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Abstract: An approach based on the improved quadtree structure and region adjacency 
graph for the segmentation of a high-resolution remote sensing image is proposed in this 
paper. In order to obtain the initial segmentation results of the image, the image is first 
iteratively split into quarter sections and the quadtree structure is constructed. In this 
process, an improved fast calculation method for standard deviation of image is proposed, 
which significantly increases the speed of quadtree segmentation with standard deviation 
criterion. A spatial indexing structure was built using improved Morton encoding based on 
this structure, which provides the merging process with data structure for neighborhood 
queries. Then, in order to obtain the final segmentation result, we constructed a feature 
vector using both spectral and texture factors, and proposed an algorithm for region 
merging based on the region adjacency graph technique. Finally, to validate the method, 
experiments were performed on GeoEye-1 and IKONOS color images, and the 
segmentation results were compared with two typical algorithms: multi-resolution 
segmentation and Mean-Shift segmentation. The experimental results showed that: 
(1) Compared with multi-resolution and Mean-Shift segmentation, our method increased 
efficiency by 3–5 times and 10 times, respectively; (2) Compared with the typical 
algorithms, the new method significantly improved the accuracy of segmentation. 
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1. Introduction 

Image segmentation divides images into partitions, which is typically used to recognize objects or 
other relevant information in digital images [1]. For processing of remote sensing image, especially for 
high-resolution image, image segmentation is a primary step in classification or other analysis. For 
instance, object-oriented classification is a basic process for many applications including change 
detection [2] and land cover investigation [3]. High-resolution remote sensing images express more 
information of ground objects, and show great diversity of texture features.  

The using of traditional pixel-based segmentation methods, such as K-Means and ISODATA, will 
obtain a large number of trivial segments. However, a lot of these segments are actually noise, causing 
serious impact to subsequent analysis. The main difficulty of image segmentation lies in efficient 
region generation and merging [4]. At present, there exist several studies on object-oriented image 
segmentation. The most representative studies include Mean-Shift (MS) algorithm [5], a method based 
on kernel density estimation, which is widely used in data clustering analysis. MS algorithm breaks the 
limitation of requiring knowledge of the prior cluster number. It has been successfully applied to 
feature space analysis [6] and texture image segmentation [7]. However, the drawback of the MS 
algorithm is computational complexity for local maxima searching in the feature space. Therefore, 
some researchers propose using a speedup mechanism such as Locality-Sensitive Hashing, K-D 
Tree [7–9]. Watershed Transform [10] is a data analysis method based on morphological technique. 
The algorithm treats each local minimum and surrounding area as a basin for catchments, and the basin 
watershed as a boundary of image segment. Based on this theory, a deeper analysis can be discussed 
on merging technique [11,12]. Multi-Resolution (MR) segmentation algorithm considers both 
spectrum and geometry factors as region growing criteria [13], which is implemented with the 
commercial software eCognition [14]. Graph-based technique is another class of image segmentation 
method. By abstracting pixels and their similar relationship as nodes and edges in a graph, this method 
splits objects by cutting their graph edge under certain optimization criteria [15]. Commercial software 
ENVI [16] adopts the graph-based Full Lambda-Schedule algorithm as its basic procedure of  
object-oriented information extraction [17].  

Quadtree structure method was proposed in 1974 by Raphael Finkel and J.L. Bentley [18]. It was 
originally used in creating vector data spatial indexing. Because image wavelet transform has a natural 
hierarchy quarter structure, many scholars applied quadtree-based method to image segmentation in 
the wavelet domain [19]. In spatial domain, for its simple form, the quadtree technique is used in 
several fields such as image coding and raster compression. In the image segmentation field, the core 
difficulties with the quadtree method are image splitting and region merging. To resolve these issues, 
splitting judgment by calculating boundary smoothness, contrast and edge information between sub 
regions [20], or uniformity of Gaussian-Markov random field of adjacent regions [21] have 
been proposed. 
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Currently, the typical bottom-up approaches (such as MS algorithm and Full Lambda-Schedule) 
always process from pixels, and are more likely to result in lots of trivial segments, causing great 
difficulty to post-processing. At the same time, remote sensing images are always huge in size. So a 
direct merging process based on pixels is time-consuming. Actually, for many existed algorithms, high 
complexity is one of the bottlenecks of their practical application. Top-down approaches such as 
quadtree decomposition always have a high efficiency. However, it will obtain regions of inconsistent 
sizes, making it difficult to conduct neighborhood searching for region merging. To overcome this 
difficulty and improve the efficiency of the neighborhood searching, we used the quadtree as the basic 
structure for analysis, and added the spatial indexing mechanism based on improved Morton coding. 
Finally, we conducted a region merging process based on Region Adjacency Graph (RAG). 

2. Methodology  

In general, our method has two major steps: a top-down initial segmentation step and a bottom-up 
region merging step. In the top-down step, a quadtree initial segmentation is performed first, providing 
the follow-up merging process with basic region elements. In this step, we also conduct a spatial 
indexing creation and region feature calculation, in order to provide the RAG creation with similarity 
foundation and neighborhood information. In the second bottom-up step, we use RAG to express the 
relationship between regions. In RAG, regions are represented by nodes. If two nodes are not adjacent 
(judged by region neighborhood relationship obtained from the previous step), there is no edge 
connected. Otherwise, they are connected by an edge, representing their similarity (in RAG creation 
procedure, similarities are calculated by region features calculated from the previous step). Region 
merging is performed between the most similar and adjacent regions in RAG. Region merging will 
stop until the smallest similarity in RAG is larger than a given threshold. After the merging process, 
the final segmentation result is obtained. Figure 1 is the general procedure of our method. 

Figure 1. Flowchart of proposed method (use rectangular and round rectangular block to 
denote processing and input/output, respectively). 
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2.1. Quadtree Initial Segmentation  

Quadtree segmentation is a top-down approach, treating the whole image as the root node at the 
beginning, before the region is split into four rectangular sub-regions under a certain splitting criterion. 
The same determination is then conducted in each sub-region until all regions have satisfied the given 
criterion. Standard deviation is a statistical value, which can effectively measure the dispersion of a 
random sequence. It can characterize the variation of grey values of an image. Therefore, we use the 
local standard deviation as the consistency criterion for the splitting judgment. Since quadtree 
segmentation is an iterative algorithm, it requires great computation on standard deviation for each 
layer and each sub-region. So we propose a fast algorithm for standard deviation computation based on 
the integral image [22] and squared integral image. Then, a spatial indexing structure was built using 
improved Morton encoding based on this structure, which provides the merging process with data 
structure for neighborhood queries. 

2.1.1. Fast Calculation of Standard Deviation Criterion 

Quadtree segmentation based on the standard deviation splitting criterion needs to calculate the 
standard deviation of the sub-regions repeatedly. As the tree depth increases, the computation will also 
increase dramatically. In recent years, the Haar-Like feature has proven to be the most effective 
technique of face detection, and has been successfully applied to real-time face detection systems [22]. 
The Haar-Like feature requires repeated calculations of the summation of pixel values of any 
rectangular region. The use of the integral image makes it possible for this calculation to be done in 
constant time regardless of the size of the region. The integral image is defined as: 
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where I(x, y) is the pixel value of the original image at location (x, y). It can be seen that the value of 
(x, y) in integral image represents the sum of pixels in the upper left area of the original image. By 
using the integral image, sum of pixels of any rectangular sub-region in the original image can be 
calculated in constant time, by using: 
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where (x1, y1), (x2, y2) are the upper left and lower right coordinates of the region, respectively. 
Avoiding pixel traversal, the integral image is of great significance for time sensitive applications. In 
addition, we constructed the squared integral image, which is defined as: 
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Through the combined use of the integral image and the squared integral image, we can calculate 
the standard deviation of any region in constant time with the following equation: 
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where N = (x2 – x1 + 1) × (y2 – y1 + 1) is the pixel count of the region; D2,1 is the pixel sum of the 
region calculated by Equation (2); ܦଶ,ଵᇱ ൌ ሾܵIIሺݔଶ, ଶሻݕ ൅ ܵIIሺݔଵ, ଵሻሿݕ െ ሾܵIIሺݔଵ, ଶሻݕ ൅ ܵIIሺݔଶ, ଵሻሿݕ  is 
the pixel squared sum and ݉ ൌ  .ଶ,ଵ/ܰ is the mean pixel value of the regionܦ

Consider for example an image 512 × 512 in size. Quadtree segmentation was performed on the 
structure using the standard deviation criterion and the result is shown in Figure 2. We use number of 
elementary operations and pixel accesses to evaluate the time complexity. Elementary operations 
include addition, subtraction, multiplication, and division operations. Pixel accesses refer to obtaining 
pixel data from memory. The comparison is listed in Table 1. 

Figure 2. An example of quadtree segmentation with four layers. 

 

Table 1. Complexity comparison between traditional method and our method for quadtree 
segmentation using standard deviation criterion (using example shown in Figure 2). 

Method Addition and Subtraction Multiplication and Division Pixel Accesses 
Traditional method 2015198 671778 1572864 

Our method 524422 102 524228 

From the comparison, we can see that improvement for efficiency is obvious. When a larger image 
is processed and the quadtree structure is more complex, this advantage will be more apparent. 

2.1.2. Quadtree Segmentation and Spatial Indexing Creation 

Quadtree Segmentation 

Using average of standard deviation for all bands as splitting criterion, the entire image is treated as 
quadtree root, and then the iterative quadtree segmentation is conducted for each sub-region until all 
regions have satisfied the given criterion threshold. 

Quadtree segmentation splits images into four parts of the same size. However, for the image with a 
large length-width ratio (e.g., image strip along an imaging orbit), this method will produce narrow 
strip initial segments. So, before the segmentation, we will judge the image length-width ratio. 
According to experience, we use 1.5 as the length-width ratio threshold. When the ratio is larger than 
1.5, the image will be cut along the longer edge direction, in order to make the length-width ratio for 
each slide less than 1.5. Then, we perform quadtree segmentation on each image slide independently, 
evading narrow strip segmentation. The following study focuses on images with a length-width ratio of 
less than 1.5. 
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Spatial Indexing Based on Improved Morton Coding 

Region merging is performed between neighbouring nodes. Because segments generated from 
quadtree segmentation have different sizes, it is difficult to perform a quadtree neighbourhood 
searching between segments. Direct node traversal requires a great computation. Hence, an indexing 
mechanism for efficient neighbourhood searching needs to be constructed. We use Morton coding [23] 
as our basic method, and improve its efficiency, in order to make it more effective when applied to 
huge image segmentation. 

Morton coding assumes that the code of the root node (represents the whole image) is 0. For each of 
the inner nodes encoding as i(i ≥ 0). Codes of its 4 children are 4i + k (k = 1,2,3,4). Through this 
coding mechanism, the layer index of node i  can be obtained by [log4(3i + 1)] (i ≥ 0) and its parent 
code can be obtained by [(i – 1)/4] (i > 0). Figure 3 is an example of quadtree segmentation and its 
Morton coding. 

Figure 3. Quadtree segmentation and Morton coding (a) Image quadtree segmentation;  
(b) Corresponding quadtree with Morton coding. 

(a) (b) 

Neighborhood searching based on Morton coding is completed through the construction of the 
Virtual Complete Quadtree (VCQ). VCQ is constructed by adding virtual nodes to the original 
incomplete quadtree. In VCQ, all leaves are at the same layer, and in which every parent has  
four children. Figure 4(a) is a VCQ example for quadtree shown in Figure 3(b). An incomplete 
quadtree corresponds to an inconsistent grid (original segmentation). VCQ corresponds to a uniform 
grid. By using the VCQ, the difficult neighborhood searching on inconsistent grid is transformed into 
simple neighborhood searching on uniform grid. Coding each cell in the uniform grid by using Morton 
code ܯ௜,௝ ൌ ௜,௝ᇱܯ ൅ ∑ 4௜௜ழ௡௜ୀ଴ , where n ≥ 0 is the total layer of the quadtree. ܯ௜,௝ᇱ  is the binary interleave 
coding of row index i  and column index j, in the decimal representation. Take location at row 2 and 
column 3 as an example. Binary expressions of row and column are 2 = 0010, and 3 = 0011, 
respectively. So, the binary interleave is 00001101, and its decimal value is 13. Therefore, its Morton 
code is 13 ൅ ∑ 4௜௜ழଶ௜ୀ଴ ൌ 18 . See the right schematic in Figure 4(b) for detail of constructing 
binary interleaves.  
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Figure 4. Virtual Complete Quadtree (VCQ), uniform grid and the Morton coding of the 
example shown in Figure 3 (the grey part is the virtual structure). (a) VCQ structure of the 
example shown in Figure 3 and (b) the corresponding uniform grid and Morton coding. 

 
(a) 

=3,2M 185 =+

 
(b) 

A State Lookup Table (SLT) with size ∑ 4௜௜ஸ௡௜ୀ଴  also needed for recording the state of each node. The 
states denote the position and attribute of nodes in the VCQ, including:  

RI: Real inner nodes in VCQ. Also include the real nodes having virtual offspring. 
RL: Real leaf nodes in VCQ (real nodes at deepest layer).  
VN: Virtual nodes in VCQ. Also include virtual inner nodes.  
Table 2 shows the SLT for above example. 

Table 2. A State Lookup Table (SLT) for above quadtree example. 

Node code 0 1 2 3 4 5 6 7 8 9 10 
State RI RI RI RI RI VN VN VN VN RL RL 

Node code 11 12 13 14 15 16 17 18 19 20  
State RL RL VN VN VN VN VN VN VN VN  

By using the VCQ and SLT, the neighborhood searching problem on quadtree is transformed into 
neighborhood searching on a uniform grid. 

For a given node of code MD (hereinafter abbreviated as MD) in a n  layered quadtree, procedure of 
its neighborhood searching includes two steps: 

Step 1-Uniform grid mapping: If the layer of MD is n, directly map it to a single cell in uniform 
grid. Otherwise, if the layer is less than n , map it to a rectangular region consisting of multiple cells by  
down-traversing to all its virtual nodes at layer n . For example, MD = 9 in Figure 4 will be mapped to a 
single cell with code 9, and MD = 1 will be mapped to a rectangular region containing cells with codes 
5, 6, 7 and 8 in the uniform grid, respectively.  
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Step 2-Neighborhood searching: Perform normal neighborhood searching on uniform grid, 
finding all the cells neighboring to the mapped cell(s). Then judge the states of them one by one via 
SLT: If the state is RL, then add this node to the neighbor list. If the state of node is VN, then  
up-traverse to all its ancestor nodes until the ancestor node is found which state is RI. If the ancestor 
node is not in the neighbor list, then add it to the neighbor list. 

However, the Morton algorithm has two main shortcomings: First, for each node in neighborhood 
judgment, its code needed to be obtained first, and then be used as an index to query its state in SLT. 
This mechanism requires maintenance of both the VCQ and SLT, and also requires frequent 
interactions between the VCQ and SLT. The operation is complicated. Secondly, it requires traversing 
up the parental node when processing nodes of a VN-state. When the quadtree depth is great, this 
traversal is inefficient. 

To solve the above problem, we improved the Morton algorithm by adding a pointer field to each 
node structure. Figure 5 depicts an example of quadtree structure with pointer fields.  

Figure 5. Quadtree structure with pointer field (grey part is the virtual structure). 

 

The pointer is a quadtree node typical of a three-valued case: 

Case 1: If the current node state is RI, then the pointer is set to NULL; 
Case 2: If the current node state is RL, then the pointer points to itself; 
Case 3: If the current node state is VN and at the deepest layer, then the pointer points to its nearest 

ancestor node with state RI. If the node is not at the deepest layer, then the pointer is set to NULL. 

Value assignment of the pointer can be completed in the quadtree construction. By using the pointer 
value from Case 3, we can obtain the ancestor node with state RI from the current node in one step, 
evading multi-step (at least one step) up-traversals; thus, greatly improving the search speed. Also, a 
unified node is needed in Cases 2 and 3 for neighborhood discrimination. At the same time, the  
3-valued pointer can completely replace the role of the SLT without increasing storage space, thereby 
evading the need for additional maintenance work. 
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2.1.3. Region Feature Calculation 

In our method, region merging is performed on adjacent and similar regions. Adjacency can be 
judged by using the spatial indexing mechanism discussed in the above section. Similarity, it is 
calculated based on region features. In this section, we discuss the calculation of region features. 

We use both spectral and texture features to construct feature vector for each region. We use pixel 
mean value and entropy of region to represent spectral feature, and use directionality and line-likeness 
of the Tamura [24] feature as texture features. So, there are four features in feature vector for  
single-band image. For multi-band image, we calculate above features for each band, so the feature 
vector contents nBands⋅4 features, where nBands is the total number of bands. 

In the spectral aspect, the pixel mean value and entropy are used for representing regional grey 
scale and spectral homogeneity, respectively. The entropy is defined as: 

∑
=
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i
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where G is the maximum possible grey level (for 8-bits image data, G = 255), and pi is the pixel 
frequency with grey value i. 

In the spectral aspect, considering that edge direction and intensity are the most important textural 
features, we use directionality and line-likeness as features to characterize the region texture. The 
directionality Fdir is defined as: 
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where HD(φ) is the angle histogram calculated from edge map obtained by edge detection. p is the peak 
in the histogram. np is number of peaks. For a peak p, wp is range of the p th peak between valleys [24]. 
φp is the p th peak position in the histogram. 

The line-likeness Flin is defined as: 
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where PDd is the n × n local directional co-occurrence matrix. 

2.2. Region Merging Based on RAG 

Region merging is a bottom-up process in which large regions are obtained by combining small 
regions under certain criteria. Regions involved are required to be spatially adjacent and similar in 
features. The difficulty of region merging lies in the adjacency judgment and similarity measurement. 
Currently, most existing methods treat each pixel as the initial region with which to discuss the 
merging issue. However, the merging process requires a large amount of computation at the pixel 
level, and requires huge storage space. Therefore, we take segments generated by quadtree segmentation 
as initial regions, and obtain the final segmentation result by merging these regions. The advantage of 
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this method lies in evading pixel level region merging and having lower computation and storage size. 
We characterize the relationship of the area that can be combined by constructing RAG. 

2.2.1. RAG Criterion 

RAG is defined as a weighted undirected graph, in which G = (V, E), where V is the vertex set, 
representing regions generated by the merging process. E is the edge set, with the element  
w(i,j) = Merge(vi,vj) defined as the merge cost function between vertex vi and vj. Full  
Lambda-Schedule [17] is a simple algorithm, which can express well the relationship between regions, 
so we reference their ideas and define the merge cost function between two regions as: 
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where Oi and Oj are the areas of regions that two vertices corresponds to. ui and uj are feature vectors 
of the regions. λ(vi, vj) is the common boundary length between the two regions. There is no edge 
connection between nonadjacent regions. Figure 6 shows an example of the two-layered quadtree 
segmentation and its corresponding RAG. 

Figure 6. A two-layered quadtree segmentation and its corresponding Region Adjacency 
Graph (RAG). (a) Two-layered quadtree segmentation and (b) its RAG. 
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In [17], the merging process was started from pixel level. The initial vertices in the graph therefore 
correspond to the original pixels, and the initial edges were created by the traversal of neighbouring 
pixels from horizontal and vertical directions. However, quadtree segmentation generates non-uniform 
regions. To solve this problem, we constructed initial RAG using the virtual grid. In Figure 7, the 
dashed boxes represent the ancestor nodes of the virtual leaf nodes inside them. Their state is RI. 

Figure 7. Initial RAG construction using the virtual grid (the virtual structure is represented in 
grey). (a) Virtual grid and virtual edge; (b) Four cases of virtual edge; (c) Completed RAG. 
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Procedure for RAG construction has two main steps: 

Step 1. Virtual edge construction: Virtual edges are constructed on the uniform grid mapped from 
the VCQ in horizontal and vertical directions. For a quadtree with depth n , 22n + 1 − 2n + 1 virtual edges 
need to be constructed. There are 24 virtual edges in the example depicted in Figure 7a; 

Step 2. Graph reformation: Traverse all virtual edges, and each edge is processed by its case. 
Suppose the current virtual edge is e, if: 

Case A: The states of two nodes connected by e  are all RL. See case (A) in Figure 7b. Then add e 
to edge set E, and add the 2 nodes to vertex set V. In the example in Figure 7a, the satisfied edges are 
w(9,10), w(9,11), w(9,12), and w(11,12); 

Case B: The states of two nodes connected by e  are all VN, and they are descendants of the same 
ancestor. See case (B) in Figure 7b. It does not need to be processed. In the example in Figure 7a, the 
satisfied edges are w(5,6), w(5,7), w(6,8), w(7,8), w(13,14), w(13,15), w(14,16), w(15,16), w(17,18), 
w(17,19), w(18,20) and w(19,20); 

Case C: The states of two nodes connected by e are VN, but they are descendants of different 
ancestors. See case (C) in Figure 7b. Reform it to ݁ᇱ by connecting their respective ancestor nodes. 
Check the existence of ݁ᇱ. If it does not exist, then add ݁ᇱ to edge set E, and the two ancestor nodes to 
vertex set V. In the example in Figure 7a, the edges satisfied include: w(1,3) reformed from w(7,13) 
and w(8,14) and w(3,4) reformed from w(14,17) and w(16,19). 

Case D: The states of two nodes connected by e are VN and RL. See case (D) in Figure 7b. Reform 
it to ݁ᇱ, which is a connection between the ancestor of VN node and the original RL node. Then add ݁ᇱ 
to edge set E, and the two nodes after reformation to vertex set V. In the example shown in Figure 7a, 
the satisfied edges include: w(1,9) reformed from w(6,9), w(1,11) reformed from w(8,11), w(11,4) 
reformed from w(11,17), and w(12,4) reformed from w(12,18). 

After above processing, the initial RAG is created, as shown in Figure 7c. 

2.2.2. Region Merging 

After the initial construction, region merging is performed on the RAG. The topological structure of 
the RAG will be changed in merging process. The merging process always occurred between the most 
similar and adjacent regions. After merging of two regions, a new ID is given to the new region and 
the feature vector is updated. Feature vector of the new merged region is calculated as the weighted 
average of the area by the pre-merging regions: 
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jjii
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⋅+⋅
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where uk is the feature vector of new merged region. Other variables have the same meaning as they do 
in Equation (8). Suppose the region merging is processed as shown in Figure 8a. There are  
five regions numbered as 1–5. Regions 1 and 2 are homogeneous regions that can be merged. Figure 
8b shows the corresponding RAG. Regions 1 and 2 are merged to form region 6. The feature vector for 
region 6 can be calculated using Equation (9). The edges can then be reconstructed: remove edge 
w(1,2) connect vertices 1 and 2; use edges w(6,3), w(6,4) and w(6,5) as new edges update w(1,3), 
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w(1,4) and w(1,5), respectively as shown in Figure 8b; All the edges connect to vertex 2, w(2,4) 
equivalent to w(1,4), and w(2,5) equivalent to w(1,5), so remove these two edges. The completed RAG 
and region map are presented in Figure 8b,c. 

Figure 8. Region merging schematic diagram. (a) Region map before merging; (b) RAG 
corresponding to (a); (c) RAG after merging; (d) Region map after merging. 
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3. Algorithm Experiment and Analysis 

In order to examine the method proposed by this paper, we perform our method on GeoEye-1 
(0.41 m resolution, Experiment A) and IKONOS (1.0 m resolution, Experiment B) images, which are 
two common high-resolution satellite remote sensing images. Image sizes are 961 × 747 and  
945 × 734 pixels respectively. Experiment is implemented by Visual C++ 9.0, and performed on 
Windows 7 operating system. The hardware configuration is 2G memory and 2.10 GHz CPU. 

3.1. Step 1: Initial Segmentation Based on Quadtree  

Images used in our experiment are all true color fusion images. So, standard deviation averages of 
the red, green and blue bands, Ts, are taken as the quadtree segmentation threshold. Figures 9 and 10 
show the original image and quadtree segmentation results using three different Ts values  Experiments 
A and B, respectively. It can be seen from the results listed in Figure 9c–e and Figure 10c–e that with 
an increasing of the threshold, the size of segments also increased, while the detail of segmentation 
scale is reduced. 

Comparison of the above quadtree initial segmentation is given in the following Table 3: 

Table 3. Comparison of quadtree initial segmentation with different Ts. 

Experiment Ts 
Time of Quadtree 
Segmentation (s) 

Time of Spatial 
Indexing Creation (s) 

Total 
Time (s) 

Quadtree 
Depth 

Segment 
Count 

Exp. A 
3 2.3872 0.5140 2.9012 9 147586 

10 1.2793 0.3252 1.6045 8 98185 
30 0.5634 0.1173 0.6807 8 18147 

Exp. B 
4 2.0366 0.6102 2.6468 9 186034 

12 1.4622 0.5615 2.0237 9 97336 
25 0.4621 0.2614 0.7235 8 33859 

In the above experiment, we proposed to use the standard deviation criterion fast calculation as a 
method to determine the initial quadtree segmentation. In order to test the efficiency of the proposed 
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calculation, we compared our calculation with the traditional standard deviation calculation method, 
using the same image and parameter settings as depicted in Figures 9 and 10. In Figure 9, time costs of 
the traditional standard deviation calculation are about: 10.7 s, 6.6 s and 3.4 s for 3 scales. In Figure 
10, time costs of the traditional standard deviation calculation are: 12.5 s, 5.2 s and 4.1 s for  
three scales. It can be seen that the proposed fast calculation method improved efficiency 4–6 times. 

Figure 9. Quadtree initial segmentation results for GeoEye-1 image in Experiment A. 
(a) Original image; (b) Local zoomed area of original image; (c–e) Quadtree initial 
segmentation and local area with Ts = 3, Ts = 10 and Ts = 30. 

 
(a) 

  
(b) (c) (d) (e) 

Initial segmentation completed with a too small Ts value will lead to trivial and broken segments, 
increasing the number of useless merge operations. At the same time, using a large threshold value will 
lead to an ineffective separation of objects and the generation of lots of jagged edges in the final 
results. Therefore, we selected 10 classes of ROI of typical ground target: water, grass, asphalt road, 
cement road, shrubs, close-planted forest, bare land and roof, and then analyzed the consistency for 
each class. The results of the analysis show that water has the strongest consistency. The range of its 
standard deviation average of red, green and blue bands is 7–10 in the true color image. Therefore, we 
used Ts = 10 for the quadtree segmentation threshold value, as shown in Figure 9d and Figure 10d. 
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Figure 10. Quadtree initial segmentation results for IKONOS image in Experiment B.  
(a) Original image; (b) Local zoomed area of original image; (c–e) Quadtree initial 
segmentation and local area with Ts = 4, Ts = 12 and Ts = 25. 

 
(a) 

  
(b) (c) (d) (e) 

3.2. Step 2: Region Merging Based on RAG 

Region merging is performed after the quadtree initial segmentation. The merging scale can be 
controlled by using different merging thresholds Tm. Figures 11 shows the region merging results of 
different merging thresholds after the quadtree initial segmentation with Ts = 10. With the increase of 
the merging threshold, the scale of region merging also increases. 

In Experiment A (Figure 11a,b), the number of regions obtained with Tm = 2 and Tm = 3.5 was 
1,158 and 722, and time costs were 2.6166 and 1.516 s, respectively. In Experiment B (Figure 11c,d), 
number of regions obtained with Tm = 2.5 and Tm = 3.5 was 1,543 and 1,109, and time costs were 
3.201 and 2.457 s, respectively.  

Two merging results of building roofs in Experiment A were used as typical examples, and their 
quadtree nodes and merging results are shown in Figure 12. 
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3.3. Method Comparison and Discussion 

3.3.1. Method Comparison 

To validate the method, our method was compared with the MR and MS algorithms for precision 
and speed analysis. The MR segmentation algorithm was performed with the commercial image 
analysis software, eCognition, using software recommended settings for urban image segmentation. 
Figure 13b shows the segmentation result. The MS algorithm was performed in image segmentation 
software EDISON developed by Bogdan Georgescu [7]. The MR segmentation parameters are: scale 
factor λScale = 80, color λScale = 0.5. The MS segmentation parameters are: shape bandwidth λScale = 12, 
color bandwidth λScale = 8. Parameters of our algorithm: Ts = 10, Tm = 4. 

Number of regions obtained and time consumption of three segmentation algorithms are shown  
in Table 4. 

Figure 13. Segmentation results of MR, MS method and our method. (a,b) Ground truth 
map for Experiments A and B; (c,d) Segmentation results of MR algorithm for 
Experiments A and B; (e,f) Segmentation results of MS algorithm for Experiments A and 
B; (g,h) Segmentation results of our algorithm for Experiments A and B. 

(a) (b) 

(c) (d) 
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Figure 13. Cont. 

(e) (f) 

(g) (h) 

Table 4. Region number and time consuming comparison of MR, MS, and our method. 

Experiment Method Region Count Time (s) 

Exp. A 
MR method 1487 about 8 
MS method 1853 29.77 
Our method 657 3.7530 

Exp. B 
MR method 1659 about 10 
MS method 1968 22.13 
Our method 711 4.57 

To test the precision of the algorithm proposed in this paper, we used a vector map produced by a 
professional image interpreter as ground truth data, containing building and vegetation as two classes 
of ground targets. The ground truth map includes 47 building objects and 38 vegetation objects for 
Experiment A, and 98 building objects and 53 vegetation objects for Experiment B. Each region 
generated by segmentation was marked as building or vegetation category through human-computer 
interaction for the three methods. The segmentation results with the category mark were used for 
precision analysis and comparison. 

We defined segmentation precision from two aspects: segmentation accuracy and object integrity. 
Segmentation accuracy is defined as: for a type of ground target, the area of the correct region (regions 
generated by segmentation process) proportional to the total area of the ground targets: 
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3.3.2. Discussion 

Both MR and MS segmentation are bottom-up algorithms, started from pixels. Therefore, it is 
unavoidable to produce inadequate region merging phenomenon as can be seen from Figure 13c–f. The 
MR segmentation algorithm uses a single discriminate function as a regional merging criterion 
although the size of the ground object and spectral features have great differences. The use of a single 
discriminate function cannot implement segmentation for different scale objects, causing over merging 
for some objects and subsequent merging for other objects. It will bring great difficulties in subsequent 
region operations. The MS algorithm adds pixel coordinates to the feature vector, expressing spatial 
information to participate in segmentation operation. However, the spatial information is limited for 
segmentation. At the same time, the MS algorithm has high computational complexity, O(n2). It is 
difficult to effectively apply to large remote sensing image segmentation. The first step of our 
algorithm is an up-bottom procedure that evades subsequent pixel level region merging. To some 
extent, this mechanism will inhibit the over merging phenomenon. It is also more conducive to 
improving the efficiency of the region merging. 

4. Conclusions 

This paper presents a high-resolution remote sensing image segmentation algorithm based on 
improved quadtree structure and RAG technique. Our algorithm includes two steps: up-bottom initial 
segmentation and bottom-up region merging. In the first step, we proposed a fast method for standard 
deviation calculation method. By using this improved the segmentation efficiency of quadtree is improved 
for 4–6 times. This improvement has significance for huge remote sensing image processing. After the 
creation of quadtree structure, a spatial index mechanism based on improved Morton coding was added 
to quadtree structure, providing a fast neighborhood data access mechanism. In the second step, we use 
a region merging algorithm based on RAG to obtain the final segmentation result. Our algorithm is 
tested on a true color fusion GeoEye-1 image. We use both segmentation accuracy and object integrity 
as indicators for segmentation result evaluation. The result shows that the accuracy of our method is 
higher than 90%, and the object integrity is higher than 50%. Our segmentation method will provide 
subsequent process such as target objects classification and other applications with more accurate data. 
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