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Abstract: The Heat Energy Assessment Technologies (HEAT) project uses high-resolution 

airborne thermal imagery, Geographic Object-Based Image Analysis (GEOBIA), and a 

Geoweb environment to allow the residents of Calgary, Alberta, Canada to visualize the 

amount and location of waste heat leaving their houses, communities, and the city. To 

ensure the accuracy of these measures, the correct emissivity of roof materials needs to be 

known. However, roof material information is not readily available in the Canadian public 

domain. To overcome this challenge, a unique Volunteered Geographic Information (VGI) 

application was developed using Google Street View that engages citizens to classify the roof 

materials of single dwelling residences in a simple and intuitive manner. Since data 

credibility, quality, and accuracy are major concerns when using VGI, a private Multiple 

Listing Services (MLS) dataset was used for cross-verification. From May–November 

2013, 1244 volunteers from 85 cities and 14 countries classified 1815 roofs in the study 

area. Results show (I) a 72% match between the VGI and MLS data; and (II) in the 

majority of cases, roofs with greater than, or equal to five contributions have the same 

material defined in both datasets. Additionally, this research meets new challenges to the 

GEOBIA community to incorporate existing GIS vector data within an object-based 

workflow and engages the public to provide volunteered information for urban objects 

from which new geo-intelligence is created in support of urban energy efficiency. 
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1. Introduction 

Canada produces large quantities of energy for both domestic and international markets due to its 

diverse portfolio of natural resources. It is also an energy intensive nation given its cold climate, massive 

territory, increasing population, and high standard of living [1]. Various air pollutants and greenhouse 

gas (GHG) emissions are by-products of its energy production (and subsequent consumption) that 

negatively influence humans and their surrounding environment [2]. Thus, the Canadian government has 

set goals to develop a low-carbon economy that is focused on reducing energy consumption and related 

GHG emissions [3]. Additionally, 63% of Canada’s residential energy use results from space heating [4]. 

Supported by the City Sustainability Direction [5], Calgary Climate Change Accord [6], and Calgary 

Community GHG Reduction Plan [7], the City of Calgary is seeking to implement energy initiatives 

with similar goals that are cost-effective, actionable, and reach a wide city audience. This presents new 

opportunities for further exploration in the domain of urban energy efficiency. 

One such opportunity is the Heat Energy Assessment Technologies (HEAT) project from the 

University of Calgary that allows anyone with Internet access to visualize the amount and location of 

waste heat leaving 37,914 single dwelling residences in Calgary, Alberta, Canada [8,9]. Using innovative 

Geographic Object-Based Image Analysis (GEOBIA) techniques [10,11], GIS cadastral and airborne 

Thermal Infrared (TIR) data [12], the HEAT project provides Calgarians with location-specific waste 

heat information about their homes and communities [8]. Specifically, there are three energy efficiency 

solutions targeted at citizens that are geographically linked to each house: 

(1) A HEAT Score—A comparative waste heat metric created for every house and community that 

ranges from 1 (low waste heat) to 100 (high waste heat) [13]. 

(2) The locations of 12 Hot Spots (shown three at a time)—these indicate the hottest waste heat 

locations in and around the building envelope. 

(3) Yearly estimates of potential energy Savings (both financial and environmental)—based on fuel 

types used for space and water heating. 

These three energy efficiency solutions are packaged within a Geoweb environment, which allows 

dissemination of geospatial information (i.e., location-specific waste heat maps) to the end user 

through the World Wide Web [14]. The HEAT project provides an interactive user experience including 

multi-scale waste heat maps and GHG information at the house, community, and city levels along with 

recommendations for energy efficiency improvements. Most importantly, as these feedback solutions 

are derived from high-resolution TIR imagery, a critical element in their generation is their reliance on 

correct emissivity values. Emissivity (ε) is an object-specific thermal characteristic that is defined as  

“a ratio between the actual radiance emitted by a material (Mr) and a blackbody (Mb) at the same 

kinetic temperature” [15], as shown in Equation (1). 

[ε = Mr/Mb] (1)
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Conceptually, emissivity represents how materials absorb and then re-radiate (or emit) TIR radiation. 

In practice, emissivity values range from 0.00 (e.g., shiny mirror) to 1.00 (e.g., blackbody), where the 

material absorbs all of the incoming incident TIR radiation [15]. For the HEAT project, the emissivity of 

roof materials is required to convert relative radiant temperature (Trad) as seen by the airborne TIR sensor 

into absolute kinetic temperature (Tkin), which represents the true temperature of a roof object [8,15]. 

This information is then used to accurately generate HEAT Scores [13], Hot Spots, and estimated 

Savings information. Due to the relationship between radiant and kinetic energy and how emissivity is 

calculated Equation (2), Table 1 illustrates how a very small change in the emissivity value of different 

roof materials can result in dramatic variation in Tkin. It is evident from this table that if emissivity 

values are not correctly accounted for, then Tkin will be underestimated. 

[Tkin = Trad/ε
1/4] (2)

Table 1. Differences in Tkin based on the emissivity value of different roof materials (defined 

in 3.7–4.8 µm) at a constant Trad of 15 °C. 

Roof Material Emissivity (ε) Tkin (°C) 

Asphalt Shingles 0.90 22.69 
Cedar Shakes 0.86 26.07 
Concrete Tiles 0.95 18.72 

Rubber 0.93 20.27 
Slate 0.96 17.95 

By default, the HEAT project assumes that asphalt composes 100% of the roof material in the study 

area, which is assigned an emissivity value of 0.91 [8]. However, based on more recent real-estate 

information, this number is actually closer to ~80% of the roofs in Calgary. As a result, roofs composed 

of cedar, concrete, metal, and other kinds of materials, have inaccurate Tkin values associated to them, 

which need to be corrected in order to provide accurate energy efficiency feedback solutions, such as 

HEAT Scores. 

Roofs and their associated materials are known as the gateway to greater damage for homes, as they 

directly influence the insurance and energy related costs [16]. In Calgary and Canada, there is lack of 

publically available information that describes roof materials for single dwelling residences. Although 

some private Multiple Listing Services (MLS) provide this information, they do not make it accessible 

for third parties to use. Having public access to roof material information for single dwelling residences 

can act as an additional layer of evidence to benefit (I) local roofing service providers for home 

renovations; (II) real-estate agents for on-going house sale portfolios; and (III) remote sensing analysts 

for improving supervised image classifications of impervious surfaces in urban areas by using this 

information as training/test data. 

So, how does one collect roof material information over a large geographic area and for thousands of 

houses? A potential solution is to develop and implement an application to collect Volunteered Geographic 

Information (VGI). This application will enable citizens with little, or no formal qualifications to actively 

engage in creating volunteered geographic content that can be consumed for multiple purposes [17].  

In this research, volunteers will be able to use the HEAT VGI application to classify the roof materials 

for individual Calgary houses. Thus, roofs are the geo-objects [18] under investigation in this research. 



Remote Sens. 2014, 6 9694 

 

 

Geo-objects are recognizable entities in an image that have been computationally delineated and which 

meaningfully model a geographic referent (e.g., the GIS polygons of urban rooftops derived from a  

high-resolution aerial imagery). 

1.1. Geographic Object-Based Image Analysis (GEOBIA) 

In a recent keynote presentation to the GEOBIA community, Hay [19] proposed a new definition  

of GEOBIA as “a sub-discipline of Geo-informatics focused on (I) developing automated methods to 

extract meaningful image-object attributes from remote sensing imagery; (II) assessing their multi-scale 

characteristics through time and space; (III) and generating new geo-intelligence [20] (i.e., geospatial 

content “in context”) from these and related multi-source datasets” Hay further challenged the GEOBIA 

community to incorporate existing GIS vector objects within the GEOBIA workflow [21] rather than 

focusing (almost exclusively) on segmentation methods that have no unique solution [18]. In this paper, 

we report on new HEAT VGI research that meets these challenges and takes them a step further by 

engaging the public to provide volunteered information based on unique urban geo-objects. 

1.2. The Benefits of Volunteer Participation 

The latest technological advancements from the Web 2.0 era [22] have led to a new case of  

user-generated content known as Volunteered Geographic Information (VGI) [17]. It presents numerous 

opportunities for collaboration between geospatial researchers and volunteers through interactivity that 

encourages a bi-directional flow of knowledge. Rather than relying on a closed team to solve complex 

problems, or collect geospatial data over time and space, researchers can create an open-ended application 

that invites volunteers to participate from around the world. Additionally, researchers can use these 

applications to engage and initiate conversation among local populations on issues that they may not be 

aware of such as wildlife preservation, mapping invasive species, and monitoring radiation levels and air 

quality [23]. Previous literature has already demonstrated that the involvement of volunteers can be 

highly beneficial for multiple reasons. For example, according to the UK Environmental Observation 

Framework, volunteers have proven to provide information that has “high value to research, policy, and 

practice” [24]. 

Volunteer participation in research and academia has had an impressive history. While their 

involvement formally began in 1900 with the Christmas Bird Count Project (Christmas Bird Count 

by  the National Audubon Society—www.birds.audubon.org/christmas-bird-count) [17], volunteers 

are now engaged worldwide in many scientific endeavors and community-based initiatives 

such as OpenStreetMap (OpenStreetMap: A free and editable map of the world created by 

volunteers—www.openstreetmap.org) (OSM), Ushahidi (Ushahidi: Crowdsourcing disaster relief 

through multiple platforms: web, Twitter, and SMS—www.ushahidi.com), the Early Detection and 

Distribution Mapping System (Early Detection and Distribution Mapping System—Mapping invasive 

species: www.eddmaps.org) (EDDMapS), and Project Noah (Project Noah: Volunteers documenting 

wildlife sightings—www.projectnoah.org). While these examples range from GIS to ecological 

conservation, volunteers have also been used in remote sensing. For example, Clark and Aide [25] 

demonstrated this through their implementation of the Virtual Interpretation of Earth Web-Interface 

Tool (VIEW-IT). Its primary objective was to improve the accuracy of reference samples through 
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cross-verification of volunteer and expert interpretation [25]. By combining these two approaches, they 

were able to successfully solve issues relating to land change. Similarly, the Geo-Wiki Project (Geo-Wiki 

Project: Improving the quality of global land cover maps with volunteers—www.geo-wiki.org) uses 

volunteers to improve the classification quality of remotely sensed global land cover maps. More recently, 

Tomnod (Tomnod: Crowdsourcing to identify objects and places in satellite images—www.tomnod.com) 

uses the power of volunteers to identify objects and places in detailed satellite images. Applications 

range from search and rescue of lost planes and ships to natural disaster mapping including many more. 

Each of these examples favorably illustrates the benefits of engaging volunteers with remote 

sensing imagery. 

However, before developing an application to collect VGI, volunteer requirements need to be well 

understood to ensure volunteer satisfaction, motivation, and future retention. Attracting and retaining 

volunteers is vital to a VGI application’s lifecycle. Fortunately, the ability to grow volunteer subscribership 

can be dealt with by understanding their needs and wants. Thus, it is imperative to keep these concepts 

in mind during each development phase of a VGI application. 

1.3. Volunteer Requirements 

Engaging volunteers in scientific research can be challenging for many reasons. Not only must the 

process of volunteering geographic content be streamlined, but it should also be easy to use so that the 

volunteers are satisfied with the overall experience. Recent HEAT user surveys show that participants 

want to be engaged via multiple means. For example, many novice and first-time volunteers require 

background information about the research, or guidelines, such as How It Works or Why It Matters. 

EDDMapS and Common Sense (Common Sense: Mobile technologies that help communities gather 

environmental data—www.communitysensing.org) are good examples of how these guidelines, and 

other relevant information can be effectively communicated with volunteers. This step is particularly 

important because volunteers originate from different regions around the world with broadly varying life 

experiences. As a result, such guidelines act as a mutual contract between researchers and volunteers; 

and represent one part of the contract. It is the responsibility of the volunteer to fulfill the other half by 

contributing high quality data. Additionally, volunteers can be further kept engaged through data entry 

and manipulation, data download, technical support, interactivity, discussion boards, and feedback 

mechanisms [26]. Continual feedback is a key factor, as volunteers want to provide feedback through 

anonymous surveys, and receive feedback in return—some of which could be in the form of a digital 

currency. Thus, research has to come full circle by providing updates back to volunteers [23,27]. 

As VGI applications become prominent, more attention is being directed towards their usability. In 

particular, volunteers emphasize simplicity (i.e., ease of use) the most out of all the previously mentioned 

volunteer requirements [26]. As such, an effective user interface (UI)—which is usually the first element 

observed by volunteers and used for contributing the required information—is fundamental to the 

contribution process. If it is not simple to use, it will not attract, or retain volunteers. Thus, usability 

directly affects the overall success of the related research [26]. In addition, ease of use also influences 

data credibility, quality, and accuracy, which are the major concerns with VGI and should be seriously 

considered early in the research design process. 
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1.4. Researcher Considerations 

When using VGI, researchers must also be aware of its limitations. Specifically, volunteer motivation 

and retention is essential in determining the lifecycle of a VGI application. A common practice to tackle 

this is through the use of digital rewards, which can be redeemed by volunteers at selected online 

marketplaces, or partnered retail stores [28]. However, this can introduce several problems for the 

researcher, as it may sidetrack the volunteer from their assigned task, which is to produce high quality 

research data. Like many social endeavors, bias and privacy of volunteers are also of concern. 

Specifically, if volunteers feel that their privacy is not being respected, this can prevent them from 

contributing data. This may lead to digital divide [17], which not only segregates volunteers due to 

limited computer literacy or Internet access, but also produces serious gaps in data quality. 

Perhaps the most critical limitations of all include data credibility, quality, and accuracy [29,30]. 

These will always exist due to the demographics, motivations, and capabilities of the volunteers involved. 

As a result, data accuracy issues need to be carefully reviewed, as data are being collected to ultimately 

improve scientific understanding. Thus, high quality data and related data standards must take precedence. 

To tackle the combined issues of data credibility, quality, and accuracy, there is a need to establish 

appropriate methods to verify VGI. One method is to provide volunteers with guidelines on how to keep 

data quality at an optimum level [26,31]. If volunteers are guided properly, then the data credibility, 

quality, and accuracy tend to be of high caliber. 

The data contributed by volunteers can also be cross-verified with data collected by a researcher, or  

(if available) through a dataset from an authoritative organization [32]. Ideally, both data sources should 

complement one another, as previously described with VIEW-IT [25]. An additional method of 

controlling data accuracy is to have volunteer contributions thoroughly reviewed by several moderators 

whom have the authority to correct for potential errors before the information is made public—like in 

Wikipedia [33]. Additionally, Linus’ Law from the world of computer science (“Given enough eyeballs, 

all bugs are shallow”) can also be applied by researchers to deal with these limitations [34,35].  

For example, GitHub (GitHub: Build software better, together—www.github.com), a popular social 

coding platform, enables programmers from around the world to collaborate and contribute to a large 

repository of open-source projects. The more programmers that contribute to an open-source project, the 

more refined the code becomes, which is supported in their mission, “Build software better, together”.  

In the VGI case of Linus’ Law, this can be adapted to represent the number of point, line, or polygon 

contributions received from volunteers for a specific map object. This means, that the more contributions 

over time, the better the data credibility, quality, and accuracy becomes [35]. While this relationship is 

not linear, in most cases, five contributions or more can lead to a high quality of data representation  

for an individual map object [35]. After five contributions, the data quality tends to stabilize and 

remains unchanged. 

1.5. Research Objectives 

Based on the discussed literature, the goal of the HEAT VGI application is to focus on both the 

volunteer’s need for simplicity and on the researcher’s need for data credibility, quality, and accuracy. 

Therefore, the objectives of this paper are to: 
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(1) Develop a simple and intuitive volunteered geographic information (VGI) application using the 

Google Maps Application Programming Interface (API) by engaging volunteers to correctly 

classify the roof materials of individual Calgary houses. 

(2) Verify the volunteered data for its credibility, quality, and accuracy through the implementation 

of a cross-verification procedure using a private Multiple Listing Services (MLS) dataset 

provided by the Calgary Real Estate Board (CREB). 

(3) Update online maps showing the amount of waste heat leaving individual houses and their 

associated HEAT Scores based on emissivity values for verified roof materials. 

In the following Section 2, we present the methodology used to develop this VGI application, which 

is further divided into four Sub-Sections: (2.1) study area, (2.2) system architecture, (2.3) optimization, 

and (2.4) data processing. Then, results obtained from this research, such as volunteer contributions, 

locations of volunteers, classified roofs, updated HEAT Scores, and research limitations are presented  

in Sections 3. Finally, we conclude this paper in Section 4 by providing recommendations and 

improvements for future research. 

2. Methods 

We note that the design, development, and implementation of the HEAT VGI application are iterative 

processes, as improvements are consistently made based on feedback from volunteers. These are done  

to provide the best possible volunteer experience and use of their contributions while ensuring high 

quality data. 

2.1. Study Area and Data 

The HEAT Phase II pilot project defines and visualizes ~90 km2 of waste heat leaving 37,914 single 

dwelling residences in 29 different communities in Calgary, Alberta, Canada. The polygons of these 

single dwelling residences were extracted from the GIS cadastral data provided by the City of Calgary. 

In this research, roofs of single dwelling residences are ideal candidates due to the differences in their 

materials, which range from vintage types such as cedar and metal to more recent composite materials 

such as asphalt and concrete. 

The TIR dataset used in this study was acquired on 13 May 2012, between 12:00 and 4:30 a.m. 

(Mountain Standard Time) using the Thermal Airborne Broadband Imager 1800 (TABI-1800) [12]. 

The TABI-1800’s spectral sensitivity ranges from 3.7 to 4.8 µm. It acquires imagery at a swath width 

of 1800 pixels with a spatial resolution of 50 cm and spectral resolution of 0.05 °C [22]. Acquiring the 

TIR dataset between midnight and predawn allows minimal influence from the sun, wind, and other 

microclimatic factors. Moreover, the environment is in a state of thermal equilibrium during this period. 

Prior to analysis, the following image pre-processing procedures were applied: (I) Object-Based 

Mosaicing (OBM) to mosaic around flight line joins [10]; (II) Thermal Urban Road Normalization 

(TURN) to reduce microclimatic variability within flight lines [11]; and (III) Relative Radiometric 

Normalization (RRN) to normalize the radiometric properties of multiple flight lines so that the final 

scene appears as if it were acquired under the same environmental conditions and at the same time [36]. 
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2.2. System Architecture 

This VGI application was implemented within the existing system architecture of the HEAT project [1]. 

That is, it adopts the well-known and robust three-tier system architecture that allows developers to 

create flexible and reusable applications (Figure 1). This architecture uses a deployment technique in 

which the functionality is separated into three segments and each segment is located on a physically 

distinct computer. Overall, it consists of a (I) presentation tier; (II) service tier; and (III) database tier. 

Figure 1. The three-tier system architecture used for developing HEAT’s VGI application. 

 

2.2.1. Presentation Tier 

Web and Mapping Technologies 

The presentation tier incorporates World Wide Web Consortium (W3C) technologies such as 

(I) HyperText Markup Language (HTML5), (II) Cascading Style Sheets (CSS3) and (III) JavaScript (JS), 

in addition to libraries such as (IV) jQuery. MS-Dropdown (MS-Dropdown: add images to dropdown—

www.github.com/marghoobsuleman/ms-Dropdown) is also used, as it enables the addition of images in 

dropdown menus. Though perhaps the most critical component of this tier is the Google Maps API,  

as it powers this VGI application’s core mapping functionality. The Google Maps API offers numerous 

customization options for developers. By disabling the majority of the default options, we reduced UI 

clutter, thus allowing us to add only the minimal map controls for volunteers to navigate in Google’s 

Street View and Satellite imagery. This enabled volunteers to easily visualize only the necessary details 

when classifying roof materials. We suggest that the use of Google Street View for classifying roof 

materials truly makes this VGI application unique. To the best of our knowledge, this has never before 

been implemented in VGI applications. 

User Interface (UI) 

The presentation tier also contains the UI that volunteers interact with during the roof material 

classification process. Specifically, this dropdown menu layer (Figure 2) is integrated between the Google 

Street View and Satellite imagery panels, as volunteers rely on these two mapping technologies to 

investigate and correctly classify the roof material of each house. Once the dropdown menu is clicked,  



Remote Sens. 2014, 6 9699 

 

 

a scrollable list of roof material classes is displayed to the volunteer. Towards the right side, the total 

number of classified roofs in the study area, and a link to the help file can also be accessed. 

Figure 2. The final UI of the HEAT VGI application available on http://saveheat.co. Once 

the house polygon is clicked (A), a panel including both the (B) dropdown menu (with total 

classified roofs, and link to a help file) and (C) Google Street View and (D) Satellite imagery 

appears that can be used to assess the roof material. Once the dropdown menu is clicked  

(see following image), a scrollable list of roof material classes (E) is displayed to the volunteer. 
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It should also be noted that we limit the number of allowable roof material classes for the volunteer. 

This is a simple, though important technique to control data credibility, quality and accuracy. Furthermore, 

instead of allowing volunteers to type the roof material, we provide predefined roof material classes. This 

makes the roof material classification process less prone to volunteer error, and it increases simplicity 

and utility—thus, supporting a fast and efficient contribution process. 

The presentation tier is also responsible for generating a tick mark on the related house polygon 

once a volunteer has classified the roof material. Upon the first roof material classification, volunteers 

are displayed an alert box that confirms their contribution and then automatically disappears after three 

seconds. Both of these methods act as visual feedback mechanisms by informing volunteers about their 

selection and the verification procedure. In traditional VGI applications, a user typically has to draw a 

point, line, or polygon for each object on the map. To simplify this process, point geometry is created 

for the volunteer on the house polygon to reduce positional errors and showcase the locations of 

verified and unverified roofs. In the early phases of the development, once the volunteer classified the 

roof material, a tick mark was displayed on the dropdown menu itself to confirm their contribution. 

However, this did not communicate which roofs had been classified on the map and where? Overall, 

three types of colored tick marks are displayed to volunteers (Figure 3): (I) a yellow tick mark: roof 

classification submitted; (II) a green tick mark: roof verified; (III) a grey tick mark: roof unverified. 

Figure 3. After a roof material has been classified (A), a yellow tick mark is added on the 

house polygon (B); Surrounding house polygons have green (C) and grey tick marks (D); 

which represent verified and unverified roofs, respectively. This information is also provided 

in the legend below the map (lower right). 
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2.2.2. Service Tier 

The service tier consists of custom Common Gateway Interface (CGI) scripts written in the Python 

programming language. These scripts process requests and send responses back to the presentation tier in 

the lightweight and data-interchangeable JavaScript Object Notation (JSON) format. Essentially, this tier 

communicates between both the presentation and database tiers. It is responsible for accepting and 

verifying volunteer contributions and then storing them inside a geospatial database. The service tier also 

retrieves the classified roofs and displays them in the presentation tier through the Open Geospatial 

Consortium (OGC) standardized Keyhole Markup Language (KML) layer in the form of tick marks. It is 

worth noting that these CGI scripts run on the free and open-source Apache web server, which provides 

a secure, efficient, and extensible HyperText Transfer Protocol (HTTP) service. 

2.2.3. Database Tier 

The database tier runs on PostgreSQL, an open-source Relational Database Management System 

(RDMS). It is being used in conjunction with PostGIS, which adds a spatial component to this 

database. Two tables were created for this research with each serving a different purpose (Figure 4). 

The RoofMaterial table stores information about the volunteer’s roof material contributions along with 

metadata, such as their Internet Protocol (IP) address for geolocation purposes and date and time—all 

attached to the unique identification (ID) number of a house polygon from the Buildings table. Storing 

meta data [27] should be seen as another method to control data credibility, quality, and accuracy,  

in addition to limiting the number of allowable roof material classes for the volunteer. Then, the 

RoofVerification table is used to validate volunteered roof material contributions against the MLS data. 

Figure 4. Data Model Design (DMD) diagram for the database tier as seen in PostgreSQL. 
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2.3. Data Processing 

2.3.1. Analytics 

Structured Query Language (SQL) assisted in generating a Comma-Separated Values (CSV) file from 

the database containing all the raw volunteered data from May–November 2013. These raw volunteered 

data included the most frequently classified roof material for each house, meta data, such as the 

volunteer’s IP address and date and time—all attached to the unique house ID number and its location. 

Using these raw volunteered data, important analytics were generated including: (I) total number of 

volunteer contributions; (II) total number of classified roofs; (III) the most active day of contributions, 

(IV) the most active time of the day for contributions; and (V) total classified roofs per community.  

A Python script was then written to use MaxMind’s GeoIP (MaxMind was gracious enough to provide 

2000+ requests at no cost for this research—www.maxmind.com) web services for batch processing 

volunteer IP addresses to determine their locations (city, state, and country). MaxMind claims their 

GeoIP database to be 83%, 90%, and 99.8% accurate at the city, state, and country levels, respectively [37]. 

2.3.2. Verification Protocol 

The GIS cadastral data were spatially joined with the private MLS data for associating roof material 

information with each house polygon. Once this was achieved, raw volunteered data were combined 

with GIS and MLS data based on the unique house polygon ID. This allowed us to organize all three 

different data into one file that consisted of location-specific roof material information for each house. 

The verification protocol consisting of If and Else conditions was written using Python to label roofs 

as either verified, or unverified, based on whether they match with the MLS data, which was provided 

by CREB. New HEAT Scores were then generated [13] based on the verified emissivity values. 

3. Results and Discussion 

3.1. Volunteer Contributions 

From May–November 2013, 2426 volunteer contributions were received with a mean of  

11 contributions per day. Figure 5 shows how volunteer activity varied greatly during this time. Smaller 

spikes indicate a rise in volunteer contributions during summer and early fall, which can be associated 

with the HEAT project being presented at various exhibitions and conferences. At these venues, attendees 

were often educated about this VGI application, which caused the volunteer activity to temporarily 

increase. In contrast, the larger spike in November demonstrates a surge in the amount of volunteer 

contributions, coincident with the HEAT project winning the 2013 MIT Climate CoLab grand prize [9], 

which attracted a large number of volunteers to contribute. From this, we can see how important it is to 

keep promoting and advertising this VGI application to raise its awareness in the general public for 

maintaining a steady engagement with volunteers. Additionally, volunteers provided (2426) results in 

the following classes: asphalt (1369), cedar (397), concrete (367), metal (115), slate (66), rubber (58), 

and other (54). We note that these data are skewed in the asphalt class, which is appropriate, as we 

know from MLS data that ~80% of Calgary roofs are made of this material. 
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Figure 5. The number of volunteer contributions received from May–November 2013. The 

large spike in contributions during November coincides with the HEAT project winning 

the 2013 MIT Climate CoLab Competition. 

 

3.2. Locations of Volunteers 

It is interesting to note that these 2426 contributions came from 1244 volunteers. While the majority 

of these volunteers were from Calgary, the HEAT VGI application recorded volunteer participation from 

around the world including New York, Torino, Madrid, Yekaterinburg, and Roosendaal. The maximum 

number of roof material contribution made by a single volunteer was 155. An online and interactive  

time-lapse map highlighting the locations of these volunteers can be accessed at http://cdb.io/1cpHQun. 

3.3. Classified Roofs 

A total of 1244 volunteers classified 1815 unique roofs overall, which represents 5% of the Phase II 

study area (Figure 6). The difference in volunteer contributions (2426) vs. classified roofs (1815) exists 

because some volunteers classified the same roofs in their community. We also note that the average 

contribution per roof is approximately 1.3. This low number of contributions per roof suggests that many 

of these volunteers were either homeowners only classifying their home’s roof material, or volunteers 

simply experimenting and testing this VGI application on a randomly chosen home or community. 

Although the relationship is not linear, the majority of roofs that received greater than, or equal to five 

contributions had the same material defined in both MLS and VGI data. This provides support to the 

previously mentioned Linus’ Law (“Given enough eyeballs, all bugs are shallow”). 
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Figure 6. Locations of 1815 classified roofs in the study area. 

 

While these 1815 roofs are distributed throughout the study site, a large cluster of classified roofs 

can be seen towards the center of the map—in the community of Patterson, as shown in Figure 6. One 

plausible explanation for this is because Patterson has the highest HEAT Score of all 29 evaluated 

communities. Thus, we hypothesize that first time volunteers are more likely drawn towards investigating 

this community—which behavior tends to self-perpetuate, as new volunteers see many roofs already 

classified with tick marks, and also want to participate. Results also reveal that communities possessing 

broad range of roof materials experienced a higher number of classifications from volunteers than 

homogenous communities—suggesting that individuals are drawn to diversity and variability. 

From the total classified roofs (1815), 1320 exist in both MLS and VGI data. In addition, 949 roofs 

are verified as the same material exists in both datasets. This represents a 72% match between the 

datasets and indicates the level of data quality resulting from this VGI application. We suggest that this 
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percentage could be further increased if it were not for small errors in the MLS data. For example, the 

MLS data had a roof class REMKS, which according to the provided metadata indicated “See 

Remarks”. However, no remarks were provided with these data and CREB did not have the associated 

file. Additionally, several roofs in the MLS data were defined as a blank character, while others had no 

information (NULL). 

3.4. Updated HEAT Scores 

As mentioned in the introduction, by default the HEAT project assumes all roof material in the study 

area to be asphalt and assigns them an emissivity value of 0.91. Based on the previously presented 

analysis, HEAT Scores for the total verified roofs (949) shifted from a distinctly multi-modal to a 

negatively skewed uni-modal distribution, and an increased mean of 51 to 66 (Figure 7). 

Figure 7. The distribution changed from multi-modal (green line) to negatively skewed  

uni-modal (blue bars) after HEAT Scores were calculated for verified roofs. 

 

This makes sense, as we know that all homes in Calgary are wasting some heat. However, now this 

VGI application allows us to accurately calculate emissivity corrected HEAT Scores based on the  

actual roof material of each house, thereby bringing this energy efficiency metric closer to the reality. 

For example, when the roof material was updated from asphalt to cedar based on the verified emissivity 

value, the HEAT Score increased due to corresponding adjustments in the kinetic temperature (Tkin) 

(Figure 8). 

Conversely, when the roof material was updated from asphalt to concrete, the HEAT Score decreased 

(Figure 9). The fact that some homes may receive an increased HEAT Score due to corrections in their 

roof material may be of concern for some homeowners. For this, we need to effectively communicate 

what these results mean, as research has to come full circle with volunteers [23,27]. As this portion of 
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the research is a work-in-progress, it should be noted that these updated HEAT Scores have not yet been 

made available to the public. Moreover, we are investigating the best methods to communicate this 

updated information with respective homeowners. 

Figure 8. Increase in HEAT Score (from 60 to 68) after the roof material was changed 

from asphalt and verified as cedar. 

 

Figure 9. Decrease in HEAT Score (from 83 to 74) after the roof material was verified as concrete. 
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3.5. Volunteer Feedback 

As part of the HEAT user engagement process, we received beneficial feedback from 132  

(May–November 2013) volunteers through the optional survey (The HEAT project’s optional feedback 

survey—www.az1.qualtrics.com/SE/?SID=SV_9MPXXtZPzFhbIah), which is currently still active. 

Volunteers commented on missing roof classes such as Tar and Gravel. Additionally, while the described 

tick marks reportedly added initial confusion for volunteers (as there was no corresponding explanation 

in the help file—which has since been amended), the most important feedback was the volunteers’ need 

to know when they would see an updated HEAT Score for their home. For some, receiving a tick  

mark acted as a way to feed a mild addiction (or stimulation) while others reported feeling a sense of 

satisfaction after contributing. Still, others requested a way to remove bad or mistaken roof material 

classifications. However, no such method currently exists. 

3.6. Limitations of the Google Maps API 

There were several technical challenges present during the time these data were collected by volunteers. 

Despite the numerous benefits of Google Street View, it still has image quality limitations. In isolated 

cases, trees surround and obscure many roofs (partially or completely), which makes it difficult for 

volunteers to identify and classify the roof material. There are also homes that are blurred due to privacy 

issues and roofs that are either under-construction, or covered by solar panels or composed of esoteric 

materials (Figure 10). Furthermore, there are issues with the Street View API’s functionality. Specifically, 

positioning the Street View so that it centers exactly in front of the house can often be a non-trivial task. 

There are also instances where positioning is inaccurate such as when Street View defaults to image 

taken from an alley, or across a major highway. 

Figure 10. Limitations of the Google Street View imagery with roofs that are (A) blurred; 

(B) surrounded by trees; (C) under-construction; or (D) covered with solar panels. 

 

3.7. GEOBIA and Other Applications 

The volunteered roof material information collected during this research represents new object-specific 

geo-intelligence for further improving data quality and illustrating new GEOBIA capabilities. It also 

meets a recent challenge to the GEOBIA community to incorporate existing GIS objects (i.e., rooftops) 

within the analytical framework [19]. Similarly, Smith and Morton [21] proposed using existing  
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GIS polygons for classifying object—as they have been shown to improve classification results and 

segmentation does not have a unique solution. Although the primary objective of this VGI application 

was to collect roof material information, we suggest that the same user interface could be adapted to 

generate different geo-intelligence for any point, or polygon map features—especially for home specific 

information. Furthermore, this new roof information may be spatially integrated with related datasets 

to provide additional layers of evidence and to ensure more accurate results for different purposes [21]. 

For example: 

(1) These volunteered data could be used as training/test datasets for more traditional supervised 

image classifications (e.g., impervious surfaces)—especially (I) when analysts are unfamiliar 

with the study area; (II) when the area is not easily accessible; or (III) when field-verification 

budgets are limited. 

(2) Given the appropriate privacy permissions, results could be made available to roofing service 

providers. Specifically, if roof material type were combined with building age, it would be 

relatively trivial to estimate when a new roof would be needed on which buildings. 

(3) Results could also be provided to the Calgary Real Estate Board (CREB) as an updated and 

verified dataset that could be part of an ongoing homes sale-portfolio. For example, if it were 

combined with the date the roof was installed, along with the service provider contract and 

warranty, it could be used as evidence of the remaining lifetime of the roof, which could 

improve house salability, and buyer confidence. 

4. Conclusions 

This research demonstrated a simple and intuitive HEAT VGI application that used existing GIS 

cadastral and high-resolution TIR data with the Google Maps API to support urban energy efficiency. To 

the best of our knowledge, this is the first time that Google Street View has been used for classifying 

roof materials, or implemented in a VGI application. This research also meets the newly proposed 

GEOBIA definition of extracting meaningful image-object attributes from remote sensing imagery. This 

is achieved by incorporating existing GIS vector objects within the analytical framework and engaging 

the public within a Geoweb environment to provide (new) volunteered geo-intelligence based on unique 

urban geo-objects (i.e., individual rooftops). Since information on the roof materials of Canadian homes 

is not readily available in the public domain, thousands of volunteers from around the world have used 

the HEAT VGI application to classify the roof material of Calgary homes using a combination of Google 

Street View and Satellite images. 

Results demonstrate that the implementation of volunteer requirements and researcher considerations 

positively influenced the overall quality of the volunteered data—resulting in a 72% match between the 

MLS and VGI data. We are currently investigating methods for effectively communicating updated 

HEAT Score results back to volunteers and the general public engaged in this project. We also continue 

to invest resources to refine the user experience by introducing valuable (user requested) features within 

the HEAT VGI application. It is envisioned that these refinements will further improve accessibility, 

participation, and the quality of new volunteered data. This research would not have been possible 

without the use of high-resolution images provided by the airborne and satellite sensors. Details are 
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necessary because GEOBIA is inherently fine spatial resolution so images must be of high-resolution 

as well. Moreover, these details allowed the volunteers to visualize the actual roof material of a house. 

Future research initiatives will improve on the previously discussed (I) technical limitations of the 

Google Maps API; (II) explore spatial concepts relating to volunteer’s sphere of experience, or home 

range to better understand volunteer’s behavior behind the classification of roof materials, and (III) 

deploy similar VGI applications for creating novel object-specific geo-information products that can be 

used to benefit new research agendas. The VGI application presented in this paper should not be seen 

only as a method to collect data. Rather, we have also shown that it is possible to engage citizens in the 

domain of energy efficiency and support HEAT’s vision to provide free, accurate, and regularly updated 

waste heat solutions for the world. 
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