deforestation (defined as mature forest 

changing to anything other than mature forest) or no change from 2001–2007 and 2007–2014. Pixels that 

were found to belong to other change classes (e.g., afforestation, conversion of other vegetation to  

non-vegetation) were excluded from identification. As with the accuracy assessment of the 2001  

land-cover maps, classification of truth pixels continued until both the change/deforestation and no 

change classes were represented by roughly 2500 pixels. Resulting truth ROIs were then compared to 

the three classified change maps to generate a contingency matrix, as well as the four accuracy measures 

of overall accuracy, Kappa coefficients, producer’s accuracy, and user’s accuracy. 

3. Results 

3.1. Comparing Early 2001 Land-Cover Classifications 

Supervised classification, CLASlite and the GFCD produced subtly different land-cover maps of Gola 

and its surroundings (Figure 1). Within Gola’s boundaries, all three methods detected near-complete 

vegetation cover (greater than 99% of total land), with supervised classification further discriminating 

vegetation cover into constituent mature forest (87.6%) and other vegetation (12.3%) proportions  

(Table 1). Within the 25 km region immediately outside of the reserve, supervised classification detected 

98.1% vegetation cover (approximately equally divided between mature forest and other vegetation), 

compared to 96.2% by the GFCD and 90.5% by CLASlite (Table 1).  
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Figure 1. Land-cover maps of Gola and its surrounding 25 km region in early 2001 derived 

from three classification techniques. The top row of zoomed-in panels depicts a palm 

plantation; the bottom row of zoomed-in panels depicts a small town and its surrounding 

area. The two panels in the left-most column are Landsat reflectance images represented in 

R = Band 5 (1.55–1.75 μm), G = Band 4 (0.77–0.90 μm), and B = Band 3 (0.63–0.69 μm). For 

the Carnegie Landsat Analysis System lite (CLASlite) and Global Forest Change dataset 

(GFCD) maps, only the Non-vegetation and Forest categories from the figure key apply. 

Overall accuracy in distinguishing between mature forest and non-vegetation was highest for the 

CLASlite and GFCD maps (99.5% and 93.2%, respectively; Kappa coefficients > 0.85 in both cases;  

Table 2). However, their overall accuracies decreased to 66.6% and 62.5% respectively (Kappa = 0.29 

and 0.20) when truthed against categories of mature forest and other vegetation. CLASlite classified 

a lower percentage of the other vegetation truth pixels as forest when compared to the GFCD (72.6 vs. 

81.4%, respectively), although the limited abilities of both classification approaches to exclude areas of 

other vegetation from being categorised as mature forest was mirrored by their relatively low producer’s 

accuracies for the other vegetation class and user’s accuracies for the mature forest class (Table 2). 

Overall classification agreement for the supervised classification land-cover map was 77.3%, with a 

Kappa coefficient of 0.66 (Table A3). Most classification confusion from this approach derived from 

the other vegetation class as well; about half of other vegetation truth pixels were classified as mature 

forest, resulting in a relatively low producer’s accuracy value for the other vegetation class (Table A3). 

In the supervised classification map, both vegetation classes (mature forest and other vegetation) also 

featured relatively low user’s accuracies compared to the very high (96.4%) user’s accuracy of  

the non-vegetation class (Table A3). 
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Table 1. Summary area statistics for the three land-cover maps of Gola and its surrounding 

25 km region in early 2001 resulting from supervised classification in ENVI, classification 

in the Carnegie Landsat Analysis System lite (CLASlite), and classification derived from the 

Global Forest Change dataset (GFCD). Values represent both total area coverage (km2) and 

percentage of total land area of four different land-cover types plus cloud cover (other 

vegetation and cloud cover were only distinguished in the supervised classification). Total 

area of Gola is 710 km2, while the 25 km region around Gola, excluding Gola, represents an 

area of roughly 7900 km2. 

Land-Cover 

Class 

Inside Gola Boundary  
Within 25 km Region around Gola  

(excluding Gola) 

Supervised  CLASlite  GFCD  Supervised  CLASlite  GFCD 

Area  

(km2) 
%  

Area  

(km2) 
%  

Area 

(km2) 
%  

Area 

(km2) 
%  

Area  

(km2) 
%  

Area 

(km2) 
% 

Unclassified  

(water/no data) 
0.3 0.0  0.2 0.0  0.0 0.0  14.2 0.2  48.7 0.6  31.6 0.4 

Non-vegetation 0.8 0.1  3.6 0.5  0.8 0.1  134.6 1.7  704.5 8.9  267.7 3.4 

Mature forest 624.4 87.6  709.8 99.5  709.5 99.9  4121.5 52.0  7190.8 90.5  7610.4 96.2 

Other vegetation 87.5 12.3  -- --  -- --  3650.2 46.1  -- --  -- -- 

Cloud cover 0.0 0.0  -- --  -- --  3.7 0.0  -- --  -- -- 

Table 2. Contingency matrices assessing the accuracy of two land-classification maps of Gola 

and its surrounding 25 km region in early 2001 derived by classification via the Carnegie 

Landsat Analysis System lite (CLASlite) and the Global Forest Change dataset (GFCD). 

Matrix A details the accuracy assessed when the two land-cover classes of mature forest and 

non-vegetation are used as truth classes against each of the two land-cover classes of the 

derived classification maps. Matrix B details the accuracy assessed when the two land-cover 

classes of mature forest and other vegetation are used as truth classes. Values in the “Truth 

Class” rows represent percentage of total pixels in the truth class classified as a given  

land-cover type on the derived maps, with 2960 total pixels identified in the mature forest 

truth class, 2776 total pixels in the non-vegetation truth class, and 2522 total pixels in the 

other vegetation class. All accuracy values are presented as percentages. Kappa coefficients 

are reported ± one standard error. Cells containing dashes instead of numeric values indicate 

values that were not considered in accuracy assessments. 

  

CLASlite  GFCD 

Forest Non-Forest 
Unclassified 

(Water/No Data) 
 Forest Non-Forest 

(A) 

Truth Class 1: Mature forest 99.8 0.2 0  100 0 

Truth Class 2: Non-vegetation 0.5 99.3 0.2  14.1 85.9 

User’s accuracy 99.5 99.8 --  88.5 100 

Producer’s accuracy 99.8 99.3 --  100 85.9 

Overall accuracy 99.5    93.2  

Kappa coefficient 0.99 ± 0.002    0.86 ± 0.007  
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Table 2. Cont. 

  

CLASlite  GFCD 

Forest Non-Forest 
Unclassified 

(Water/No Data) 
 Forest Non-Forest 

(B) 

Truth Class 1: Mature forest 99.8 0.2 0  100 0 

Truth Class 2: Other vegetation 72.6 27.4 0  81.4 18.6 

User’s accuracy 61.9 99.0 --  59.0 100 

Producer’s accuracy 99.8 27.4 --  100 18.6 

Overall accuracy 66.6    62.5  

Kappa coefficient 0.29 ± 0.01    0.20 ± 0.008  

3.2. Comparing Land-Cover Change Estimates for 2001–2007 and 2007–2014 

The three different classification methods also produced different representations of land-cover 

change over Gola and its surrounding 25 km buffer over time (Figure 2). Supervised classification 

estimated the highest deforestation rates (referring to areas that had transitioned from the mature forest 

class to either of the other two land-cover classes, and representing just forest loss without accounting 

for afforestation) from 2001 to 2014, both inside Gola (0.7% yr−1) and in the 25 km region around Gola 

(1.5% yr−1) (Table 3). Both the CLASlite and GFCD maps estimated near zero annual deforestation rates 

from 2001 to 2014 and from 2001 to 2012, respectively, inside Gola’s boundary, with the CLASlite map 

estimating slightly more deforestation in the 25 km region around Gola than the GFCD map over the 

same time periods (0.4% yr−1 vs. 0.3% yr−1) (Table 3). 

Table 3. Change statistics derived from forest cover-change maps of Gola and its 

surrounding 25 km region from 2001 to 2014* resulting from three different approaches to 

classifying land-cover change. Total area of Gola is 710 km2, while the 25 km region around 

Gola, excluding Gola, represents an area of roughly 7900 km2. Values of total area 

deforested from the 2001–2014 period are sums of those from the 2001–2007 and  

2007–2014* time periods.  

 
Classification

Method 

2001–2007 2007–2014*  2001–2014* 

Total Area 

Deforested 

Annual 

Deforestation 

Total Area 

Deforested 

Annual 

Deforestation 
 

Total Area 

Deforested 

Annual 

Deforestation 

(km2) (%) (% yr−1) (km2 ) (%) (% yr−1)  (km2) (%) (% yr−1) 

Inside Gola 

Boundary 

Supervised 5.9 0.8 0.1 58.1 8.2 1.2  64.0 9.0 0.7 

CLASlite 0.4 0.1 0.0 0.4 0.1 0.0  0.8 0.1 0.0 

GFCD 0.6 0.1 0.0 0.5 0.1 0.0  1.1 0.2 0.0 

25 km Region 

around Gola 

(excluding Gola) 

Supervised 341.3 4.3 0.7 1161.7 14.7 2.1  1502.9 19.0 1.5 

CLASlite 187.0 2.4 0.4 180.0 2.3 0.3  367.0 4.6 0.4 

GFCD 132.4 1.7 0.2 180.0 2.3 0.4  312.4 4.0 0.3 

* Note that the end date for the GFCD product only was the end of 2012. Annual deforestation rate calculations 

were adjusted accordingly.  
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Overall classification agreement for land-cover change over both time periods was highest for 

CLASlite (79.1% for 2001–2007 and 89.6% for 2007–2014), followed by supervised classification 

(65.8% for 2001–2007 and 75.3% for 2007–2014), and the GFCD (58.4% for 2001–2007 and 58.9% for 

2007–2012) (Table A4). All maps exhibited greater than 87% (and, in many cases, near or equal to 

100%) user’s accuracy values for the deforestation class over both time periods, as well as consistently 

high (>94%) producer’s accuracy values for the no-change class (Table A4). Producer’s accuracy values 

for the deforestation class were generally low and varied greatly across methods, with the highest per 

time period deriving from the CLASlite map (59.5% for 2001–2007 and 76.5% for 2007–2014) and the 

lowest per time period deriving from the GFCD map (19.8% for 2001–2007 and 17.7% for 2007–2012, 

Table A4). User’s accuracy values for the no-change class ranged from 53.7% to 84.3% across all maps 

(Table A4). 

 

Figure 2. Forest cover-change maps of Gola and its surrounding 25 km region derived from 

three classification techniques and disaggregated into the time periods 2001–2007 (maroon) 

and 2007–2014 (red) (or 2007–2012, for the GFCD). The top row of zoomed-in panels 

depicts a palm plantation (the same region depicted in the top-row panels of Figure 1). The 

bottom row of zoomed-in panels depicts encroachment into Gola National Park. The interior 

region of Gola is stippled. 
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4. Discussion 

The land cover and change maps generated by the three distinct classification approaches over Gola 

and its surrounding region shared many similarities. Areas identified as having been deforested by all 

three approaches had a high degree of correspondence with true deforestation on the ground (see 

relatively high user’s accuracies for the deforestation categories, Table A4), indicating that the generated 

maps can serve as credible tools for tracking deforestation events. Direct visual interpretations of the 

change maps also offer useful preliminary insights into the spatial distributions of deforestation across 

the region. For instance, deforestation surrounding Gola since 2000 has been greater in Sierra Leone 

than in neighbouring Liberia to the immediate southeast (central panels of Figure 2), while all maps 

indicate the presence of encroachment across the boundary of Gola’s northern extension (bottom panels 

of Figure 2). Both of these findings can be used to inform the mobilisation of targeted ground-level 

conservation action in the region. 

Critically, all three classification approaches employed in this study also exhibited difficulties in 

delineating anthropogenic from natural tree stands to some extent. At least 50% of other vegetation truth 

pixels were classified as forest by all three classification approaches, which influenced declines in the 

overall accuracies of the classified map products (Table 2, Table A3). We expected each of the 

classification approaches to exhibit at least some classification confusion surrounding this other 

vegetation class; as a catchment category of sorts for all vegetation other than mature natural forest, it 

encompassed a diverse array of vegetation types. We also expected this confusion because of known 

difficulties in using classification approaches based on information from optical sensors to distinguish 

mature natural forests from plantations, which may be spectrally similar to each other but structurally 

and functionally different. Still, remote sensing technologies that can distinguish natural forests from 

planted forests are of high value for conservationists. Thus, a primary aim of our study was to determine 

which classification approach employed here could best handle this classification challenge, and which 

of its unique features allowed it do so. 

To this end, we found that, of the three classification tools employed in this study, CLASlite not only 

produced the most accurate land-cover and land cover-change products overall (Table 2, Table A4), but 

also was more adept at classifying other vegetation (inclusive of palm plantations and agricultural crop 

land) as non-forest rather than mature forest, especially in direct comparison with the GFCD (Table 2). 

Of the classification methodologies studied here, CLASlite featured the most robust sub-pixel analytical 

framework, an indication that the nature and extent of biophysical information that a classification 

method identifies at the sub-pixel level is a fundamental determinant of its capacity to discriminate 

planted from natural mature forest. CLASlite’s AutoMCU algorithm captures the sub-pixel spectral 

characteristics of an individual pixel by drawing from a vast spectral endmember library to first guess 

the reflectance spectra of three constituent endmembers (photosynthetic vegetation, non-photosynthetic 

vegetation, and bare substrate), and then assign fractional cover values to each of the three endmembers 

within the pixel (Figure A1(C)) [24]. In so doing, CLASlite attempts to account for the likelihood that 

each pixel has a heterogeneous composition, and consequent decisions on whether a pixel is interpreted 

as forest or non-forest are based on the degree to which the relative fractional covers of the pixel’s 

constituent endmembers meet certain user-defined thresholds. A previous study of forest degradation in 

Indonesian Borneo demonstrated that these thresholds can in fact be altered to exclude certain vegetation 
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types (e.g., younger oil palm and timber plantations) from being classified by CLASlite as forest, as such 

plantations in the study area were found to be associated with pixels featuring greater percentages of 

bare substrate than pixels of natural forest [26]. Our study supports this claim that CLASlite’s more 

robust sub-pixel analytical approach is capable of discerning natural tree stands from planted tree 

stands—at least to a greater extent than the GFCD, and within the context of the Gola landscape. 

In contrast, sub-pixel biophysical measurements were more limited in the GFCD product. Pixels in the 

GFCD dataset were considered at the sub-pixel level to the extent that a pixel was assigned a fractional 

tree cover endmember value from 0 to 1. However, we found that this percent tree cover-based definition 

of forest had limited success in discerning between natural and planted forest in this study; of the three 

classification approaches, the GFCD categorised the greatest percentage of other vegetation truth regions 

as forest (Table 2). Attempting to distinguish natural from planted forest based on tree cover can be 

problematic when plantations might feature tree cover extents that are comparable with that of natural 

forests. While this distinction is certainly not one of which the GFCD has claimed to be capable [56], it is 

still a limitation to the application of the GFCD in conservation studies that has been previously noted [57], 

and that our study corroborates. Although agreed-upon forest definitions in fact are commonly based on 

percent forest cover [30], our study indicates that such a discrete classification scheme, based on mutual 

exclusivity in which attempts are made to define natural forest by a single tree cover threshold, may not 

be particularly useful when attempting to differentiate natural from planted forests. 

Supervised classification also utilised a sub-pixel analytical framework to a lesser extent than CLASlite, 

mirroring its more limited capacity to classify pixels that exist at the ambiguous boundaries of discrete 

land classes. The supervised classification approach employed here involved training a Maximum 

Likelihood classifier algorithm to first recognise particular spectral patterns as representative of certain 

user-defined land-cover classes of interest, then classify unknown pixels into one of the land-cover classes 

based on the likelihood of that pixel’s spectral signature falling within a normal distribution of the 

spectral values of a particular land class. Supervised classification’s binning of a pixel into one of several 

user-defined land classes based on overall spectral profile may fail to capture the more nuanced biophysical 

meaning behind a pixel, and such classification schemes may also substantially bypass land-change 

processes such as forest degradation that tend to be heterogeneous on finer, sub-pixel scales [58,59]. 

Moreover, dividing continuous quantitative information, such as those found in satellite images, into a 

finite number of discrete land classes that are considered at the outset to be exhaustively defined and 

mutually exclusive may lend itself to the further loss of information [60]. Such techniques may fail to 

accurately detect and separate “edge pixels,” for example, that exist near the spectral boundaries of 

different classes [16,61] as well as pixels that exhibit high reflectance variability [62]. An additional 

constraint can be imposed when spectral signals from the land area represented by a pixel are influenced 

by signals from immediately surrounding pixels [63]. These considerations are especially relevant to our 

study of the Gola landscape, which features a complex and spectrally diverse mosaic of forested and 

vegetated land having experienced varying degrees of disturbance and recovery [43].  

Understanding the biophysical underpinnings of each classification methodology’s approach to  

sub-pixel measurements leads to an ontologically-based interpretation of CLASlite’s greater accuracy 

in classifying land cover and change over Gola when compared to the other approaches. Ontologies are 

agreements about shared conceptualisations [64], and ontological biases in remote sensing can arise from 

differences in the ways in which data terms are conceptualised, such that land-cover information 
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becomes inherently relative and indeterminate [65]. Each of the three classification maps from this study 

was a product of different definitions of “forest” and, by extension, “non-forest.” “Forest” pixels in 

CLASlite were pixels that met user-assigned thresholds in photosynthetic vegetation and bare substrate 

fractional spectral signatures. The GFCD approach used in this study to generate forest-cover maps 

defined “forest” as pixels with >50% canopy closure for all vegetation taller than 5 m. Supervised 

classification defined forest as pixel clusters, separate in spectral space from other pixel clusters, that 

shared spectral similarities with a set of pre-assigned “truth” pixels representing forested areas in reality. 

Each of the classified products generated from this study and based on these diverse definitions of 

“forest” were subject to varying degrees of agreement errors with independently assigned truth pixels. 

However, CLASlite’s advantage stemmed from its encapsulation of a single pixel’s heterogeneity, 

allowing for an ontological interpretation of forest pixels that aligns most closely with the biophysical 

reality of naturally occurring phenomena often comprising spectra from more than one ground 

material [66]. Meanwhile, the GFCD’s more liberal ontology of what constitutes a forest has already 

been criticised for its conflation of tropical forests with monoculture plantations and even tall herbaceous 

crops [57]. Inconsistencies in land-cover nomenclature are broadly recognised as main barriers to forest 

monitoring strategies [67], and our exploration of how the technical differences among the classification 

techniques used in this study can be reinterpreted as ontological differences largely underscore this 

claim. Our study importantly illustrates that understanding the semantics of land-cover categories in any 

classification methodology is a critical prerequisite to understanding the nature of the land-cover 

products that can be derived from them. 

Finally, it is likely that the relatively high flexibility in parameter setting afforded to the user by 

CLASlite allowed for the generation of a more superior classified map product over Gola. The GFCD is 

an already processed and packaged forest cover and change product. ENVI’s supervised classification 

approach, in contrast, allows for some degree of user input via the selection of the classifier algorithm 

(e.g., Maximum Likelihood, Minimum Distance, Mahalanobis Distance) used to assign individual pixels 

to land-cover categories, in addition to the setting of image “clean-up” parameters, which involved image 

smoothing (i.e., reclassifying pixels with the majority class value of their surrounding pixels to remove 

“salt-and-pepper” effects) and aggregation (i.e., merging very small and isolated pixel clusters with 

adjacent, larger regions). In fact, the CLASlite approach included similar image clean-up parameters in 

the form of artefact removal and pixel aggregation options (Table A2). The option of controlling the 

degree to which “salt-and-pepper” effects are removed as they pertain to a given study area can greatly 

influence the nature of the maps generated; by increasing edge densities and creating smaller blocks of 

any vegetation class [68], salt-and-pepper effects can contribute to the over-segmentation of an 

image [62], and thus reducing them through the use of filters [52,61,69] can reduce mis-registration 

errors [70]. However, among other parameter alterations, the CLASlite approach also critically allowed 

the user to define exact threshold levels for fractional photosynthetic vegetation and bare substrate values 

when determining forest cover (Table A2). Understandably, the option to define exactly what is 

considered forest and non-forest based on the local realities of a given study site facilitates the production 

of classified land cover and change maps that are better tailored to the area of interest. 

Our study indicates that CLASlite’s analytical framework as is was able to best distinguish natural 

from planted tree stands over Gola. Thus, CLASlite as it stands has the potential to serve as a suitable 

remotely sensed data analysis tool for informing REDD, zero deforestation, high carbon stock forest, 
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and other related policies that might rely upon this very distinction. However, it is important to consider 

the ways in which the accuracy metrics of the classified CLASlite product as well as the analytical 

capacities of the CLASlite technology itself can be further improved and extended. For example, it 

would be of interest to run a separate classifier on CLASlite’s intermediate fractional cover product to 

quantify threshold values for the three photosynthetic vegetation, non-photosynthetic vegetation, and 

bare substrate endmembers that would allow for the distinction of more land-cover classes beyond 

CLASlite’s forest/non-forest binary. Such analyses would certainly extend CLASlite’s capabilities of 

provisioning map products with even greater site relevance. More thorough interpretations of natural 

versus anthropogenic influences on forest cover and change might also be achieved by further classifying 

the forest cover and change CLASlite products based on factors that would likely influence human 

accessibility to forested areas, such as distance to roads, travel time from nearest city, and topographic 

features [25], or interpreting CLASlite products alongside remotely sensed radar data, which have been 

shown to discriminate oil palm plantations from forest stands with high accuracy [33]. Although the 

GFCD product as applied within the framework of our study was not the most optimal of the land-cover 

classification tools employed, the product itself still harbours opportunities for extended analyses as 

well. While the ramifications of the GFCD’s dependence on percent tree cover in defining forest have 

been explored (notably in [57]), it is perhaps the GFCD’s core identity as a percent tree cover product 

that lends itself to a wealth of extended and more tailored reinterpretations. For example, sensitivity 

analyses could be conducted to determine specific percent tree cover thresholds that would allow the 

GFCD product to distinguish certain vegetation types of interest given a particular landscape. Thus, the 

revolutionary powers of CLASlite and the GFCD as modern remote sensing technologies lie not only in 

the fact that they are free for public download and dissemination, and thus can empower vast groups of 

individuals to conduct informative forest monitoring research, but also in their status as compelling tools 

that offer vast opportunities for extended applications in a variety of contexts. 

5. Limitations 

Satellite imagery processing is a practice often riddled with biases and limitations, to the extent that 

extensively manipulated land-cover information is often, and erroneously, treated as land-cover 

data [71]. One limitation present in our analysis stems from differences in the acquisition dates of our 

satellite imagery. First, the end-date of Landsat imagery used in this study (from which the supervised 

classification and CLASlite products, as well as truthing pixels for accuracy assessment, were generated) 

was early 2014, while the GFCD product classified deforestation only to the end of 2012. The lack of 

temporal consistency between the Landsat imagery and the GFCD could have confounded absolute and 

relative accuracy assessments of the GFCD product and thus our confidence in it. Similarly, variations 

in land cover and change maps generated from this study could have been direct artefacts of differences 

in the original satellite imagery used, rather than solely the classification methodology employed. While 

the same base Landsat scenes of Gola’s dry season (during which cloud-free images were more 

prevalent) were used in both the supervised and CLASlite classification approaches, the GFCD was 

originally derived from computationally generated mosaics of cloud-free 30 m × 30 m Landsat pixels 

taken during the growing season. These differences in the fundamental nature of base satellite imagery 

used by the classification approaches in our work likely explain at least a portion of the differences in 
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the generated maps. The sensitivity of the classification approaches used in this study to image 

acquisition time was particularly evident during the supervised classification exercise. Visual  

cross-comparisons of the regions that the supervised classification method classified as other vegetation 

within Gola’s administrative boundaries with previously published land-cover maps over Gola reveal 

the overlap of some of these areas with what has been identified by [48] as patches of semi-deciduous 

forest within Gola’s largely evergreen forest interior. Because the Landsat images used in this study 

were obtained from Gola’s dry season, which is coincident with the leaf-off condition of some  

semi-deciduous tree species of the region [72], it is likely that the supervised classification method was able 

to distinguish between the different spectral signatures of full-canopy evergreen trees from those of  

semi-deciduous trees that may have shed at least a portion of their foliage, resulting in relatively high 

estimates of non-forest vegetation cover where semi-deciduous trees exist. Finally, it is possible that 

limitations in the quality of “truth” pixels used in our study resulted in map biases. While we attempted to 

ensure the distribution of truth pixels across the region’s spatial extent through random placement and 

broadly adhered to truth pixel identification methodologies employed by previous peer-reviewed land-cover 

classification exercises of Gola, utilising ground-level truth data in our study might have afforded us 

more confidence in our accuracy assessments [35]. In particular, the sole use of high-resolution imagery 

to generate truth data may be liable to subjectivity arising from photo interpretation [73] as well as 

differences in filters applied to the image extent [74].  

6. Conclusion 

Given the array of new remotely sensed land-cover data, products, and analytical tools that are 

available—and still being developed—today, critical assessments of the relatively utility of these 

technologies for forest monitoring efforts are essential. Especially important for conservationists hoping 

to employ remote sensing tools is the need for technologies that can differentiate natural from planted 

mature forest. In this study, we explored the ways in which various definitions, assumptions, and 

algorithms inherent in three optical remote sensing-based land-classification methods, including two of 

the most recent technologies to have emerged in the field of remote sensing for forest monitoring, 

affected their land-cover and land cover-change classification abilities for a region of tropical forest in 

Sierra Leone, West Africa. We found that the CLASlite forest monitoring tool produced forest cover 

and change maps with greater quantified accuracies than a traditional supervised classification approach 

and one using the Global Forest Change dataset, and was able to also make the critical distinction 

between mature planted forest and mature natural forest to a greater extent than the other two approaches. 

The advantages of CLASlite largely derived from its ability to draw from a vast library of spectral 

endmembers to robustly resolve spectral signatures beyond the level of the discrete pixel, thus 

acknowledging the true spectral heterogeneity of forested areas, as well as its greater incorporation of 

user-defined parameter values. These factors afforded CLASlite the greater capacity to generate forest 

cover and change maps that held more local relevance than those derived from the other two 

classification approaches. Moreover, CLASlite features the additional benefit of encouraging a less 

centralised approach to forest monitoring by empowering conservation and resource policy communities 

with the tools necessary to perform this task themselves. Overall, by exploring the suite of land cover 

and change classification products that can result from applying various remote sensing tools for forest 
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monitoring purposes, our study demonstrates the importance of process-oriented, rather than purely 

product-oriented, approaches to land classification. In other words, the mechanisms and processing 

chains utilised by various classification technologies, and the ways in which these differences materialise 

in generated map products, must be fully understood before remote sensing tools are applied to inform 

our understanding of ecological phenomena and conservation-related initiatives. Finally, we take this 

opportunity to emphasise the outstanding value in novel technologies such as CLASlite and the GFCD, 

both of which serve as robust, foundational tools with demonstrated and ever-growing capacities to 

advance the field of remote sensing for forest monitoring. 
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Appendix 

 

Figure A1. Intermediate products derived from each of CLASlite’s four built-in steps using 

the 2014 Landsat satellite image over the eastern portion of Gola as an example. (A) Band 

selection for representation of the raw Landsat image is R = Band 5 (0.85–0.88 μm),  

G = Band 4 (0.64–0.67 μm), and B = Band 3 (0.53–0.59 μm). (B) Band selection for 

representation of the reflectance product is the same as that for (A). (C) Band selection for 

representation of the fractional cover product is R = bare substrate, G = photosynthetic 

vegetation, B = non-photosynthetic vegetation. (D) In forest cover product, grey areas 

represent forested regions and white areas represent non-forested regions. The Gola National 

Park boundary is outlined in either red or orange, while the extent of the 25 km boundary 

surrounding Gola is depicted in blue.  

Table A1. Supporting information for Landsat satellite images acquired over Gola used in 

this study. “East” and “West” locations refer to images acquired from the eastern and western 

portion of Gola. “ETM+” refers to the Enhanced Thematic Mapper Plus sensor, “TM” to the 

Thematic Mapper sensor, and “OLI-TIRS” to the Operational Land Image-Thermal 

Infrared sensor. 

Year Location Path/Row Image Acquisition Date Satellite Sensor Cloud Cover (%) 

2001 East 200/055 7 February 2001 Landsat 7 ETM+ 0.00 

 West 201/055 29 January 2001 Landsat 7 ETM+ 4.00 

2007 East 200/055 15 January 2007 Landsat 5 TM 0.00 

 West 201/055 6 January 2007 Landsat 5 TM 0.00 

2014 East 200/055 3 February 2014 Landsat 8 OLI-TIRS 1.71 

 West 201/055 9 January 2014 Landsat 8 OLI-TIRS 9.44 
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Table A2. Summary of parameter change decisions while classifying each of the six Landsat images over Gola in the Carnegie Landsat Analysis 

System lite (CLASlite) version 3.1. Numbers before each parameter refer to the CLASlite step during which the option to alter the parameter 

was offered: 1 = raw image to reflectance, 2 = reflectance to fractional cover, 3 = fractional cover to forest cover, and 4 = forest cover to  

forest-cover change. “East” and “West” Landsat scene descriptors refer to the eastern and western portions of Gola, respectively. 

  Landsat scene   

Parameter and parameter function 2001 West 2001 East 2007 West 2007 East 2014 West 2014 East Notes 

1. Masking: To mask clouds and water. Reduced 

Default 

masking 

accepted 

Reduced Reduced 

Default 

masking 

accepted 

Default 

masking 

accepted 

Masking was reduced in instances 

where CLASlite was erroneously 

masking water and cloud shadow. 

2. Masking extent (%): To mask clouds and water. 94 94 95 94 0 94 

Default masking extent of 93% was 

not accepted for any images in 

order to balance water body 

masking with the preservation of 

terrestrial land.  

3. Substrate (S) and photosynthetic vegetation 

(PV) threshold values: To define classes of forest 

and non-forest from sub-pixel fractional cover map. 

22 S,  

80 PV 

22 S,  

78 PV 

20 S,  

80 PV 

(default) 

18 S,  

76 PV 

20 S,  

85 PV 

15 S,  

80 PV 

For each scene, S and PV thresholds 

were chosen in an attempt to most 

accurately distinguish forest from 

non-forest.  

4. Percentage of deforestation (defor) and 

disturbance (dist) artefacts removed: To remove 

isolated deforestation and degradation pixels from 

maps, recognising that such events rarely happen 

in isolation. 

 

 

Defor: 50, 

Dist: 25 

(default) 

Defor: 50, 

Dist: 25 

(default) 

Defor: 50, 

Dist: 25 

(default) 

Defor: 50, 

Dist: 25 

(default) 

Defor: 50, 

Dist: 25 

(default) 

Defor: 50, 

Dist: 25 

(default) 

 

4. Aggregation feature: To add to the 

deforestation map disturbance pixels in close 

proximity to other deforestation events, 

recognising that disturbance pixels are generally 

associated with the same forest-loss events. 

 
On 

(default) 

On 

(default) 

On 

(default) 

On 

(default) 

On 

(default) 

On 

(default) 
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Figure A2. Uncertainty of the bare substrate (S), photosynthetic vegetation (PV), and  

non-photosynthetic vegetation (NPV) fractional cover outputs from CLASlite alongside total 

error (root mean square error) of CLASlite’s fractional cover output over the 25 km region 

surrounding Gola. Error images derive from the 2014 Landsat image over the eastern portion 

of Gola. Standard deviations of CLASlite’s AutoMCU iterations represent the uncertainties 

of the S, PV, and NPV outputs. The root mean square error of the modelled versus observed 

reflectance signatures expresses total map error. Zoomed-in areas of the regions enclosed by 

red squares in the top row of panels appear in the bottom row of panels and represent the 

same palm plantation depicted in the top row of Figures 1 and 2. The Gola National Park 

boundary is outlined in black. 

Table A3. Contingency matrix assessing the accuracy of the land-classification map of Gola 

and its surrounding 25 km region in early 2001 derived from supervised classification in 

ENVI. The three truth classes (in rows) are compared pair-wise with the three land-cover 

classes of the classification image (in columns). Values in the “Truth Class” rows represent 

percentage of total pixels in the truth class classified as a given land-cover type on the 

derived land-cover maps, with 2960 total pixels identified in the mature forest truth class, 

2522 total pixels in the other vegetation class, and 2776 total pixels in the non-vegetation 

truth class. All accuracy values are presented as percentages. Kappa coefficient is reported 

± one standard error. 

 
Classification Map Land-Cover Type 

Mature Forest  Other Vegetation  Non-Vegetation 

Truth Class 1: Mature forest  91.3 8.7 0 

Truth Class 2: Other vegetation  50.7 45.6 3.7 

Truth Class 3: Non-vegetation 0 8.9 91.1 
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Table A3. Cont. 

 
Classification Map Land-Cover Type 

Mature Forest  Other Vegetation  Non-Vegetation 

User’s accuracy 68.0 69.5 96.4 

Producer’s accuracy 91.3 45.6 91.1 

Overall accuracy 77.3   

Kappa coefficient  0.66 ± 0.007   

Table A4. Contingency matrices assessing the accuracy of the three forest cover-change 

maps of Gola and its surrounding 25 km region from 2001–2007 and 2007–2014* derived 

from supervised classification in ENVI, classification in the Carnegie Landsat Analysis 

System lite (CLASlite), and classification from the Global Forest Change dataset (GFCD). 

Values in the “Truth Class” rows represent percentage of total pixels from the truth class 

classified into deforestation or no change on the derived maps. For the 2001–2007 change 

maps, 3471 total pixels were identified in the deforestation truth class and 3265 total pixels 

were identified in the no change truth class. For the 2007–2014 change maps, 4004 total 

pixels were identified in the no change truth class and 3159 total pixels were identified in 

the deforestation truth class. All accuracy values are presented as percentages. Kappa 

coefficients are reported ± one standard error.  

  Supervised  CLASlite  GFCD 

  Deforestation 
No  

Change 
  Deforestation 

No  

Change 
  Deforestation 

No  

Change 
 

2001 

– 

2007 

Truth Class 1:  

Deforestation 
35.1 64.9   59.5 40.5   19.8 80.2  

Truth Class 2:  

No change 
1.4 98.6   0 100   0.1 99.9  

User’s accuracy 96.3 58.8   100 69.8   99.7 53.7  

Producer’s accuracy 35.1 98.6   59.5 100   19.8 99.9  

Overall accuracy 65.8    79.1    58.4   

Kappa coefficient 0.32 ± 0.009    0.59 ± 0.009    0.19 ± 0.007   

2007 

– 

2014* 

Truth Class 1:  

Deforestation 
51.1 48.9   76.5 23.5   7.7 92.3  

Truth Class 2:  

No change 
5.7 94.3   0 100   0.1 99.9  

User’s accuracy 87.7 71.0   100 84.3   98.7 57.5  

Producer’s accuracy 51.1 94.3   76.5 100   7.7 99.9  

Overall accuracy 75.3    89.6    58.9   

Kappa coefficient 0.48 ± 0.01    0.78 ± 0.007    0.083 ± 0.005   

* Note that the end date for the GFCD product only was the end of 2012. 
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