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Abstract: Satellite-derived nighttime light (NTL) data have been extensively used as an 
efficient proxy measure for monitoring urbanization dynamics and socioeconomic activity. 
This is because remotely sensed NTL signals can be quantitatively connected to 
demographic and socioeconomic variables at regional and global scales. The recently 
composited cloud-free NTL imagery derived from the Visible Infrared Imaging Radiometer 
Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership (Suomi-NPP) satellite 
provides spatially detailed observations of human settlements. We quantitatively estimated 
socioeconomic development inequalities across 30 provinces and municipalities in 
mainland China using VIIRS NTL data associated with both regional gross domestic 
product (GDP) and population census data. We quantitatively investigated relations 
between NTL, GDP, and population using a linear regression model. Our results suggest 
that NTL radiances have significant positive correlations with GDP and population at 
different levels. Several inequality coefficients, commonly used in economics, were 
derived from VIIRS NTL data and statistical data at multiple spatial scales. Compared with 
the statistical data, NTL-derived inequality coefficients enabled us to elicit more detailed 
information on differences in regional development at multiple levels. Our study of 
provinces and municipalities revealed that county-level inequality was more significant 
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than city-level inequality. The results of population-weighted NTL inequality indicate an 
obvious regional disparity with NTL distribution being more unequal in China’s 
undeveloped western regions compared with more developed eastern regions. Our findings 
suggest that given the timely and spatially explicit advantages of VIIRS, NTL data are 
capable of providing comprehensive information regarding inequality at multiple levels, 
which is not possible through the use of traditional statistical sources. 

Keywords: nighttime light; visible infrared imaging radiometer suite (VIIRS); 
socioeconomic development; inequality; China 

 

1. Introduction 

Because of the current rapid economic growth in China, regional inequality is increasing and 
becoming a matter of contention that has received considerable attention from policy-makers and 
scholars [1]. According to previous research, China also experienced uneven economic development 
after economic reforms which were initiated in 1978 [2,3]. It is necessary to evaluate regional 
disparities of regional socioeconomic status within China because of the important effects of inequality 
on national development and social stability [4]. The majority of studies on socioeconomic inequality 
in China have focused on several prominent economic indicators such as GDP, average income, and 
consumption expenditure in their analyses [5–7]. These studies applied several measurements to assess 
inequality such as the Coefficient of Variation (CV) and the Gini index. They have consistently 
observed an increase in regional inequality since 1992 ([7]). Zhang et al. considered GDP and 
consumption expenditure [8]. Their results confirmed that both GDP and consumption expenditure 
were significantly and unequally distributed before and after China’s economic reforms. However, 
inequality in relation to GDP appears to have increased more quickly during the post-reform period. 
Moreover, there are multiple effects related to regional inequality that are attributed to China’s  
multiple administrative levels; a phenomenon that some economic geographers have highlighted [9,10].  
An imbalance in growth patterns between China’s coastal and interior provinces has been persistently 
evident over the long term, attracting the attention of several scholars seeking to identify the essential 
factors and detailed reasons behind this imbalance [11,12]. 

Although widely applied in the measurement of economic development, traditional economic 
indicators (e.g., GDP and income) that are statistically derived suffer from limitations such as high 
cost, low temporal resolution, and artificial effects. Few studies that have used statistical data have 
specifically considered spatial scale. In this context, the emergence of remotely sensed nighttime light 
(NTL) data has precipitated a new avenue for explicitly exploring human activity and socioeconomic 
development from space. Numerous studies have indicated that satellite-derived NTL images can serve 
as a proxy measure of demographic and economic activity from the regional to the global scale [13–17]. 
Furthermore, because of its noteworthy advantages associated with easy access, low cost, and relative 
objectivity, NTL data have been regarded as an alternative that can be used in the absence of economic 
census variables [18]. The majority of studies in this area have been conducted using data obtained 
from the Defense Meteorological Satellite Program-Operational Line Scanner (DMSP-OLS), which 
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were first published in the early 1970s. The DMSP-OLS image data have an original spatial resolution 
of approximately 2.7 km and are distributed at a 1 km resolution. They have proven effective for 
examining economic activity, urbanization [19–21], power and metal consumption [22–25], disaster 
assessment [26], and light pollution [27]. However, despite their use over several decades, the low 
spatial resolution, saturation of pixel values, and other drawbacks [28] associated with these data have 
limited their application for monitoring within the social sciences. 

Because of a recognized need for dedicated NTL data, in 2013, NOAA’s National Geophysical 
Data Center Earth Observation Group released advanced, low light image data derived from the Visible 
Infrared Imaging Radiometer Suite (VIIRS) instrument aboard the Suomi National Polar-orbiting 
Partnership (Suomi-NPP) satellite [29]. The initial composite products of the VIIRS day/night bands 
(DNB) yielded high quality data in zero moonlight conditions, with a 15 arc second spatial resolution 
(pixel footprint at nearly 742 m) [30]. However, the latest VIIRS-derived NTL data released are 
capable of detecting extremely low light sources from the Earth’s surface, and have been used to 
evaluate the responses of NTL to socioeconomic activity [31,32]. Ma et al. [31] investigated 
correlations of NTL radiance with GDP, population, electrical power consumption, and paved road areas. 
Their findings indicated that these indices had a significantly positive linear relation to NTL radiance. 
Recently, Shi et al. [33] evaluated the capability of VIIRS NTL data to depict GDP and electrical power 
consumption in China. They observed that VIIRS data were superior to DMSP-OLS data in estimating 
these socioeconomic parameters on multiple scales. Apart from primary research on the spatial 
distribution of NTL used to detect economic development patterns, some scholars have applied NTL in 
econometric methods and models (e.g., the Gini coefficient and the coefficient of variation). These 
studies have provided valuable insights into NTL’s applications within socioeconomic research [34]. 
Findings of spatial inequality, derived from satellite data, are hardly affected by the lack of or lag in 
census data, and the increasingly available images from this data enable the provision of continuous results. 
The objectiveness of the data and the gridded data source provide an appropriate and convenient input for 
quantifying inequality methods.  

Based on a literature review, it is evident, nevertheless, that this form of knowledge and information 
merits a more thorough exploration. Conversely, traditional methods applied to census data may hide 
some detailed characteristics because of the limitations of that data source. Thus, an appropriate choice 
may be to employ the most recently released remote sensing data that can serve as an economic 
inequality indicator, and that have a natural spatial attribute. While there are some case studies of 
human activities that have used remote sensing data, only a few of these have examined or been 
compared at different administrative levels within one country to provide further insights. 
Additionally, comparison inequality indices calculated from the VIIRS light data and other inequality 
factors are helpful in uncovering essential relations between satellite-derived light data and common 
socioeconomic data. Elvidge et al. [35] used NTL imagery (DMSP/OLS) and population data to 
generate a global poverty map at national and sub-national levels. This work demonstrated that NTL 
data could be used to estimate poverty and socioeconomic disparities. Recently, researchers have 
applied high spatial resolution (60–300 m) NTL images to study local scale demographic and 
socioeconomic conditions. They have shown that these data outperformed the coarse spatial resolution 
DMSP-OLS data [36]. 
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This study aims to investigate socioeconomic inequality patterns in China using VIIRS-obtained 
NTL radiance data. In doing so, it is expected to yield new explanations at different spatial scales.  
The remaining sections of this paper are organized as follows. Section 2 describes the data source and 
methods that were used to measure inequality conditions. Specifically, it proposes a spatial multi-scale 
method for depicting inequality in the distribution of NTL, GDP, and the population at county and 
prefecture-city levels. Section 3 presents inequality results (including the Gini coefficient, Theil index, 
and Lorenz asymmetry coefficient) derived from different indicators, and offers simple interpretations. 
Moreover, we examine correlations between some critical inequality indices of NTL radiance, GDP, 
and population. In Section 4, we present a detailed discussion of the results at various spatial scales to 
shed light on regional disparities in human activity and social wealth in China. Some reasons behind 
our findings are also explored. Finally, in Section 5, we draw conclusions based on our major findings. 

2. Data and Methods 

2.1. Visible Infrared Imaging Radiometer Suite (VIIRS) Nighttime Light Imagery 

The NTL images used in this study were derived from the latest VIIRS data released for the year 
2012 by NOAA-NGDC [37]. The cloud-free image composite, derived from the VIIRS DNB data in 
zero moonlight conditions, covered two periods: 18–26 May 2012 and 11–23 October 2012. Clouds 
were detected by the M15 band on the VIIRS and subsequently removed during the processing stage. 
This VIIRS product covered a spatial range of latitudes from 65°S to 75°N, with a spatial resolution of 15 
arc seconds. The time delay and integration (TDI) charge coupled device (CCD) provided low light 
imaging capability for VIIRS DNB [38]. This meant that the product had a better spatial resolution and 
better sensitivity than the commonly used DMSP-OLS-derived images. We obtained the VIIRS 
nighttime radiance values by averaging cloud-free pixel brightness during the observation periods [30]. 
We then extracted the area of mainland China, as our study area, from the VIIRS eastern Asia product. 
This area was composed of 30 provinces and municipalities, excluding Hainan, Hong Kong, Macao, 
and Taiwan (Figure 1). These four administrative units were omitted to render NTL data consistent 
with the statistical data for each study unit. This process is described in the following subsection.  

Some calibration activities conducted on the raw VIIRS data were required before these data could 
be directly used in the study. The VIIRS images had not been filtered to subtract background noise. 
We, therefore, applied a similar method to that used by Ma et al. [31] to minimize the effects of 
radiance noise. Following this method, we calculated the NTL radiance values of each pixel multiplied 
by its pixel area as a weight, referring to the WGS 84 Geographic Reference System (GRS). Using this 
area-weighted approach, we were able to alleviate the distortion effect when correcting the NTL 
images in the GRS. As an indicator of socioeconomic activities, the total summary of weighted NTL 
values in pixels for each study area was computed at the county level. 
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Figure 1. Visible Infrared Imaging Radiometer (VIIRS) nighttime light data for China in 2012. 

2.2. Economic and Demographic Data 

Although the NTL imagery covered the entire area of China, economic data (e.g., GDP) were 
mainly confined to China’s mainland region because of limitations of the statistical data source. 
Population data at the county level was obtained from the demographic census of 2010 [39], because 
these data were not available for 2012. We investigated these data at the prefecture-city and county 
levels for the 30 provinces, which included a total of 341 prefecture-cities and 2849 counties. The 
population data of high-level administrative districts were obtained using the dissolve tool in GIS and 
by calculating the summary of the data in their sub-districts. The GDP data, which were only available 
for cities, were used as economic variables. These were acquired from the 2012 statistical yearbook of 
urban areas [40]. 

Additionally, we cleaned up data and adjusted some inconsistencies in the raw statistical data for the 
period between 2010 and 2012 that were caused by changes in the administrative regions (e.g., through 
merging or disintegration). Four municipalities—Beijing, Shanghai, Tianjin, and Chongqing—were 
treated as provinces in terms of data processing. GDP and demographic data of the corresponding 
administrative regions were matched as attribute fields to the vector map, which was derived from the 
National Geomatics Center of China. Although the population data had a two-year lag in relation to the 
corrected VIIRS light data and GDP, we assumed that the data remained credible and depicted 
correlations among the variables. 
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2.3. Inequality Analysis Methods at Multiple Levels 

In economics, GDP and population play important roles as indicators of regional development 
status. In this study, satellite-derived NTL data served as a proxy variable for depicting inequality 
status. We analyzed the relations between the GDP, NTL, and population using the linear regression 
method to elicit their potential capability to respond to socioeconomic disparities. Moreover, to 
effectively examine the socioeconomic distribution status from various perspectives, based on 
previously processed materials, we examined several inequality coefficients that could provide detailed 
information to further our understanding of the inequality issue. 

Within economics, the Gini coefficient is a measure of statistical dispersion that is intended to 
represent the distribution of a variable across residents, regions or nations [34]. This coefficient is 
derived from the Lorenz curve and has been widely used as a major index of income distribution (see 
Figure 2a). For this study, we employed two different types of Gini coefficients: unweighted and 
weighted. The unweighted Gini coefficient was computed using the formula depicted in Equation (1) [41], 
where 𝑦𝑦𝑖𝑖 and 𝑦𝑦𝑗𝑗 represent per capita GDP for the regions i and j, respectively; and 𝑦𝑦�𝑢𝑢 is the unweighted 
mean of per capita GDP for the n study regions, Figure 2a depicts a graphical representation of the 
Gini index taking the NTL value at the county level as an example. The blue area, A, comprises the 
equality line and the Lorenz curve, B is the area under the Lorenz curve, and the Gini index is equal to 
A divided by the sum of A and B. 

  

Figure 2. Graphical representations of the Gini index (a) and Lasym index (b). 
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The weighted Gini coefficient was calculated by weighting each per capita GDP with its associated 
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The Theil index, which is an inequality index derived from the information entropy domain, was 
calculated as shown in Equation (3):  
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where n is the sample size, 𝑥̅𝑥 is the mean of x, and 𝑥𝑥𝑖𝑖 is the value (e.g., GDP, NTL, or population ) of 
region i. 
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The corresponding weighted Theil index was calculated, as shown in Equation (4), by adding 
population as a weight for each study region. As in the case of the weighted Theil index of GDP, 𝑥𝑥𝑖𝑖 is 
the GDP proportion contributed by region i to the total GDP, and 𝑞𝑞𝑖𝑖 represents the population share of 
region i [41].  

Because the Gini coefficient is derived from the Lorenz Curve, a differently shaped Lorenz Curve 
may have had an identical Gini value (Figure 2b). To further explore the potential of the Gini 
coefficient, the Lorenz asymmetry coefficient (Lasym) was used [42], because it can detect asymmetric 
conditions of the Lorenz curve, which is useful information for the Gini index. Regarding Lasym 
results, a value of 1 indicates perfect symmetry. A score of less than 1 indicates that many small 
classes are the primary contributors to the status of inequality, and a score greater than 1 reflects the 
contributions of the small proportion of the individuals who are the wealthiest (Figure 2b). For this 
study, Equations (1)–(4) and the Lasym coefficient were applied to the GDP and NTL. The unweighted 
inequality formulas, i.e., Equations (1) and (3), and the Lasym coefficient, were used for population. 

It is noteworthy that analysis of NTL disparity in China has been relatively limited. Detailed and 
specialized studies that focus on China’s NTL inequality and consider spatial scales are rare. Because 
of the characteristics of the data source, NTL brightness was able to explicitly depict the spatial 
distribution of socioeconomic activities. Based on the inequality indices shown above, we calculated 
the nightlight-derived inequality indices for the 30 provinces at different spatial scales. First, the 
province inequality indices of NTL and population were investigated at the county level. Then, 
identical indices of NTL, GDP, and population for the provinces were calculated at the prefecture-city 
level. Differences between NTL and population inequality indices obtained from these two spatial 
scales were analyzed by performing a t-test. In addition, relations between NTL, GDP, and population 
were observable at the provincial and city levels using the linear regression method.  

3. Results 

3.1. Relationships between Nighttime Light, Gross Domestic Product, and Population 

Before proceeding further in our analysis, we must first develop clear insights into the relations 
between NTL, GDP, and population. As shown in Figure 3, the bar plots of population, GDP and NTL 
were shown in descending order of the population size. Comparisons of Figure 3a with Figure 3b,c 
indicate that provinces with larger populations had generally higher GDP and NTL indices.  
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However, we can also observe conspicuous disparities from the rise and fall trend in both GDP and 
NTL (Figure 3b,c). Guangdong, Zhejiang, Jiangsu, Liaoning could generally group all provinces into 
four intervals. Other provinces falling into these intervals exhibit decreased trends in both indices even 
though there were slight fluctuations after Liaoning. Henan, Sichuan and Hunan, for instance, have 
relatively low GDP and NTL values in comparison with the corresponding population size. Moreover, 
Gansu, a northwestern province with a nearly identical population size to Shanghai, had only half of 
the NTL of Shanghai. 

 

Figure 3. Population (a), GDP (gross domestic product) (b), NTL (nighttime light) (c) of 
30 provinces in China. 

We evaluated the relationships between NTL, GDP, and population at the provincial and prefectural 
city levels by applying a linear regression model. The use of this multilevel approach helped to guard 
against overstating the real relations between these variables. It has been well documented that DMSP 
nighttime lights can be regarded as an indicator of socioeconomic activity at local and regional scales [18]. 
Our results showed that the VIIRS nightlight radiance had a significant positive correlation with GDP 
(coefficient of determination: R2 = 0.86, p < 0.001) as well as with population (Figure 4). Thus, the 
results suggest that the VIIRS data can explain 86% of the variance in GDP value. GDP was also 
positively correlated with population. The VIIRS data showed a higher positive response to GDP than 
to the population (R2 = 0.69, compared with R2 = 0.86). In the scatter plot depicted in Figure 4d, a 
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notable outlier point at the upper end is Chongqing, a municipality that is managed directly by the 
central government as a province that is more populated than a common prefectural city. Data for 
Chongqing were thus included in the analysis at both the provincial and the prefectural levels. 
Additionally, because of a two-year gap between VIIRS light brightness data (available for 2012) and 
demographic data (available for 2010), a slightly positive linear relation was evident at the prefectural 
and the provincial levels (R2 = 0.58, compared with R2 = 0.57 as shown in Figure 4e,f). However, this 
finding confirms the timely advantage of NTL data in monitoring economic dynamics. In addition to 
the time gap, the inclusion of the number of people living in unlit regions in the population data may 
have reduced its correlation with NTL. The correlation between GDP and population was also affected 
by these factors. 

 

Figure 4. Scatter plots depicting the relationship between nighttime light (NTL), gross 
domestic product (GDP), and population at the provincial (Left) and prefectural (Right) 
levels. (a) and (b): relationship between GDP and NTL; (c) and (d): relationship between 
GDP and population; (e) and (f): relationship between NTL and population. 
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3.2. Inequality Estimation 

In this study, four Chinese municipalities were included in the calculation at both the provincial and 
the prefectural levels. As shown in Table 1, Tianjin, which is a municipality adjacent to Beijing, 
received a higher score (0.78) on the Theil measure for GDP than nearly all of the other provinces, 
indicating that its sub-districts experienced high levels of inequality. In fact, Tianjin is a small city, and 
its core urban area has more intensive commerce and industry than other administrative districts. These 
factors could have produced this unequal status. The Lasym measure of population in Jiangxi Province 
indicates a low value of 0.70, implying that this province has a few prefectures with small populations. 

To further examine the distribution of NTL and population, we estimated relations between the 
measures of the inequality indices for NTL and the population using a scatter plot matrix, as shown in 
Figure 5. We compared the weighted and unweighted Gini coefficients of provinces at the county and 
the prefectural city levels, respectively (Figure 5). It was apparent that weighted Gini plots (Figure 5c,d) 
dropped below the 1:1 line denoting equality, whereas unweighted points (Figure 5a,b) were rarely 
located below the diagonal line. Based on our detailed observation, we concluded that a relatively 
similar order existed for Beijing, Qinghai, Guangdong, and Heilongjiang in the plot after the weighted 
computations were done (Figure 5a,c). Additionally, at the identical level (Figure 5a,c), weighted Gini 
plots were more scattered than unweighted Gini plots (Pearson’s r −0.04 vs. 0.49). This could indicate 
the influence of the population on their co-distribution patterns. Here, we observed a slight trend, 
which indicated that the Gini values of NTL increased as the population Gini values rose (Figure 5a,b). 
Their Pearson’s correlations were 0.49 and 0.50 at county and prefectural city level, respectively, 
which confirmed their relationship. This result indicated that the distribution of NTL was consistent 
with the distribution of the population at these two levels in China. Similar weighted and unweighted 
NTL Gini values would imply that regions corresponding to different NTL distribution points would 
have similar populations. For example, the weighted and unweighted NTL Gini values of Shanxi 
Province were similar to those at the county level (approximately 0.2) (Figure 5b,d), indicating that the 
populations of the counties in this province were distributed equally. 

Table 1. Inequality indices derived from the prefectural city level estimation across 30 
provinces in China. For the Gini and Theil indices, higher values indicate increased 
inequality and lower values indicate increased equality. 

Province 
NTL Population GDP 

G Gw T Tw Lasym G T Lasym G Gw T Tw Lasym 
Beijing 0.42  0.17  0.26 0.05 0.84 0.46 0.30 1.04 0.60 0.38 0.55 0.27 0.98 
Tianjin 0.49  0.34  0.37 0.19 0.97 0.26 0.12 1.23 0.58 0.42 0.78 0.32 1.45 
Hebei 0.29  0.22  0.11 0.08 1.04 0.25 0.09 0.88 0.35 0.22 0.17 0.08 0.98 
Shanxi 0.21  0.19  0.07 0.06 1.01 0.21 0.06 0.91 0.21 0.18 0.07 0.05 1.13 

Inner-Mongolia 0.40  0.34  0.22 0.21 1.08 0.33 0.16 0.88 0.43 0.34 0.25 0.19 1.00 
Liaoning 0.37  0.18  0.22 0.05 1.39 0.30 0.14 1.36 0.47 0.23 0.38 0.09 1.28 

Jilin 0.52  0.18  0.39 0.05 1.23 0.35 0.17 1.18 0.45 0.13 0.29 0.03 1.20 
Heilongjiang 0.57  0.29  0.51 0.19 1.30 0.49 0.35 1.21 0.58 0.32 0.54 0.21 1.27 

Shanghai 0.54  0.23  0.46 0.10 0.89 0.38 0.24 1.18 0.42 0.24 0.36 0.11 1.37 
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Table 1. Cont. 

Province 
NTL Population GDP 

G Gw T Tw Lasym G T Lasym G Gw T Tw Lasym 
Inner-Mongolia 0.40  0.34  0.22 0.21 1.08 0.33 0.16 0.88 0.43 0.34 0.25 0.19 1.00 

Liaoning 0.37  0.18  0.22 0.05 1.39 0.30 0.14 1.36 0.47 0.23 0.38 0.09 1.28 
Jilin 0.52  0.18  0.39 0.05 1.23 0.35 0.17 1.18 0.45 0.13 0.29 0.03 1.20 

Heilongjiang 0.57  0.29  0.51 0.19 1.30 0.49 0.35 1.21 0.58 0.32 0.54 0.21 1.27 
Shanghai 0.54  0.23  0.46 0.10 0.89 0.38 0.24 1.18 0.42 0.24 0.36 0.11 1.37 
Jiangsu 0.37  0.25  0.21 0.10 1.13 0.20 0.06 1.05 0.37 0.24 0.19 0.09 1.20 

Zhejiang 0.42  0.17  0.25 0.05 1.07 0.33 0.15 0.89 0.40 0.16 0.22 0.04 1.06 
Anhui 0.39  0.31  0.25 0.16 1.15 0.33 0.16 0.96 0.34 0.30 0.21 0.15 1.32 
Fujian 0.40  0.14  0.21 0.03 1.01 0.28 0.11 1.23 0.36 0.12 0.17 0.03 1.13 
Jiangxi 0.38  0.21  0.19 0.09 0.96 0.34 0.17 0.70 0.30 0.25 0.13 0.12 1.05 

Shandong 0.32  0.21  0.14 0.08 1.08 0.28 0.11 0.90 0.30 0.24 0.13 0.10 1.02 
Henan 0.34  0.25  0.20 0.10 1.08 0.30 0.13 0.92 0.32 0.23 0.17 0.09 1.38 
Hubei 0.49  0.34  0.50 0.21 1.40 0.31 0.14 1.07 0.49 0.32 0.42 0.16 1.27 
Hunan 0.44  0.37  0.34 0.24 1.16 0.22 0.07 0.95 0.40 0.30 0.27 0.16 1.08 

Guangdong 0.46  0.26  0.32 0.11 1.11 0.31 0.14 1.07 0.57 0.35 0.55 0.19 1.20 
Guangxi 0.38  0.25  0.23 0.10 1.17 0.29 0.12 0.90 0.33 0.18 0.16 0.05 1.23 

Chongqing 0.47  0.38  0.37 0.23 0.91 0.23 0.08 1.05 0.42 0.29 0.26 0.14 0.95 
Sichuan 0.48  0.34  0.56 0.19 1.35 0.33 0.19 1.15 0.45 0.22 0.45 0.08 1.30 
Guizhou 0.21  0.21  0.07 0.08 1.31 0.22 0.06 1.28 0.33 0.20 0.15 0.07 1.14 
Yunnan 0.49  0.31  0.42 0.15 1.12 0.37 0.20 1.03 0.51 0.27 0.41 0.12 1.13 

Tibet 0.34  0.36  0.16 0.22 1.23 0.33 0.14 0.86 0.52 0.31 0.37 0.19 1.14 
Shaanxi 0.54  0.42  0.40 0.31 1.02 0.32 0.14 1.20 0.47 0.26 0.30 0.11 1.18 
Gansu 0.38  0.29  0.24 0.14 1.46 0.33 0.16 0.79 0.39 0.37 0.26 0.23 1.16 

Qinghai 0.50  0.18  0.33 0.07 0.98 0.52 0.38 1.20 0.65 0.33 0.57 0.23 1.03 
Ningxia 0.44  0.22  0.21 0.09 1.21 0.22 0.05 1.36 0.47 0.28 0.25 0.14 1.33 
Xinjiang 0.39  0.29  0.21 0.15 0.92 0.42 0.25 1.03 0.50 0.43 0.31 0.31 0.92 

Mean 0.41 0.26 0.28 0.13 1.12 0.32 0.15 1.05 0.43 0.27 0.31 0.14 1.16 

To display the distribution of weighted NTL Theil and weighted NTL Gini indices for the 30 
provinces, we created a boxplot to display distribution differences at the county level (pink box) and at 
the prefecture level (green box) (Figure 6). The Theil inequality index of provinces varied from 0.05 in 
Beijing to 0.7 in Tibet at the county level, and from 0.05 in Ningxia to 0.38 in Qinghai at the 
prefectural level. The Gini inequality index of provinces ranged from 0.17 in Beijing to 0.59 in Tibet at 
the county level, and from 0.14 in Fujian to 0.42 in Shannxi at the prefectural level. In the boxplot, the 
median lines highlight obvious disparities between the two levels. Even at identical levels, the Gini 
index was higher than the Theil index. This difference may be attributed to its sensitivity to high 
values. Moreover, there were outlier points in the interprovincial Theil and Gini indices calculated at 
the county level. This indicates that there may have been a more uneven distribution of NTL at the 
county level. 
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Figure 5. Relationships between nighttime light (NTL) Gini and population Gini: (a) and 
(b) are unweighted Gini of NTL; (c) and (d) are population weighted Gini of NTL;  
(left panel) the results of (a) and (c) were derived from the county level estimation;  
(right panel) (b) and (d) were derived from the prefectural level estimation. 

 

Figure 6. Boxplots depicting statistical distributions of nighttime light Gini and nighttime 
night Theil for China’s 30 provinces at the county and prefectural levels. 
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In addition to our exploratory data analysis, we performed t-tests for Gini and Theil indices to 
examine differences at these two levels, as shown in Figure 6. The t-test of the two Gini index groups 
yielded a t-value of 5.7 and a p-value < 0.001, and the t-test of the Theil index yielded a t-value of 5.0 
and a p-value < 0.001. These results indicate that the Gini and Theil indices derived at the county level 
differed significantly from those derived at the prefectural level, reflecting the multi-scale effect of 
inequality patterns in the statistical results. 

3.3. Spatial Multi-level Inequality of Nighttime Light 

The preceding results, obtained using several indices that implicitly reflect effects at different levels 
of geographical administrative areas, demonstrated inequalities among the 30 provinces studied.  
To further understand these inequalities, a spatial analysis was conducted by attaching the inequality 
indices to the thematic maps of these provinces, as displayed in Figure 7. This plot matrix comprises 
six thematic maps. The first row represents the weighted Gini index, the second row represents the 
weighted Theil index, and the last row represents the Lasym index. The two columns show calculations 
of these indices for county and prefectural populations, respectively. 

An examination of the spatial distribution of the inequality indices yielded the following results, as 
depicted in the maps. First, the Gini index, extending from eastern to western regions, revealed a 
pattern of disparity between these regions, which was more significant at the prefectural level, as 
depicted in Figure 7b,d. We found that nearly all of the eastern provinces had lower Gini and Theil 
values than the western provinces. Second, as described above, inequalities among provinces were 
affected by the spatial scale of individuals taking part in the calculations, which was reflected in the 
maps. The majority of provinces that included county-level individuals were at the highest ranks 
(0.35–0.59) of the Gini index (Figure 7a), whereas only four provinces that included prefectural-level 
individuals were at the highest ranks (0.35–0.42) of the Gini index. Third, as observed at the identical 
level, although the Gini and Theil indices displayed an approximate trend, some differences were 
observed in the details. For example, some northwestern provinces had a lower value on the Theil 
index, compared with the Gini index, at the country level (Figure 7a). The values of the northeastern 
regions were also low on the Theil index (Figure 7c). 

As shown in Figure 7c, the Theil index revealed more diversity in spatial distribution, implying that 
the county-level NTL data contributed to the detection of inequality in undeveloped southwestern 
provinces such as Yunnan, Sichuan, and Tibet. Figure 7b,d show the most coherent pairs of Gini and 
Theil distributions at the prefectural city level. Lastly, to develop deeper insights into inequality status 
based on the Gini index, we calculated the Lasym index to examine the distribution of individuals on 
the Lorenz curve (Figure 7e,f). The ranges of Lasym values below 1 were divided by 0.1 to identify the 
differences for a few provinces with a Lasym value below 1. The ranges that were above 1 were divided 
by 0.2 to highlight the trend in ranks for the majority of the provinces. It is noteworthy that the Lasym index 
of these provinces at the level of county units was close to 1, and the majority of values ranged from  
0.9–1.12. Beijing and Shanghai each had a Lasym value below 1, which means that they had few 
regions with extremely low nightlight brightness. Because there are developed cities that are  
mostly covered by bright light at night, having a few dark regions resulted in a Lasym index value that  
was below 1. 
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Among the western provinces, compared with its neighbors, Qinghai Province could be regarded  
as a special case with a status of relative equality based on Gini and Theil measures, as shown in  
Figure 7a–d. Ningxia Province was regarded as an outlier because its Lasym values were lower than 
those of its neighbors (Figure 7e), thus presenting a reverse trend in undeveloped western regions. The 
findings demonstrated that the eastern regions had lower levels of inequality than the western regions 
in terms of Gini and Theil indices. For these weighted indices, the multi-scale effects partially 
depended on how people were distributed across these regions. Additionally, with the help of the 
VIIRS NTL imagery, we found that geography played a significant role in shaping China’s uneven 
economic landscape.  

As a further step in our analysis, we plotted the spatial distribution pattern of unweighted GDP Gini 
and GDP Lasym indices derived at the prefecture-city level, as depicted in Figure 8. The unweighted 
Gini indices of GDP and NTL were compared in the map with their corresponding boxplots embedded 
as an inset (Figure 8a,b). For provinces located in central and eastern China, the Gini indices of GDP 
and NTL were aggregated in a nearly identical pattern, with a few provinces such as Guangdong and 
Fujian deviating from this pattern. Notably, the majority of provinces in eastern China had a lower 
unweighted Gini index for both GDP and NTL (Figure 8a,b). By contrast, the western provinces had a 
relatively higher unweighted Gini index of GDP compared with NTL. The boxplot inset illustrates the 
distribution pattern of the numerical values of GDP Gini and NTL Gini, which had approximately 
equal medians (the horizontal lines in the box). These findings indicate that NTL has a similar capacity 
to depict inequality as GDP. Furthermore, the lower-level NTL Gini in some western provinces may 
have resulted from the nightlight radiance of reflected light features with bright surfaces such as 
mountains covered by snow and dry lake beds, increasing the sum of NTL in the undeveloped regions. 

4. Discussion 

Compared with the results of a poverty map study [35], our Gini and Theil indices, derived from 
NTL, present similar distribution trends. For instance, these indices indicate that coastal areas of China 
have lower poverty rates than interior areas. We observed lower Gini and Theil inequality indices in 
coastal China compared with western China (see Figure 7a–d). However, these inequality indices 
measure the distribution of wealth. Thus, poor areas may have a low level of inequality and rich areas 
may have a high level of inequality, which differ from the poverty index used in the poverty map 
study. For example, with respect to the NTL Gini index (Figures 7b and 8b), Xinjiang Province, which 
is located in a poor area, as depicted in the poverty map, has a low inequality value. 

We previously investigated evolution trends of situations of inequality using original GDP, 
population and DMSP-OLS NTL data for 226 Chinese cities during the period 1994–2011 [43]. The 
results indicated that China experienced a pattern of increasing inequality between its western and 
eastern cities in this time series [44,45]. This is consistent with our current findings using inequality 
indices derived from similar data. The previous study focused on the co-distribution of GDP, 
population, and NTL, and their correspondence to the urbanization trends of these cities. As a further 
analytical step, in this study we estimated inequality at multiple scales covering all of China’s 
administrative regions. The Gini and Theil indices show that in general, there is less inequality in the 
country’s eastern region compared with its western region. Other economic researchers who have 
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studied China’s inequality trend have argued that this was greater in the west than in the east in this 
time series [46]. Our findings corroborate this finding at a new time point. Compared with the 
statistical data used by these earlier studies, the remotely sensed NTL data was not only more readily 
available for large scale study, but was also hardly affected by inflation. 

 

Figure 7. Nighttime light derived inequality for China’s 30 provinces: (a) and (b) are weighted 
Gini indices; (c) and (d) are weighted Theil indices; and (e) and (f) are Lasym indices; (a), (c), 
and (d) (left panel) are country level; (b), (d), (f) (right panel) are city level. 
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Figure 8. Spatial comparisons between inequalities of gross domestic product (left panel) 
and nighttime light (right panel) derived at the prefectural city level: (a) and (b) are 
unweighted Gini indices; (c) and (d) are unweighted Lasym indices. 

Although we exercised care in acquiring the data from a reliable source, and pre-processing the 
data, and although the VIIRS radiance data performed well in modeling relations with other 
socioeconomic variables, there are, nevertheless, some uncertainties that are of concern. First, the 
results of the analysis are as good as the statistical data and the VIIRS-derived light data used for the 
study. The remaining noise in the VIIRS data, or human-induced errors that may have occurred when 
the census data was pre-processed, may have affected the accuracy of the results and the regression 
model. Second, attempting to depict total economic inequality status using only a few proxy variables 
is a daunting task. Therefore, other factors that affect the accuracy of the model, or other regression 
methods that may improve the model, must be sought. Thus, our modeling result can only be an 
approximate estimation of the actual situation. Additionally, the inequality index of municipalities may 
have been influenced by their individual compositions of administrative regions. It is worth noting that 
there are limitations regarding the use of NTL to depict local socioeconomic activities in some of 
China’s regions. For example, as a result of rapid development of real estate, some regions may exhibit a 
high vacancy rate regarding housing, resulting in the creation of what are referred to as ghost cities [47]. 
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Such regions may be illuminated by road light but have few human and socioeconomic activities 
taking place within them. This situation impacts on the ability of NTL to accurately reflect information 
on these activities. However, these cities are few in number compared with our large study regions. 
Moreover, as our study focused on multi-level inequality, this effect will be examined in detail in a 
future small-scale study. 

As a further point of discussion, it is worth exploring the meanings and reasons behind our findings 
of inequality. According to the economic literature, widening regional inequality may lead to social 
and economic instability that, in turn, will affect China’s overall economic development [48]. Many 
factors, including central government policy, regional development strategies, and natural conditions, 
may have contributed to China’s regional inequality. To some degree, this inequality can be attributed 
to the central government’s policy of concentrating substantial resources in the coastal regions at the 
commencement of the economic reforms. This kind of biased policy has been largely responsible for 
the perpetuation of inequality between coastal and inland areas. This has also partly resulted in the 
large urban expanse that can be intuitively observed from the lit area in Figure 1. Geography may also 
be a factor that contributes to the disparity between provinces. For example, the eastern regions, which 
have a lot of plain areas, have an advantage in terms of building road networks. The NTL radiance data 
is largely attributable to the road light [49–51], that can reflect the transportation condition of the 
regions under study. This finding indicates that the eastern regions have benefited from their dense 
road network which is advantageous for resource allocations and reducing communication costs. The 
western regions, however, have been negatively affected by their disadvantageous topography that has 
limited the construction of road networks. This factor could consequently be an obstacle to the flow of 
labor resources or to attracting external investments. China’s population mobility may also have had a 
significant impact on the pattern of regional disparity. Based on China’s population distribution 
(Figure 3), we find that the eastern regions have richer human capital that can address the requirements 
of urbanization for labor resources compared with the western regions. There are other factors that 
may play a significant role in the distribution of inequality which will not be discussed in this paper. 

Because regional inequality has a negative impact on future economic growth, it is reasonable to 
devise an appropriate development strategy to reduce this. It is noteworthy that central policymakers 
have placed considerable emphasis on the issue of inequality, especially in relation to the middle and 
western regions. Several development plans such as that for western China, the reinvigoration of 
northeastern China and other older industrial bases, and the emerging development strategy for central 
China have been implemented to improve the development of lagging regions and to reduce inequality. 
For example, the completion of the Qinghai–Tibet railway and various roads, as part of the western 
development plan, can increase the mobility of resources within and between provinces. In addition, 
regarding the fragility of ecosystems in the western provinces, special attention should be paid to 
protecting the environment when promoting economic development of these areas. 

5. Conclusions  

NTL data have been widely used to depict human settlements and to estimate socioeconomic 
activities. This study has analyzed inequality in China using advanced NTL images obtained from the 
VIIRS in 2012. At the city and provincial levels, we estimated associations between NTL, GDP, and 
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the population using raw data from the VIIRS. Our results revealed that the VIIRS nighttime radiance 
data show a statistically positive correlation with GDP and population (R2 = 0.86, compared with R2 = 0.58, 
at the provincial level). In this study, several inequality indices were applied using the VIIRS 
nightlight data and socioeconomic data to characterize inequality patterns at the provincial level in 
China. The inequality indices derived from nocturnal light explicitly demonstrate spatial disparity and 
imbalance between China’s eastern and western regions. The findings of the Lasym index were of 
interest and implied that most provinces in China have few significantly developed prefectures, which 
leaves other prefectures in the same province with a common lower status. 

With regard to the inequality coefficients at the provincial level, we observed an explicit inequality 
pattern at different spatial scales based on the sample individuals. The provincial Gini and Theil 
indices of NTL that were derived from the prefectural-level data were lower than the indices obtained 
at the county level. This indicates that prefectures develop according to a relatively even pattern, 
whereas counties demonstrate a developing pattern that entails greater imbalance. Additionally, this 
finding reveals the potential of VIIRS data to be an efficient tool for estimating economic activity at a 
small spatial scale in the absence of statistical data (an example being the county level GDP data used 
for this study). To alleviate the sensitivity of the inequality index for populations with large spatial 
areas, and to avoid the occurrence of extreme values, we applied a population-weighted approach for 
NTL and GDP. The weighted inequality results revealed that population contributes significantly to the 
spatial distribution of NTL and GDP. Overall, this case study of mainland China evaluated the ability 
of VIIRS data to depict features of economic inequality at multiple spatial scales. 

Although some meaningful results pertaining to the application of VIIRS NTL data in modeling 
China’s economic inequality status were obtained in this study, future research should be conducted to 
create a more robust analysis from different perspectives. If a variety of data sources are used, more 
detailed information will become available. It should be mentioned that our analysis was based on one-year 
snapshot data of the VIIRS imagery and other available census materials. The detection of temporal 
change and the variation of inequality patterns are important for monitoring economic development, 
especially in China, where the economy is rapidly growing. Further studies therefore are needed to 
investigate the spatio-temporal changes in inequality of development patterns.  
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