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Abstract: Evapotranspiration (ET) is a vital component in land-atmosphere interactions.  

In drylands, over 90% of annual rainfall evaporates. The Nile Basin in Africa is about 42% 

dryland in a region experiencing rapid population growth and development. The 

relationship of ET with climate, vegetation and land cover in the basin during 2002–2011 

is analyzed using thermal-based Simplified Surface Energy Balance Operational (SSEBop) 

ET, Normalized Difference Vegetation Index (NDVI)-based MODIS Terrestrial (MOD16) 

ET, MODIS-derived NDVI as a proxy for vegetation productivity and rainfall from 

Tropical Rainfall Measuring Mission (TRMM). Interannual variability and trends are 

analyzed using established statistical methods. Analysis based on thermal-based ET 

revealed that >50% of the study area exhibited negative ET anomalies for 7 years (2009, 

driest), while >60% exhibited positive ET anomalies for 3 years (2007, wettest).  

NDVI-based monthly ET correlated strongly (r > 0.77) with vegetation than thermal-based 

ET (0.52 < r < 0.73) at p < 0.001. Climate-zone averaged thermal-based ET anomalies 

positively correlated (r = 0.6, p < 0.05) with rainfall in 4 of the 9 investigated climate 

zones. Thermal-based and NDVI-based ET estimates revealed minor discrepancies over 

rainfed croplands (60 mm/yr higher for thermal-based ET), but a significant divergence 

over wetlands (440 mm/yr higher for thermal-based ET). Only 5% of the study area 

exhibited statistically significant trends in ET. 
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1. Introduction 

Drylands are terrestrial ecosystems characterized by the scarcity of water. Rainfall is generally low 

(<600 mm/yr), and the potential rate of evapotranspiration greatly exceeds rainfall [1]. Drylands 

occupy about 41% the global surface and provide food, grazing for livestock, energy and forestry 

products and ecosystem services to about a third of the global population [2,3]. The limitations in 

water and/or nutrients have made these ecosystems highly sensitive to environmental changes and 

prone to land degradation, such as desertification [4]. With regards to socioeconomic conditions, 

dryland populations on average lag significantly behind the rest of the world on human well-being and 

development indicators [3]. This is particularly true for the Nile Basin of Africa, where a quarter of the 

continent’s population lives in a region where 42% of the basin is dryland and water is scarce [5–7]. 

Moreover, the population in the region is highly dependent on natural resources for its livelihood, 

highly vulnerable to food insecurity and exposed to political instability [6–8]. Over the last few years, 

the Nile Basin has undergone major transformation in land cover/land use change, mainly from 

expanding urban and agricultural activities, with possible implications for water use and food security 

in the region [9–13]. 

At global and continental scales, evapotranspiration (ET) is the second largest component of the 

terrestrial water budget after precipitation [14]. While this proportion is retained at the basin scale, it is 

reversed in irrigation schemes and wetlands [15]. Terrestrial ET transfers a large volume of water from 

soil and vegetation into the atmosphere [16]. About 60% of the global annual land precipitation is lost 

to ET; while ET from vegetation constitutes about 80% of terrestrial ET [14,17]. In dryland 

ecosystems where much of the soil is bare, ET can consume as much as 90% or more of the annual 

precipitation [18]. The high rate of ET (combined with the low rate of rainfall) in dryland ecosystems 

reduces soil water availability and, subsequently, inhibits the primary productivity of the 

vegetation [3]. Vegetation productivity is of great economic importance in many regions of dryland 

ecosystems [2]. The Normalized Difference Vegetation Index (NDVI) is often used as a proxy for 

vegetation productivity [8,19]. Moreover, human activity, such as agricultural and industrial 

development, has been a principal factor in the modification of the ecohydrological system [4,20–24]. 

In order to improve our understanding of ecohydroclimatologic dynamics, several numerical 

weather prediction systems and land surface models have been developed over the last few decades. 

The models range in complexity from simple water balance equations to complex physical 

parameterization of land-atmosphere interactions. In addition, the advent of remote sensing brought the 

capability to continuously collect time series of spatially-explicit quantitative data on land-atmosphere 

interactions at regional and global scales at regular time intervals [25]. Model-derived and remote 

sensing land surface and climatological data have been particularly critical in data-scarce regions of 

the world. Several remote sensing-based ET methods are currently available that, according to 

Courault et al. [26], can generally be grouped into: direct methods that use thermal infrared (TIR) 
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directly into simplified semi-empirical models; deterministic methods that use assimilation procedures 

and combine different remote sensing bands ingested into complex models to estimate ET; the 

inference (vegetation indices) method that uses remote sensing data to compute the reduction factor, 

such as the crop coefficient, to compute with reference to evapotranspiration for the estimation of 

actual evapotranspiration; and the residual methods (of the energy budgets),which use the spatial 

variability in remote sensing images to calculate the surface energy balance equation and attempt to 

minimize the use of atmospheric data. Most of the currently operational remote sensing-based ET 

models such as the Surface Energy Balance Algorithm (SEBAL) [27], Surface Energy Balance System 

(SEBS) [28], Simplified Surface Energy Balance (SSEB) [29] and Operational Simplified Surface 

Energy Balance (SSEBop) [30] are in this category. A more detailed discussion on the different ET 

methods can be found in Calgano et al. [31].  

The scarcity of reliable and openly distributed in situ data in the Nile Basin region means that only 

a few basin-scale studies are available so far; and most of those studies have to rely on model and 

remote sensing data [32,33]. Previous works on ET in the region include those conducted at  

field-scales [34,35] or high resolution imagery [16,36,37], or regional/basin-scale [33–50],  

or the continental/global-scale [17,51,52]. Continental- and regional-scale trend analysis conducted at 

0.5° to 1.0° resolution indicated a downward trend in ET over the past few decades in substantial parts of 

the Nile Basin region [17,51,52]. However, some studies of localized areas, like parts of 

the Nile Delta [38], that used moderate resolution satellite data suggest an increase in ET over the last 

few decades. Previous studies in the region focused either on trends in ET dynamics [51] or the 

relationship between climate and ET [17]. This work attempts to add to this growing scientific 

literature by analyzing the variability in actual evapotranspiration (referred to as ET in this paper) and 

its relationship with climate, land cover and vegetation productivity in the Nile Basin using  

satellite-derived and land surface models during 2002–2011. 

Using a hybrid combination of satellite-derived and modeled data, we present basin-wide 

geographically-distributed ET dynamics and the drivers, a comparison between thermal-based and 

NDVI-based ET in different climate zones and land cover and the ET-vegetation interaction in the 

basin during the period of 2002–2011. The data used are long-term records of thermal-based (SSEBop 

(Simplified Surface Energy Balance Operational), [30]) and NDVI-based ET (MOD16 (MODIS 

Terrestrial ET Product), [53–55]), satellite-driven rainfall (TRMM (Tropical Rainfall Measuring 

Mission), [56]) and vegetation (NDVI derived from MODIS Nadir Bidirectional Reflectance 

Distribution Function (BRDF)-Adjusted Reflectance, NBAR, [57]). 

2. Materials and Methods 

2.1. Study Area  

The Nile Basin (Figure 1a) is located in northeastern Africa and extends from latitude 4°S to 32°N and 

from longitude 21°30′E to 40°30′E. The basin is home to the River Nile, which drains an area of about 

3.3 million km
2
 (~10% of the continent’s landmass). The basin’s land cover is dominated by shrublands 

and woodlands (37%) and bare soils (30%), while the remaining is irrigated and rainfed agricultural 

land (11%), grasslands (10%), forest cover (7%), wetlands and lakes (3%) and a fraction of it covered 
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with built-up areas [6]. Subsequently, the spatial distribution of vegetation productivity in the basin is 

highly variable, as illustrated in Figure 2d. Regions with predominantly high vegetation productivity 

are the Equatorial Lakes Region (Zones VIII and IX), South Sudan (VI) and the western part of 

the Ethiopian Highlands (Zone VII). Except for the Nile Delta (Zone I) and the Nile Valley river 

corridor (Zone II), the rest of the basin in Zones II, III and IV shows very low vegetation productivity. 

Rainfall distribution in the basin (Figure 2c) is mainly driven by the seasonal fluctuation of  

the Inter-Tropical Convergence Zone (ITCZ) and its interaction with topography [58,59]. A pronounced  

north-south rainfall gradient ranging from almost no rain over Lake Nasser in Egypt (Zone II) to 

rainfall totaling ~2100 mm/yr in Gore, Ethiopia (Zone VII) lead to the climatic classification of the 

basin into nine climate zones (Figure 1, [58]). Low mean annual basin rainfall (~1046 mm/yr) in only 

geographically-limited regions means that the Nile River Basin has one of the lowest discharges 

compared to other major river basins in the world [5,6].  

Figure 1. The Nile Basin. (a) Delineated zones with roman numerals represent rainfall 

regimes from Camberlin [58]. (b) Mean monthly rainfall (mm) from TRMM, 2002–2011 

for each climate zone. 

 

(a) 
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Figure 1. Cont. 

 

(b) 

Figure 2. Long-term mean annual estimates (mm) of (a) the Simplified Surface Energy 

Balance Operational (SSEBop) ET; (b) MOD16 ET; (c) TRMM rainfall; and (d) long-term 

mean annual NDVI (NDVI > 0); 2002–2011.  

 

Evaporative losses in the basin are extremely high because the headwaters of the river primarily 

originate in the tropics; and because the river stagnates in large lakes (Lake Victoria, Lake Tana, 
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Lake Albert), extensive swamps (the Sudd in South Sudan), artificial impoundments in arid 

environments (Lake Nasser/Nubia in Egypt/Sudan, Jebel el Aulia in Sudan) and meanders through arid 

and hyper-arid ecosystems [5,6]. Annual ET estimates (Figure 2a,b) in the basin range from <~20 mm/yr 

in the hyper-arid and arid regions (Zones II, III and IV) to about >~1400 mm/yr in the equatorial and 

central basin regions (Zones VI and VIII). In the Nile Delta (Zone 1), where rainfall is minimal and 

agriculture depends entirely on irrigation, annual ET ranges between ~700–1100 mm/yr. The Nile Basin 

is drained by two principal tributaries, the Blue Nile (from the Ethiopian Highlands, which overall 

contribute ~86% of the total inflows to the Main Nile) and the White Nile (from the Equatorial Lakes 

Region, contributing the rest) that join at the confluence in Khartoum, Sudan, to form  

the Main Nile River [58–62]. River Atbara drains the northern Ethiopian Highlands and is the last 

tributary to join the Main Nile (Figure 1a). 

2.2. Data  

2.2.1. Thermal-Based Data (SSEBop ET) 

Senay et al. [29] produced the Simplified Surface Energy Balance (SSEB) model using thermal data 

for uniform agricultural fields. Later versions integrated additional information on topography, latitude 

and differences between land surface temperature and air temperature to enhance the model [63,64]. 

The SSEBop ET algorithm is an operational parameterization of the SSEB model that uses MODIS 

land surface temperature (LST) and model-derived meteorological parameters to produce a gridded ET 

product [30]. For a given day and location, the SSEBop approach assumes: (i) a near-constant 

temperature discontinuity between bare dry surface and atmosphere year to year under clear sky 

conditions; and (ii) clear sky net radiation as the main driver of surface energy balance [30]. The 

SSEBop algorithm uses NDVI for a one-time model parameterization to establish the upper and lower 

boundary conditions for LST; however, the algorithm does not directly include NDVI values in the 

computation for ET estimation [30]. The method has been tested using 14-year MODIS data from the 

United States, Africa and Southeast Asia and has been validated comprehensively over the 

Conterminous U.S. (CONUS) against flux tower observations, water balance ET and MOD16 [65]. 

The data are available at 1-km resolution 8-day totals from the U.S. Geological Survey (USGS) Earth 

Resources Observation and Science (EROS) Center. 

2.2.2. NDVI-Based Data (MOD16 ET)  

The MODIS 1-km spatial resolution Terrestrial ET Product for the Nile Basin [53] is acquired from 

the Nile Basin Initiative (NBI, [66]). MOD16 data are available at 8-day, monthly and annual time 

scales. The MOD16 algorithm employs the Penman–Monteith ET model and utilizes MODIS 

products, including 14 land cover types, Leaf Area Index/Fraction of Photosynthetically Active 

Radiation (LAI/FPAR), and white sky-albedo for the estimation of ET [54,55]. In addition to the 

vegetation surface-based algorithm employed in the previous global MOD16 ET algorithm, the 

improved version uses additional Terra MODIS daytime LST, NDVI and Enhanced Vegetation Index 

(EVI) data to estimate ET over deserts, urban areas, inland water bodies, such as rivers and lakes, as 

well as vegetated surfaces, and is produced specifically for the Nile Basin [53]. 
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2.2.3. MODIS NDVI Data  

For vegetation data, 1-km spatial resolution, 8-day NDVI composites were derived from  

the red (0.620–0.670 μm) and near-infrared (0.841–0.876 μm) bands of the MODIS Nadir  

BRDF-Adjusted Reflectance (NBAR) Product (MCD43B4, version 4) for 46 observations per year for 

the period from 2002 to 2011. MCD43B4 data are 16-day composites generated using acquisitions 

from MODIS onboard both Terra and Aqua platforms. The overlapping by 8-days of two successive 

composites resulted in the availability of one image every 8 days. The NBAR data provide an 

improved surface reflectance product with reduced cloud and aerosol contamination, with view angle 

effects removed [57]. The data are freely available via the National Aeronautics and Space 

Administration (NASA) next generation metadata and service discovery tool, Reverb [67]. 

2.2.4. TRMM Rainfall Data 

In data-scarce regions, such as the Nile Basin, where gauge data are sparse or unevenly distributed, 

and where weather observation networks are deteriorating, satellite rainfall estimates provide essential, 

and at times, the only spatiotemporal information data for multiple time periods at a range of spatial  

scales [68]. In this study, we used the daily TRMM [56] merged high quality infrared precipitation product 

(3B42, V.7). The TRMM-3B42 algorithm combines geostationary infrared, passive microwaves and also 

ground-based gauge data [68]. TRMM-3B42 estimates are produced at a 3-hour temporal and a 0.25° 

spatial resolution; data are acquired from NASA’s TRMM site [69].  

2.3. Methods 

2.3.1. Pre-Processing of Data 

Examination of the data (SSEBop, MODIS ET and NDVI) revealed areas where there is a high and 

low frequency of 8-day time series datasets. Frequency (%) maps of the 8-day time series data from 

each of the three datasets with values greater than zero are included in Figure 3. For this analysis, 

only SSEBop ET (ET > 0), MODIS NDVI (NDVI > 0) and MODIS ET (ET > 0) retrievals during 

2002–2011 are included. Moreover, while doing inter-comparison and correlations, SSEBop pixels 

where the corresponding MODIS ET and NDVI values are zero are also excluded.  

2.3.2. Standardized Anomalies 

To analyze interannual variations, standardized anomalies were computed by subtracting the mean 

of the annual values from the corresponding individual annual values and dividing by the standard 

deviation. Dimensionless standard units of the standardized anomalies (SA) facilitate the direct 

comparison of variations in different geographic locations. Standardized anomalies (SA) were 

categorized into five classes: (i) SA ≤ −2: severely dry; (ii) −2 ≤ SA < −0.5: moderately dry;  

(iii) −0.5 ≤ SA ≤ 0.5: normal; (iv) 0.5 < SA ≤ 2: moderately wet; and (v) SA > 2: severely wet. In this 

paper, we generally define dryness for SA < −0.5 and wetness for SA > 0.5.  
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Figure 3. Frequency (%) of 8-day times series of (a) SSEBop (ET > 0); (b) MODIS NDVI 

(NDVI > 0) and (c) MOD16 (ET > 0) retrievals during 2002–2011. 

 

2.3.3. Inter-Model Comparisons  

Indirect inter-model comparisons of SSEBop and MOD16 estimates were conducted by comparing 

time series of monthly ET estimates (an average of 30 × 30 pixels) from each ET dataset over selected 

land cover (using MODIS land cover and Google Earth for visual inspection) with respect to 

corresponding estimates of vegetation productivity (NDVI). The indirect comparison with respect to 

rainfall was made using time series of annual ET anomalies averaged per each of the nine climate 

zones. Pearson’s product-moment coefficient of linear correlation (r) is used to measure the 

relationship between ET from SSEBop and MODIS ET with vegetation productivity.  

2.3.4. Trend Analysis 

In order to detect the presence of temporal trends (consistent, one-directional, long-term changes 

over time in ET and rainfall), a linear regression trend test was conducted, where time is the 

independent variable and ET or rainfall is the dependent variable. In order to perform statistical 

inference regarding the slope (trend through time) of a line fitted using the ordinary least-squares 

(OLS) method, the following criteria have to be met [70]: (1) the normality of residuals resulting 

from the linear regression (Shapiro–Wilk test) [71]; (2) homoscedasticity: the variance of the residuals 

must be constant throughout time (Breusch–Pagan test) [72]; and (3) serial independence: the residuals 

should be free from autocorrelation (Breusch–Godfrey test) [73] at lags of up to two samples. 

The linear model in this study was run at an annual time scale for both ET and rainfall for the decadal 

study period, and statistical significance was chosen at the 95% level.   
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3. Results 

3.1. Basin-Wide ET Dynamics  

The results of the interannual anomaly analysis, visually illustrated in Figure 4, conducted using 

thermal-based ET data (SSEBop) revealed two temporally distinct dry periods (2002–2005 and  

2009–2011) and a wet period (2006–2008) that characterized ET dynamics in the Nile Basin. About  

30%–50% of the study area (86% of the total basin area) exhibited dryness (negative ET  

anomalies < −0.5) during the dry periods; while a minimum of 40% exhibited wetness (positive ET 

anomalies > 0.05) during the three consecutive wet years. Basin-wide, the driest years are 2004, 2005 

and 2009 (~40%–50% exhibiting dryness); while 2007 and 2008 constitute the wettest years  

(~50% exhibiting wetness). The degree of severity of dryness/wetness and proportional areal extent of 

affected regions basin-wide and for each of the nine climate zones are summarized in Figure 5. 

Furthermore, the analysis also revealed that the areal extent of high degree severity level dryness 

(negative ET anomalies < −2) and wetness (positive ET anomalies > 2) affected regions do not exceed 

5% of the study area during the study period (Figure 5a). 

Figure 4. (a–j) Nile Basin ET dynamics: annual ET (SSEBop) standardized anomalies,  

2002–2011. The standardized annual anomalies were computed by subtracting  

the long-term mean (2002–2011) of the annual values from the corresponding individual 

annual values (annual mean) and dividing by the standard deviation. 
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Figure 5. (a–k) Areal extent and degree of severity of annual ET anomalies in the Nile 

Basin during 2002−2011. The bar length represents the proportional area fraction  

basin-wide (BW) and for each climate zone (1–9, Camberlin [59]). Colors represent the 

degree of the severity of dryness and wetness of the standardized anomaly (SA):  

(i) −0.5 < SA ≤ 0.5: normal (in gray); (ii) 0.5 < SA ≤ 2: moderately wet (light green);  

(iii) SA > 2: severely wet (dark green); (v) −2 < SA ≤ −0.5: moderately dry (orange);  

(vi) SA ≤ −2: severely dry (red). 

 

3.2. Drivers of ET 

3.2.1. Effects of Climate on ET 

Across the basin, the relationships between ET and TRMM rainfall variabilities are influenced by 

climate, but this relationship also depends on the type of ET data used. Figure 6 shows a time series of 

standardized annual anomalies for SSEBop, MOD16 and rainfall averaged over each of the nine 

climate zones. Strong interannual variabilities are observed (especially in SSEBop ET and rainfall) in 
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temporal harmony with the dry and wet periods across the arid, tropical and equatorial regions of the 

basin. In Zone I, where rainfall is minimal except at northern coastlines, a strong negative anomaly 

was observed in SSEBop ET and rainfall in 2010, while MOD16 ET appears to show relatively 

minimum variability throughout the study period (Figure 6a). Nonetheless, the disagreement in the 

variability between MOD16 ET and rainfall in Zone I is not unexpected, as this zone is an extensively 

irrigated region with minimal rainfall. In Zone II (Figure 6b), the anomalies from SSEBop, MOD16 

and rainfall all peaked in 2010, while showing relatively minimum variability for the rest of the time 

period. In Zones III and IV, MOD16 and TRMM rainfall show temporal harmony during the wet period, 

both peaking in 2007; while this peak is absent in SSEBop (Figure 6c,d). However, MOD16 exhibited 

temporal disharmony with rainfall anomalies for the rest of the year in those zones. In Zones V and VI 

(Figure 6e,f), with the exception of a few discrepancies, SSEBop and rainfall showed agreement. 

Overall, the variability in annual MOD16 anomalies in the mainly arid to rainy parts of the basin 

(Zones V–IX) failed to agree with the variability observed from annual SSEBop ET and TRMM 

rainfall anomalies. On the other hand, a statistically significant relationship was observed between  

zonally-averaged SSEBop ET and rainfall variabilities.  

Figure 6. (a–i) Interannual ET and rainfall variabilities per climate zones in the Nile Basin:  

Time series standardized annual anomalies of SSEBop and MOD16 and TRMM rainfall 

averaged over climate zones I–IX, 2002–2011. The standardized annual anomalies were 

computed by subtracting the long-term mean (2002–2011) of the annual values from the 

corresponding individual annual values (annual mean) and dividing by the standard deviation. 
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Table 1 shows correlation results between zonally-averaged annual anomalies of SSEBop ET 

versus TRMM rainfall, as well as MOD16 ET versus TRMM rainfall. SSEBop ET anomalies showed 

a weak positive temporal association with corresponding rainfall anomalies in four zones (I, II, V and 

VIII) with the correlation coefficients ranging between r = 0.61 to 0.67 at a statistical significance of 

p < 0.05. On the other hand, corresponding MOD16 ET anomalies showed statistically significant 

correlation with rainfall only in Zone II. The fact that zonal anomalies of SSEBop and TRMM 

exhibited a statistically significant relationship in four of the nine climate zones, while that of MOD16 

exhibited in only one, indicates that results of the analysis are affected by data type. 

Table 1. Relationship between zonally-averaged standardized annual anomalies of 

SSEBop versus TRMM rainfall and MOD16 versus TRMM rainfall for the nine climate 

zones. Pearson’s correlation coefficient (r) and statistical significance (p) is presented. 

Climate  

Zones 

SSEBop vs 

TRMM 

MOD16 vs  

TRMM 
Climate  

Zones 

SSEBop vs  

TRMM 

MOD16 vs  

TRMM 

r, p r, p r, p r, p 

I r = 0.65, p = 0.04 r = 0.43, p = 0.21 V r = 0.51, p = 0.12 r = 0.09, p = 0.80 

II r = 0.63, p = 0.04 r = 0.73, p = 0.01 VII r = 0.55, p = 0.10 r = 0.47, p = 0.16 

III r = 0.51, p = 0.13 r = 0.43, p = 0.21 VIII r = 0.67, p = 0.03 r = −0.01, p = 0.97 

IV r = 0.61, p = 0.06 r = 0.53, p = 0.11 IX r = 0.59, p = 0.07 r = −0.12, p = 0.74 

V r = 0.66, p = 0.04 r = 0.19, p = 0.60    

3.2.2. Effects of Vegetation on ET 

The relationship between vegetation productivity dynamics and ET (SSEBop and MOD16) in 

different climate zones is presented in Figure 7. Both similarities and discrepancies were observed in a 

manner that the SSEBop and MOD16 monthly values relate with the seasonal variability of vegetation 

productivity. SSEBop and MOD16 temporally correlate with vegetation productivity in Zones VII and 

V (Figure 7b,d). However, they reveal discrepancies in Zones I and VI (Figure 7a,c). In Zone I in 

particular, MOD16 clearly captures the seasonality in vegetation dynamics by capturing the two peak 

seasons, while SSEBop distinctly captures only a single peak season (Figure 7a). Generally, MOD16 

shows better correlation with vegetation productivity in different climate zones with statistical 

significance of p < 0.001. 

3.2.3. Effects of Land Cover on ET 

Time series of monthly ET estimates from SSEBop and MOD16 from selected land cover/land use 

types (irrigated and rainfed croplands, wetlands and grasslands) is presented in Figure 7. In irrigated 

croplands, monthly estimates of SSEBop and MOD16 show significant inconsistencies in seasonality 

and magnitude (a difference of ~80−90 mm/month) during the peak season (months of July and August), 

but agree during the rest of the seasons (Figure 5a). However, in rainfed croplands (Figure 7b), they show 

similarity both in magnitude and seasonality. Estimates from SSEBop and MOD16 also agree in 

seasonality in wetlands (Figure 5c) and grasslands (Figure 5d), but differ significantly during peak seasons.  
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Figure 7. Time series of monthly ET derived from the median of 30 × 30 non-zero pixels 

of SSEBop and MOD16 for selected sites in different land cover types and climate zones 

across the Nile Basin, 2002–2011. Correlation coefficients (r) between ET and vegetation 

(*** (p < 0.001), ** (p < 0.01),* (p < 0.05)); and long-term mean annual ET estimates 

(mm/yr) are presented for (a) irrigated croplands in climate zone I, (b) rainfed croplands 

in zone VII, (c) wetlands in zone VI and (d) grasslands in zone V.  

 

3.3. Trends in ET and Rainfall 

The linear regression temporal trend analysis related annual ET and rainfall to time for the decade 

of 2002–2011 as illustrated in Figure 8. The ET decadal trend map (Figure 8a) revealed  

a non-significant trend at 95% statistical significance level for nearly the entire basin, except for a few 

small, mostly scattered, localized areas. 

Of the total basin region with valid ET pixels, only 2.3% and 3.4% of the pixels were characterized 

as significantly downward and upward trends, respectively, at the 95% statistical significance level. 

The regression test also detected trends in the remaining regions of the study area (~94%, 40% 

negative, 54% positive), but those are not statistically significant. Nonetheless, interpretation of the 

results from the linear regression trend test should cautiously take into account the relatively short 

study period of 10 years. 

The regions of central Uganda in the Equatorial Lakes Region in Zone VIII indicated the most 

conspicuous area characterized by downward trends (Figure 8), while limited and scattered areas in the 

western Ethiopian Highlands (Zone VII) and eastern Sudan (Zone V) also revealed downward trends. 

Significant upward trends characterized very limited and localized areas and were scattered across the 
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regions of central Sudan and South Sudan (Zones V and VI). In the northern part of the basin, the Nile 

Delta (Zone I) and the Nile Valley (Zone II) regions showed largely no-significant trend, except in the 

eastern/western fringes of the Nile Delta, which showed significant upward trends. Figure 8b illustrates 

the trend analysis results for rainfall across the basin. The rainfall trend map reveals detected downward 

rainfall trends in Zone VIII, southern parts of Zone VI, eastern parts of Zone V and scattered areas in 

western parts of Zone VII. However, no statistically significant upward trends in rainfall were detected 

in the basin (Figure 8b). 

Figure 8. ET and rainfall trends. Linear regression trends for annual (a) SSEBop ET and 

(b) TRMM rainfall in the Nile Basin during 2002–2011. Colors represent the trend 

direction and statistical significance: (i) significantly upward, (p < 0.05, dark green);  

(ii) upward, not significant (p ≥ 0.05, light green); (iii) significantly downward trend  

(p < 0.05, red); and (v) downward, not significant (p ≥ 0.05, yellow). 
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4. Discussion 

4.1. ET Dynamics  

The interannual SSEBop ET anomaly maps presented in Figure 4 showed basin-wide ET dynamics 

during the study period. While 2004 and 2009 were found to be relatively the most dryness-dominated 

years of the decade (2002–2011) basin-wide, 2009 particularly stood out as the driest year when key 

headwater regions of the basin exhibited considerable dryness (Figures 4c,h and 5a). Viste et al. [74] 

recently noted 2009 as the driest year of the region in nearly three decades where large-scale drought 

patterns dominated large parts of east Africa. Key headwater regions of the basin that were considerably 

affected by dryness in 2009 included the Blue Nile basin (Zone VII, ~70% exhibiting dryness), 

the Tekezze/Sobat basin (eastern parts of Zone V, ~80% exhibiting dryness) and the Equatorial Lakes 

Region that includes Lake Kyoga-Albert-Aswa basin (Zone VIII, >60% exhibiting dryness) and Lake 

Victoria basin (Zone IX, >20% exhibiting dryness). Furthermore, the Blue Nile basin region of the 

Ethiopian Highlands (Zone VII) exhibited dryness in 2002/2004 (>40% exhibiting dryness) and 

2003/2009 (>70% exhibiting dryness). As the Blue Nile basin region provides a substantial portion of 

the Nile water to the basin, substantial droughts in Zone VII could have consequences downstream. 

The Equatorial Lakes Region exhibited considerable dryness in 2005 (>70% of Zones VIII/IX exhibiting 

dryness), 2009 (>60% of Zone VIII exhibiting dryness) and 2010 (~60% of Zone IX exhibiting dryness). 

The extensive dryness (>70% of each zone) in the lower parts of the basin (Zones VI, VIII and IX) 

in 2005 is probably the consequence of a rainfall deficit in the region [75].  

The consequence of extensive dryness basin-wide and, particularly, in the key headwaters of the 

Nile Basin in 2009 manifested downstream in Zone I in the Nile Delta in 2009 (60% exhibiting 

dryness) and 2010 (80% exhibiting dryness and 60% severe dryness), as illustrated in Figures 4h,i 

and 5i,j. Because rainfall in Zone I is minimal (Figure 1b), a plausible explanation for the considerable 

dryness in 2009 and 2010 in the Nile Delta is a possible economization of irrigation water, as inflow 

into the Aswan High Dam Reservoir declined in 2009. 

4.2. ET Drivers  

The relationship of the zonal average of annual anomalies of SSEBop ET and TRMM rainfall per 

each climate zone (Figure 6) overall suggest that rainfall drives ET variability in the region, albeit 

there are a few discrepancies, depending on the climate zone. However, this is not consistent with the 

results observed from MOD16 ET to rainfall relationship. Moreover, because climate Zone I is 

principally and heavily irrigated agricultural field, where rainfall is minimal, no correlation is expected 

between rainfall and ET. Nonetheless, SSEBop anomalies showed statistically significant strong 

temporal harmony with rainfall anomalies in both arid and rainy regions (in four of the nine climate 

zones with r = 0.6 at p < 0.05); while MOD16 anomalies showed no statistically significant correlation 

with rainfall in eight of the nine climate zones (Table 1). The analysis clearly showed that the temporal 

relationship between ET and rainfall anomalies is more pronounced with SSEBop ET than MOD16 ET 

anomalies. This generally positive relationship between SSEBop ET and rainfall anomalies is in 

general agreement with Jung et al. [17], who recently showed a strong relationship between ET and 

soil moisture anomalies in east Africa.  
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The correlations between monthly ET versus vegetation productivity (Figure 7) depict the degree to 

which seasonal and interannual variabilities between the two variables are related. The strongest and 

statistically significant (p < 0.001) correlations, on the order of r = 0.7 (with SSEBop) and r = 0.9 (with 

MOD16), were observed in climate Zones V and VII; while the weakest correlations were in climate 

Zone I. The SSEBop monthly ET showed a negative correlation in Zone I and failed to temporally 

correlate with one of the two peak vegetation productivity seasons. This negative correlation could be 

the result of one or a combination of multiple reasons including climate (rain in Zone I is minimal), 

types of primary inputs data and the parameterization used in the model. In climate zones that get a fair 

amount of rain, however, both the SSEBop and MOD16 temporally correlated well with the seasonal 

variability in vegetation productivity with little discrepancies and stronger correlations. 

Investigation of monthly ET variabilities from SSEBop and MOD16 over selected land cover types 

is presented in Figure 7. An analysis of monthly ET variability with respect to land cover revealed that 

the SSEBop and MOD16 estimates differed over irrigated croplands, grasslands and wetlands, but 

agreed in rainfed croplands. SSEBop showed that wetlands have the highest mean annual ET  

(1468 mm/yr), followed by irrigated croplands (985 mm/yr), rainfed croplands (564 mm/yr) and 

grasslands (550 mm/yr). On the other hand, for MOD16, the highest annual ET is from irrigated 

croplands (1166 mm/yr) followed by wetlands (1026 mm/yr), rainfed croplands (505 mm/yr) and 

grasslands (366 mm/yr). The largest discrepancy between SSEBop and MOD16 in annual estimates 

(a difference of ~440 mm/yr) was observed over wetlands (Figure 7). On the other hand, monthly ET 

variability appeared to be high over cropped fields (very high for MOD16 over irrigated croplands), 

while small over wetlands for SSEBop and over grasslands for MOD16. This discrepancy in estimates 

of ET between SSEBop and MOD16 over different land cover types has also been shown by other 

researchers. Velpuri et al. [65] validated the two products in the CONUS and showed that both 

SSEBop and MOD16 underestimated over croplands. However, we found that over irrigated 

croplands, only SSEBop underestimated, while both gave similar estimates over rainfed croplands. 

Further, we found that monthly MOD16 estimates over irrigated croplands in Zone I generally agreed 

quantitatively with monthly estimates available in the literature [15]. On the other hand, SSEBop has 

significantly higher estimates than MOD16 over grasslands, especially during the peak seasons (Figure 7d). 

Velpuri et al. indicated that SSEBop provides a better estimate over grasslands than MOD16. 

Moreover, over deep-rooted vegetation cover, such as forest, Velpuri et al. found that SSEBop and 

MOD16 have an accuracy of R
2
 = 0.72 and R

2
 = 0.56, respectively, compared with ground-based 

observations. The discrepancy in monthly estimates between the two estimates persisted over wetlands 

(Figure 7c). While MOD16 estimates significantly and irregularly vary seasonally and annually from 

~200 mm/month to ~100 mm/month, MOD16 estimates consistently stayed within 80–120 mm/month. 

A plausible reason for the significant difference between the two estimates could be in the input 

datasets that the two ET algorithms use: SSEBop uses land surface temperature as its primary input 

and is independent of the impact that frequent flooding has on vegetation that may affect the ET. 

On the other hand, MOD16 uses vegetation information in its algorithm, and consequently, the ET 

results could reflect the changes in vegetation. 

4.3. Trends in ET and Rainfall  
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The detected temporal trend results reveal that the overall annual ET trend during 2002 to 2011 in 

the Nile Basin can be characterized as no-significant trend, except for a few parts (Figure 8). The most 

conspicuously affected region is the Equatorial Lakes Region, where statistically significant downward 

trends were observed in substantial areas of Zone VIII (the region in Uganda surrounded  

by the tri-lakes: Lakes Victoria, Albert and Kyoga). Western parts of the Ethiopian Highlands and 

eastern Sudan (Zones V and VII) also showed a few defragmented localized regions of a downward 

trend. In the northern part of the basin, no significant trends are detected, except around the fringes of 

the Nile Delta (Zone I). The fringes of the Nile Delta normally have less ET compared to the inland 

regions of the delta, as recently shown by Simonneaux et al. [41], but show an upward trend. This 

finding is in agreement with other studies that indicated increasing ET and vegetation productivity in 

newly reclaimed desert lands in the fringes of the Nile Delta following the expansion of irrigation 

agriculture in the last few decades [9,39,40,76,77]. On the other hand, the trend analysis on rainfall 

data showed no significant upward trend, but parts of Uganda (Zone VIII), South Sudan (Zone VI), the 

western Ethiopian Highlands (Zone VII) and eastern parts of Sudan (Zone V) showed a statistically 

significant downward trend in rainfall. 

4.4. Uncertainties, Errors and Accuracies 

Some degree of uncertainty in any model-based or satellite-derived parameter estimates is 

inevitable. Sources of uncertainties in remotely sensed ET estimates could be attributed to 

uncertainties in input data that can introduce biases in ET estimates, limitations and biases in the 

parameterization in the algorithm, cloud cover, errors arising from spatial and temporal scaling 

approaches, as well as influences from biophysical and geophysical factors, such as land cover and 

climate. Comparisons with ground-based measurements (which themselves have a reported uncertainty 

of 10%–15%) indicate that the various remote sensing techniques for estimating ET have uncertainties 

of 15%–30% [78,79]. A review of about 30 published validations of remotely sensed ET against 

ground-based flux towers reported an average Root Mean Square Error (RMSE) of just over 50 W/m
2
 

and relative errors of 15%–30% [65]. In this study, the major sources of uncertainties come from 

satellite-derived evapotranspiration estimates, rainfall estimates, vegetation indices, the limitations of 

the linear regression trend method and the short time available for the trend analysis. 

A comprehensive review of the accuracies and uncertainties of SSEBop ET and MOD16 ET over 

different land cover types and climate zones with respect to field-based measurements in the U.S. are 

provided by Velpuri et al. [65]. The mean basin-scale uncertainty levels in SSEBop ET data are much 

lower than the reported uncertainty levels (up to 50%) of the mean land ET obtained from remote 

sensing data, up-scaled tower measurements, land surface models and reanalysis datasets [79,80], 

illustrating the reliability of monthly SSEBop products for basin-scale ET estimation [65].  

Mu et al. [53] provided a performance evaluation of the MOD16 estimates for the Nile Basin, using 

the basin-scale average of runoff and gridded precipitation data and running the improved algorithm in 

other regions of the world where there is sufficient availability of the flux tower data. 

The relationship between annual anomalies of ET and rainfall in different climate zones was 

investigated using datasets of varying spatial scales. The ET datasets have a spatial resolution of  

1-km, which is much higher than the 25-km resolution of the rainfall data. However, the magnitudes of 
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the uncertainties that could arise from using data of different spatial resolutions diminish, as 

the anomalies were averaged per each climate zone. Moreover, remote sensing data are subject to 

systematic errors with consistent bias that overall have little impact on the long-term anomalies. 

With regards to the linear regression trend analysis, readers should be cautious in interpreting 

the significance of the linear trend results, since we did not test the normality of the residuals, 

the homoscedasticity and serial independence of the data before performing the statistical inference 

regarding the slope, as recommended by de Beurs and Henebry [70]. Nonetheless, the trends generally 

remain unbiased, even if those assumptions are not met; the limitations with respect to uncertainties 

in the significance of the estimated parameters, however, remain [70]. 

5. Conclusions 

 

This paper characterizes variation in actual evapotranspiration (ET) and investigates its relation 

with vegetation productivity in the Nile Basin for the period of 2002–2011. Hybrids of both  

satellite-derived and modeled ET datasets, the NDVI-based MOD16 and the thermal-based SSEBop 

ET datasets were used to comparatively analyze ET variability in relation to vegetation productivity 

(NDVI), climate (rainfall) and land cover. The analysis of interannual anomalies using thermal-based 

ET revealed temporally distinct mini-episodes of dry (2002–2005, 2009–2011) and wet (2006–2008) 

periods that dominated 40%–50% of the study area; with 2007 and 2009 being the wettest and driest 

years, respectively. An investigation of the relationship between monthly ET variability with 

vegetation productivity indicated that NDVI-based ET had stronger positive correlations (r = 0.77 to 

r = 0.97) with vegetation than thermal-based ET (r = 0.52 to r = 0.73) at a statistical significance of  

p < 0.001, particularly in rainfed regions. This finding is not unexpected, as NDVI data are the primary 

input in the NDVI-based ET data. The analysis of the relationship between annual anomalies of ET 

and rainfall in different climate zones showed that thermal-based ET anomalies correlated positively 

(r = 0.6 at p < 0.05) with corresponding rainfall anomalies in two of the six investigated rainfed 

climate zones; whereas NDVI-based ET showed no significant relationship. A comparison of  

thermal-based and NDVI-based ET estimates over selected land cover types revealed minor 

disagreements over rainfed croplands (60 mm/yr higher for thermal-based ET), but a significant 

divergence over wetlands (440 mm/yr higher for thermal-based ET). 

The results in this study confirm previous regional-scale drying and greening periods in the region. 

This paper used rainfall as a proxy for soil moisture, but this may not always be valid, particularly in 

the wetter parts of the basin; as a result, the use of soil moisture data, such as Soil Moisture and Ocean 

Salinity (SMOS, Kerr et al. [81]), should be considered. The trend analysis conducted in this study is 

limited to 10 years based on the availability of the dataset used, which begins at the start of the 

millennium. However, the trend test could reveal long-term changes in the basin if the analysis could 

be extended using long-term evapotranspiration data, such as the 1983–2006 global ET dataset 

produced by Zhang et al. [82]. In order to improve the accuracy of remote sensing data, the findings 

need to be verified with long-term field measurement data. 
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