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Abstract: WorldView commercial imaging satellites comprise a constellation developed by 
DigitalGlobe Inc. (Longmont, CO, USA). Worldview-3 (WV-3), currently planned for launch 
in 2014, will have 8 spectral bands in the Visible and Near-Infrared (VNIR), and an additional 
8 bands in the Short-Wave-Infrared (SWIR); the approximately 1.0–2.5 μm spectral range. 
WV-3 will be the first commercial system with both high spatial resolution and 
multispectral SWIR capability. Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) 
data collected at 3 m spatial resolution with 86 SWIR bands having 10 nm spectral 
resolution were used to simulate the new WV-3 SWIR data. AVIRIS data were converted 
to reflectance, geographically registered, and resized to the proposed 3.7 and 7.5 m spatial 
resolutions. WV-3 SWIR band pass functions were used to spectrally resample the data to 
the proposed 8 SWIR bands. Characteristic reflectance signatures extracted from the data 
for known mineral locations (endmembers) were used to map spatial locations of specific 
minerals. The WV-3 results, when compared to spectral mapping using the full AVIRIS 
SWIR dataset, illustrate that the WV-3 spectral bands should permit identification and 
mapping of some key minerals, however, minerals with similar spectral features may be 
confused and will not be mapped with the same detail as using hyperspectral systems. The 
high spatial resolution should provide detailed mapping of complex alteration mineral 
patterns not achievable by current multispectral systems. The WV-3 simulation results are 
promising and indicate that this sensor will be a significant tool for geologic remote sensing. 
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1. Introduction 

WorldView imaging satellites comprise a planned constellation of commercial, orbiting platforms 
developed by DigitalGlobe Inc. (Longmont, CO, USA) and built by Ball Aerospace & Technologies 
(Boulder, CO, USA). Financed partially by the National Geospatial-Intelligence Agency (NGA), 
WorldView satellite systems are launched from Vandenberg Air Force Base on Delta II rockets. 
WorldView-1 (WV-1) was launched in 2007 with a panchromatic (PAN) imaging system capable of 
50-cm spatial resolution [1]. With no multispectral bands on board, the primary purpose of this  
single-band PAN system was to rapidly collect high-spatial resolution (or hi-res) imagery, especially 
suited for generating detailed digital elevation model (DEM) data. The major improvement of WV-1 
over other hi-res commercial systems at the time included state-of-the-art geo-locational capability, 
improved accuracy, and flexibility in programming and tasking that vastly improved the collection of 
2-pass data necessary for DEM generation. WV-1 allowed for a 1.7-day revisit time, acquiring 750,000 
square kilometers of imagery per day. The next big milestone was encountered with the launch of 
WorldView-2 (WV-2) in 2009 offering hi-res PAN data at 46-cm pixel size plus visible and  
near-infrared (VNIR) bands at 1.85-m spatial resolution [2]. WV-2 was the first system to collect eight 
hi-res multispectral bands ranging in wavelengths from 0.4 to 1.04 μm, selected primarily for 
vegetation, coastal, and land-use applications. DigitalGlobe plans to launch WorldView-3 (WV-3) in 
2014 offering a similar PAN and VNIR band set, complemented by eight short-wave infrared (SWIR) 
bands ranging from 1.21 to 2.365 μm (Table 1) [3,4]. It will also have an additional 12 bands included 
for atmospheric compensation [3]. Figure 1 shows the proposed WV-3 SWIR band passes. WV-3, with 
approximately 3.7 m SWIR spatial resolution, will be the first commercial system with both VNIR and 
SWIR multispectral capability. The SWIR data at 7.5 m spatial resolution will be available for 
purchase. Commercial pricing has not yet been determined. It is expected that the inclusion of the new 
SWIR bands will significantly impact surface compositional modeling, and mapping of rock and soil 
exposures worldwide. Potential applications include improved geologic mapping; environmental/soil/ 
disaster monitoring; exploration for petroleum, minerals, and geothermal resources; as well as other 
non-renewable resource assessments (especially suited for developing countries). This paper 
summarizes mineral mapping results achieved by modeling the proposed WV-3 SWIR spectral bands 
shown in Figure 1 using the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), extraction of 
SWIR spectral signatures and spectral mapping, and comparison to results from NASA’s on-orbit 
Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) multispectral sensor, 
which has 6 SWIR bands at 30 m resolution [5,6]. This simulation and analysis focuses on the WV-3 
SWIR bands, as this is the unique added capability, the VNIR and SWIR measure different physical 
phenomena, and most spectral features for alteration minerals occur in the SWIR. Combined analysis 
of the SWIR bands with the WV-3 VNIR bands may also offer additional capabilities, but that 
evaluation is beyond the scope of this initial investigation. 
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Table 1. The proposed Worldview-3 (WV-3) VNIR and SWIR Spectral Bands. 

Band Name Center Wave (nm) Min Band Edge (nm) Max Band Edge (nm) 
MS1 (NIR 1) 835 770 ± 5 895 ± 5 
MS2 (Red) 660 630 ± 5 690 ± 5 

MS3 (Green) 545 510 ± 5 580 ± 5 
MS4 (Blue) 480 450 ± 5 510 ± 5 

MS5 (Red Edge) 725 705 ± 5 745 ± 5 
MS6 (Yellow) 605 585 ± 5 625 ± 5 
MS7 (Coastal) 425 400 ± 5 450 ± 5 
MS8 (NIR 2) 950 860 ± 5 1,040 ± 12 

SWIR-1 1,210 1,195 ± 2 1,225 ± 2 
SWIR-2 1,570 1,550 ± 4 1,590 ± 4 
SWIR-3 1,660 1,640 ± 4 1,680 ±4 
SWIR-4 1,730 1,710 ± 4 1,750 ± 4 
SWIR-5 2,165 2,145 ± 2 2,185 ± 2 
SWIR-6 2,205 2,185 ± 4 2,225 ± 4 
SWIR-7 2,260 2,235 ± 4 2,285 ± 4 
SWIR-8 2,330 2,295 ± 4 2,365 ± 4 

Figure 1. Filter functions provided by DigitalGlobe for the proposed WV-3  
Short-Wave-Infrared (SWIR) spectral bands. 

 

2. Simulation of WV-3 Using Imaging Spectrometer Data 

Imaging spectrometry is defined as “the simultaneous measurement of continuous spectra and 
images in up to hundreds of spectral channels or bands” [7]. These data, now commonly referred to as 
“Hyperspectral Imagery” or “HSI” are unique in that they provide a full spectrum for each image pixel 
and can be analyzed using either spatial or spectral approaches, or some combination of the two. The 
large number of spectral bands makes them ideal for use in simulating other lower spectral resolution 
datasets [8]. AVIRIS HSI data acquired 14 October 2010 of Cuprite, Nevada were used to simulate the 
eight WV-3 SWIR bands. Cuprite is an example of an altered hydrothermal system with an abundance 
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of well-exposed minerals with characteristic absorption features in the SWIR. It has been used for over 
35 years as a test site for validating spectral remote sensing data [7–14]. The 2010 AVIRIS data cover 
the area in five overlapping flightlines with 224 spectral bands in the 0.4–2.5 μm spectral range at 10 
nm spectral resolution and 3 m spatial resolution (Figure 2). A total of 86 AVIRIS SWIR bands from 
1.0 to 2.5 μm were used for this simulation. Radiance data provided by Jet Propulsion Laboratory 
(JPL) were geocorrected and mosaicked, and converted to apparent reflectance using an atmospheric 
model based approach “ACORN” [15,16]. No attempt was made to model minerals using the WV-3 
VNIR bands, as these are the same as WV-2 (in service since 2009), most mineral absorption features 
(with the notable exception of iron minerals) are located in the 2.0–2.5 μm range, and spectral features 
in VNIR spectral region are caused by different physical processes and thus usually analyzed 
separately from the SWIR [13]. 

Figure 2. (Left) Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) True Color 
image (0.65, 0.55, 0.45 μm, RGB) of the Cuprite site; (Right) AVIRIS SWIR color image 
(2.10, 2.20, 2.34 μm, RGB) of the Cuprite site. 

The reflectance-corrected AVIRIS spectral data were resampled to the proposed WV-3 SWIR 
spectral range and bands using the spectral responses shown in Figure 1 and spatially resampled to 
WV-3 spatial resolutions of 3.4 m and 7.5 m using pixel aggregation (neighborhood averaging). Only 
the SWIR bands were considered in this simulation and mineral mapping evaluation, as these represent 
new information not available from the previous WV-2 and other commercial MSI sensors. The 
selection of the SWIR bands is also based on the fact that this wavelength range is where the key 
absorption bands occur for the known minerals at this site (and for most geologic materials). 
Additionally no attempt was made to account for possible signal-to-noise (SNR) differences between 
the AVIRIS data and the simulated WV-3 SWIR data, as the SNR specifications for WV-3 are not 
currently available. As a result, the simulated data and analysis results described here represent “best 
case results”. If WV-3 ends up having very low SNR, this will likely have negative effects on the 
sensor’s capabilities for mineral mapping using spectral approaches. The simulated WV-3 data were 
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further co-registered to orthorectified ASTER data for comparison. The ASTER data were also 
corrected to apparent reflectance using the ACORN model. 

3. Mineral Mapping 

Mineral reflectance spectra of key minerals known to occur at Cuprite at specific locations based on 
spectral libraries and previous research [7–14] were extracted as regions of interest (ROIs) from the 
AVIRIS, ASTER, and simulated WV-3 data for use in spectral classification and mineral mapping. 
Figure 3 shows a comparison of the extracted mean spectra. The AVIRIS spectra are comparable to 
laboratory-measured library spectra and illustrate the full spectral character of the alteration minerals. 
The multispectral ASTER data and simulated WV-3 spectra show the discrete sampling of key spectral 
absorption features by both ASTER (6 bands) and WV-3 (8 bands), generally resulting in good 
separation for common alteration minerals, however, some ambiguities are apparent. ASTER has 
demonstrated the viability of detailed multispectral mineral mapping from space [6,14,17–19]. We 
expect that WV-3 SWIR will perform similarly, with the added advantage of higher spatial resolution 
and additional bands improving mineral exploration, mine characterization, and spectral mapping. 

Figure 3. Comparison of AVIRIS (red), simulated WV-3 (black), and ASTER (blue) 
characteristic spectral signatures (mean endmember spectra) for selected minerals at the 
Cuprite site. 
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The ROIs used to derive the endmember spectra shown in Figure 3 were used to run a Minimum 
distance (supervised) classification on the 86 band AVIRIS SWIR data and the simulated WV-3 SWIR 
data to demonstrate typical information content available using “standard” multispectral classification 
approaches (Figure 4). The Minimum Distance classification uses the mean vectors of each class in 
multi-dimensional space and calculates the Euclidean distance from each image pixel vector to the 
mean vector for each class [20]. A standard deviation threshold was used to exclude highly dissimilar 
pixels. Comparison of the WV-3 results to the AVIRIS data using a confusion matrix approach with 
the AVIRIS Minimum Distance classification acting as surrogate ground truth shows a excellent match 
(overall accuracy of 93.34% with a Kappa Coefficient of 0.9081) (Tables 2 and 3) [21,22]. 
Comparison of the diagonals of each matrix indicates the observed agreement between the two maps 
for each mineral, with a score of 100% being perfect agreement. The Kappa Coefficient, a statistical 
measure of agreement taking into account all of the categories, has a value close to zero when the 
observed agreement is the same as expected by chance and a value approaching one with perfect 
agreement [21]. The classifications and the confusion matrix for the Minimum Distance classifications 
demonstrate that comparable results can be generated from the two datasets using multispectral 
approaches, but don’t really assess the accuracy of those results with respect to the full mineral 
information available from the HSI data based on a physical mixing model. Comparison to AVIRIS 
mineral maps derived using HSI analysis approaches based on spectral matching and unmixing 
illustrates that there are significant errors in the Minimum Distance classifications (Figure 4). One of 
these approaches, the Mixture-Tuned-Matched-Filtering (MTMF) spectral mapping approach [23] was 
used to map the spatial distribution of the spectrally predominant mineralogy at the Cuprite, NV site 
and demonstrates how the WV-3 simulate data should perform for more specific mineral mapping 
approaches (Figure 4(Right); Figure 5). Thus, even though the Minimum Distance classification results 
are consistent and show high correlation between the AVIRIS and simulated WV-3 data, they do not 
provide a true measure of WV-3’s viability for mineral mapping using physics-based approaches 
incorporating physical and mathematical models tied to spectral signatures and mineral mixing. 

Figure 4. (Left) Minimum Distance classification at 7.5 m resolution using 86 AVIRIS SWIR 
bands; (Center) Minimum Distance classification at 7.5 m using 8 simulated WV-2 SWIR 
bands; (Right) MTMF mineral map at 7.5 m resolution using 86 AVIRIS SWIR bands. Visual 
comparison and the confusion matrix (Table 2) indicates that the AVIRIS and simulated WV-3 
supervised classification produces similar, highly correlated results, however, neither really 
matches the known mineral distribution at Cuprite very well (Right and [13,14]). 
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Table 2. Confusion matrix comparing Minimum Distance classifications for simulated 
WV-3 to AVIRIS results. Overall accuracy comparing the WV-3 (Figure 4(Center)) to the 
AVIRIS (Figure 4(Left)) is 93.34%; Kappa Coefficient is 0.9081. This falls in the Excellent 
category (Table 3) [21]; however, note the disparities compared to Figure 4(Right). The high 
match (95%) for Calcite is particularly troublesome, as the MTMF mineral map and 
previous mineral mapping [13,14] shows that the main areas of Calcite occurrence in the 
southwest corner of the image were not mapped and most of the areas that were mapped as 
Calcite by the Minimum Distance classification should probably be mapped as other 
minerals or as unclassified. 

Class UnClass Alunite Budd. Kaolinite Calcite Silica Musov Total 
UnClass 95.69 5.21 0.10 4.52 0.93 14.76 15.23 51.44 
Alunite 0.03 87.68 0.00 0.00 0.49 0.00 1.38 4.47 
Budd. 2.87 0.00 99.76 33.42 0.00 2.14 0.00 1.78 

Kaolinite 0.24 0.00 0.12 62.06 0.00 0.00 0.00 0.55 
Calcite 1.11 4.59 0.00 0.00 95.43 0.00 0.16 26.89 
Silica 0.05 0.00 0.02 0.00 0.00 83.10 0.00 1.46 

Muscov. 0.01 2.52 0.00 0.00 3.15 0.00 83.23 13.41 
Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

Table 3. Threshold values used for separating the different degrees of agreement for the 
Kappa statistic. From [21], used with permission.  

Lower Bound Degree of Agreement Upper Bound 
<0.05 No 0.05 
0.05 Very Poor 0.20 
0.20 Poor 0.40 
0.40 Fair 0.55 
0.55 Good 0.70 
0.70 Very Good 0.85 
0.85 Excellent 0.99 
0.99 Perfect 1.00 

Hyperspectral data are more typically analyzed using spectral matching or spectral unmixing 
methods, which take advantage of the full spectral signature for each material and a physical model to 
account for within pixel mixing of multiple materials. Mixture-Tuned-Matched-Filtering (MTMF) is a 
method for locating a known signature in the presence of a mixed or unknown background by 
combining a linear detector and spectral unmixing [23]. It is ideally suited for use where materials with 
distinct spectral signatures occur within a single pixel, and allows both identification and abundance 
estimation. Spectral mixing has been previously observed and reported at the Cuprite site [13]. The 
MTMF image-maps produced for this simulation Figure 4(Right) and Figure 5(Left) generally 
correspond to previous mineral mapping results using a variety of multispectral and hyperspectral 
sensors [11–14], however, as no detailed ground truth map actually exists for the site (other than those 
generated using hyperspectral data), it is difficult to make absolute accuracy comparisons.  
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Figure 5. (Left) Mixture-Tuned-Matched-Filtering (MTMF) mineral map at 7.5 m 
resolution using 86 AVIRIS SWIR bands in the analysis; (Center) MTMF Mineral Map at 
30 m resolution using ASTER’s 5 SWIR bands; (Right) MTMF Mineral Map at 7.5 m 
spatial using the 8 simulated WV-2 SWIR bands. Visual comparison indicates that the 
simulated WV-3 mineral map does a better job than ASTER of preserving the key mineral 
patterns shown in the AVIRIS analysis. 

For the purposes of this research, the AVIRIS mineral map (Figure 4(Right) and Figure 5(Left)) was 
selected for use as surrogate ground truth, and ASTER data for the Cuprite site and the simulated WV-3 
shows spatial patterns for specific minerals that are similar to AVIRIS mineral mapping results; 
however, in addition to a more noisy appearance likely caused by mineral mixing at the ASTER 30 m 
pixel, there are some other rather obvious problems with the multispectral mapping results (errors of 
commission). The simulated WV-3 MTMF results (Figure 5(Right)) appear to more accurately 
replicate the AVIRIS mineral patterns for specific minerals, but there are again some obvious errors of 
omission and commission. In both cases, the multispectral sensors appear to do surprisingly well in 
defining the mineralogy at the site using the SWIR signatures and the hyperspectral analysis approach, 
despite having only a few spectral bands compared to the AVIRIS data. Unfortunately, however, it is 
also clear that the subtle differences between the multispectral signatures, particularly for similar 
minerals like kaolinite, alunite, muscovite, and silica (all with features near 2.2 μm) result in confusion 
between similar minerals mapped in the WV-3 simulated data. In addition, the ASTER results are also 
likely more affected by linear (areal) spectral mixing because of their larger 30 m pixels. 

Additional quantitative comparisons of MTMF mineral maps derived from the ASTER data and 
analysis of the WV-3 simulated data compared to the AVIRIS mineral mapping result were 
accomplished using the confusion matrix approach (Table 4). There are significant errors of 
commission and omission in all cases because of lower spectral resolution and for ASTER, also 
spectral mixing. It is significant to note that while the statistical measures show problems with the 
analysis on a per-pixel basis, that visual inspection of the image classes (Figure 5) indicates that the 
WV-3 data actually do well at reproducing the main mineral patterns mapped at Cuprite using the 
AVIRIS data. 
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Table 4. (a) Confusion matrix comparing ASTER mineral mapping to AVIRIS mineral 
mapping. Overall accuracy is 35.05%, Kappa Coefficient is 0.2074 (Poor, Table 3); 
(b) Confusion matrix comparing simulated WV-3 mineral mapping to AVIRIS. Overall 
accuracy is 50.92%, Kappa Coefficient is 0.3843 (Poor); (c) Confusion matrix comparing 
ASTER mineral mapping to AVIRIS mineral mapping, excluding unclassified pixels. 
Overall accuracy is 35.99%, Kappa Coefficient is 0.2397 (Poor); (d) Confusion matrix 
comparing simulated WV-3 mineral mapping to AVIRIS, excluding unclassified pixels. 
Overall accuracy is 63.43%, Kappa Coefficient is 0.5406 (upper limit of Fair).  

(a) ASTER to AVIRIS confusion matrix 
Class UnClass Alunite Budd. Kaolinite Calcite Silica Musov Total 

UnClass 38.75 12.48 11.77 18.37 4.69 19.00 11.23 24.9 
Alunite 10.90 27.85 6.08 14.84 3.56 4.31 6.79 11.50 
Budd. 16.39 29.97 71.28 36.23 8.66 53.51 12.97 20.31 

Kaolinite 4.14 8.24 4.48 12.03 2.19 2.07 21.99 7.99 
Calcite 12.87 9.27 1.75 8.22 67.87 4.92 15.41 17.37 
Silica 7.01 3.86 3.94 3.52 4.11 13.52 4.42 5.97 

Muscov. 9.93 8.33 0.71 6.78 8.92 2.68 27.18 11.96 
Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

(b) Worldview-3 to AVIRIS confusion matrix 
Class UnClass Alunite Budd. Kaolinite Calcite Silica Musov Total 

UnClass 45.39 16.92 1.21 18.50 2.61 10.73 11.44 28.11 
Alunite 4.30 34.69 0.26 3.55 2.06 0.32 3.75 7.45 
Budd. 13.72 4.20 73.54 8.91 2.23 9.39 3.51 9.30 

Kaolinite 6.24 14.14 20.76 46.84 4.03 8.49 14.47 11.55 
Calcite 11.46 5.34 0.71 6.53 82.44 0.50 5.79 15.60 
Silica 10.13 6.77 3.26 7.08 2.31 67.93 5.13 10.89 

Muscov. 8.56 17.95 0.26 8.59 4.31 2.65 55.90 17.10 
Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

(c) ASTER to AVIRIS confusion matrix (no unclassified)  
Class UnClass Alunite Budd. Kaolinite Calcite Silica Musov Total 

UnClass 
Alunite 31.82 6.89 18.18 3.74 5.32 7.65 13.72 
Budd. 34.25 80.79 44.39 9.09 66.06 14.61 27.22 

Kaolinite 9.41 5.07 14.74 2.30 2.55 24.77 13.14 
Calcite 10.59 1.99 10.06 71.21 6.07 17.36 24.48 
Silica 4.41 4.46 4.31 4.31 16.69 4.98 5.71 

Muscov. 9.52 0.80 8.31 9.36 3.31 30.62 15.73 
Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

(d) Worldview-3 to AVIRIS confusion matrix (no unclass)  
Class UnClass Alunite Budd. Kaolinite Calcite Silica Musov Total 

UnClass 
Alunite 41.75 0.26 4.36 2.12 0.35 4.23 11.76 
Budd. 5.06 74.44 10.94 2.29 10.52 3.96 5.94 

Kaolinite 17.02 21.01 57.47 4.14 9.51 16.34 18.70 
Calcite 6.42 0.72 8.01 84.65 0.56 6.54 22.06 
Silica 8.14 3.30 8.69 2.37 76.09 5.80 13.17 

Muscov. 21.60 0.26 10.53 4.43 2.97 63.13 28.38 
Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 
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The confusion matrices for these data demonstrate that the per-pixel match between the mineral 
AVIRIS and WV-3 mineral mapping results is only poor to fair using Kappa Coefficient 
criteria [21,22] (Tables 3 and 4). We note, however, that significant portions of the error are 
attributable to unclassified areas (Table 4), meaning that rather than misidentification of materials, that 
many of the errors are ones where no identification was possible using the multispectral data. This is 
not an unexpected result, however, as multispectral data are inherently less well suited to mineral 
mapping than HSI data because they don’t resolve all the spectral features. Improved performance is 
demonstrated by excluding unclassified pixels from the error analysis (Table 4). Further examination 
of the ASTER confusion matrix (Table 4) and extracted spectra (Figure 3) shows that performance is 
higher for calcite and buddingtonite than other minerals because they have spectral features at unique 
locations (near 2.34 and 2.11 μm respectively) with respect to the other minerals. Confusion between 
minerals with similar features near 2.2 μm such as alunite, kaolinite, muscovite, and silica is high. This 
is the result of confusion between similar minerals at lower multispectral spectral resolution, as well as 
spectral mixing effects. For the simulated WV-3 data, examination of the confusion matrices shows 
that performance is higher for calcite and buddingtonite; however, there is still confusion between 
minerals with similar features such as alunite, kaolinite, muscovite, and silica, which at high spectral 
resolution all have characteristic spectral features near 2.2 μm (Table 4, Figure 3).  

In both the ASTER and WV-3 cases, ambiguities typically result in “over classification” using the 
multispectral systems compared to more specific AVIRIS results. That is, minerals are often identified 
in the MSI data where no specific mineral dominates as indicted by the HSI data analysis. This is 
mostly likely the result, however, of multiple similar mineral signatures combining to resemble a given 
mineral due to the reduced MSI spectral resolution. The HSI data are more sensitive to individual 
minerals in mineral mixtures. The WV-3 multispectral data appear to “fill in” some of the unmapped 
areas on AVIRIS (these represent additional ambiguities in multispectral images). It is significant to 
note that both multispectral datasets still produce spatially coherent highly detailed mineral maps that 
visually match the main spatial patterns in the AVIRIS data, and that the simulated WV-3 data perform 
significantly better than the ASTER data.  

Previous work has demonstrated that that mapping errors caused by similar spectral features can be 
mitigated somewhat by grouping similar minerals for analysis [6]. Accordingly, we combined some of 
the simulated WV-3 results for similar minerals and performed confusion matrix analyses on the 
combined mineral maps (Figure 6) versus the same minerals combined for AVIRIS (not shown). 
Improved performance is observed in all cases according to the statistics (Table 5); however, 
comparing the images with the original AVIRIS mineral map in Figure 5(Right) demonstrates that 
significant important information has been lost. The key minerals shown in the AVIRIS map in  
Figure 5 are combined for improved per-pixel statistical accuracy, but information about the overall 
spatial pattern is reduced. Figure 7 provides a final illustration of the spatial resolution advantage of 
WV-3 versus ASTER.  
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Figure 6. AVIRIS MTMF mineral maps at 7.5 m spatial resolution for several different 
combinations of similar minerals (Left) Kaolinite and Alunite combined (Center) Kaolinite 
and Muscovite combined (Right) Kaolinite, Alunite, and Muscovite combined. Note the 
significant loss of detail regarding specific important mineral patterns mapped by AVIRIS 
(and the simulated WV-3 using all the minerals) in Figure 5.  

 

Table 5. Confusion matrices comparing simulated WV-3 mineral mapping to AVIRIS 
mineral mapping for combinations of similar minerals. (a) Kaolinite and Alunite combined 
(no unclassified): Overall accuracy is 67.80%; Kappa Coefficient is 0.5642 (Good); 
(b) Kaolinite and Muscovite combined (no unclassified): Overall accuracy is 70.24%; 
Kappa Coefficient is 0.5729 (Good); (c) Kaolinite, Alunite, and Muscovite combined (no 
unclassified): Overall accuracy is 80.83%; Kappa Coefficient is 0.6432 (Good).  

(a) Worldview-3 to AVIRIS confusion matrix (Kaolinite and Alunite combined) 
Class UnClass Alunite Budd. Kaolinite Calcite Silica Musov Total 

UnClass 
Alunite 
Budd. 74.44 7.23 2.29 10.52 3.96 5.94 

Kaolinite 21.28 59.90 6.26 9.86 20.57 30.46 
Calcite 0.72 7.01 84.65 0.56 6.54 22.06 
Silica 3.30 8.35 2.37 76.09 5.80 13.17 

Muscov. 0.26 17.53 4.43 2.97 63.13 28.38 
Total 100.00 100.00 100.00 100.00 100.00 100.00 

(b) Worldview-3 to AVIRIS confusion matrix (Muscovite and Kaolinite combined)  
Class UnClass Alunite Budd. Kaolinite Calcite Silica Musov Total 

UnClass 
Alunite 41.75 0.26 2.12 0.35 4.27 11.76 
Budd. 5.06 74.44 2.29 10.52 5.93 5.94 

Kaolinite 
Calcite 6.42 0.72 84.65 0.56 6.95 22.06 
Silica 8.14 3.30 2.37 76.09 6.61 13.17 

Muscov. 38.62 21.28 8.57 12.48 76.23 47.08 
Total 100.00 100.00 100.00 100.00 100.00 100.00 
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Table 5. Cont. 

(c) Worldview-3 to AVIRIS confusion matrix (Kaolinite, Alunite, and Muscovite combined) 
Class UnClass Alunite Budd. Kaolinite Calcite Silica Musov+ Total 

UnClass Kaol+Alu 
Alunite 
Budd. 74.44 2.29 10.52 5.65 5.94 

Kaolinite 
Calcite 0.72 84.65 0.56 6.78 22.06 
Silica 3.30 2.37 76.09 7.11 13.17 

Mus+K+A 21.54 10.68 12.83 80.46 58.84 
Total 100.00 100.00 100.00 100.00 100.00 

Figure 7. (Top Left) Enlarged portion of the ASTER SWIR color composite image at 30 m 
spatial resolution (SWIR bands 4, 6, 8 or 1.66, 2.21, 2.34 μm as RGB). (Top Right) 
Simulated Worldview-3 SWIR color composite image at 7.5 m spatial resolution (SWIR 
bands 3, 6, 8 or 1.65, 2.20, 2.33 μm as RGB). (Bottom Left) Enlarged portion of ASTER 
SWIR mineral map from Figure 4. (Bottom Right) Worldview-3 SWIR mineral map. Note 
the high level of detail in the Worldview-3 SWIR color composite image compared to the 
ASTER color image and the corresponding improvement in the Worldview-3 mineral map 
(a combination of high spectral and spatial resolution). 
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Based on these results, and demonstrated real-world ASTER mineral mapping successes, we expect 
that Worldview-3 will also be successful for mineral mapping using the new SWIR bands and that 
results will be improved over those determined from ASTER data. Clearly the WV-3 data will provide 
much sharper images of areas of interest, leading to improved literal analysis and interpretation. In 
addition, the mineral maps of the simulated WV-3 high spatial resolution data illustrate the advantage 
of reduced spectral mixing in the higher spatial resolution WV-3 data, leading to more spatially 
coherent mapping of key minerals. The patterns in the simulated WV-3 data more closely match 
those of the hyperspectral AVIRIS data compared to the ASTER results, and key mineral patterns 
are preserved, even where error analysis statistics indicate only fair individual pixel mineral 
matching performance. 

4. Conclusions  

This study presents the results of simulated multispectral Worldview-3 (WV-3) data analysis for 
Short Wave Infrared (SWIR) mineral mapping for hydrothermal ore deposits. WV-3 is a new 
multispectral remote sensing system to be launched during 2014 by DigitalGlobe, and will provide 
combined high (7.5 m) spatial resolution and SWIR spectral bands not available from any other source. 
Because WV-3 is the first of its kind to offer these added SWIR capabilities at high spatial resolution, 
the interest (particularly from the commercial mineral exploration community) is expected to be 
extremely high. This is in many ways the sensor that this community has been waiting for—high 
spatial resolution, global coverage, and increased spectral mapping capabilities. Another multispectral 
imager, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), which has 
30 m spatial resolution and had 6 spectral bands in the SWIR (these failed in 2008) was extensively 
used by the mining industry. The launch of WV-3 is highly anticipated and we expect that the new 
capabilities of WV-3 will be even more valuable. 

Based on these observations and the pending WV-3 launch, simulated SWIR WV-3 imagery was 
produced utilizing high spatial and spectral resolution Airborne Visible/Infrared Imaging Spectrometer 
(AVIRIS) (hyperspectral or HSI) data and the proposed WV-3 spatial and spectral responses to 
validate and quantify the likely SWIR mapping performance, specifically for hydrothermal alteration 
minerals. AVIRIS data for a well-known altered area (Cuprite, NV, USA) were spectrally and spatially 
resampled to the WV-3 specifications, and spectral mapping methods were applied to detecting and 
mapping minerals known to occur for the site. Most multispectral data are analyzed using statistical 
methods; results shown here for a typical classification method (Minimum Distance supervised 
classification) illustrate that high consistency can be achieved between the multispectral and 
hyperspectral classifications using statistical methods. In fact, total agreement was greater than 90% 
between these two datasets when using this approach. Unfortunately, however, despite this high 
agreement, spectral signatures and previous mineral mapping demonstrate that the statistical methods 
do not actually accurately map the known mineral distributions, mainly because they do not take into 
account the physical mixing model (multiple materials linearly mixing within each pixel). 

The idea of utilizing spectral signatures and hyperspectral analysis approaches for multispectral 
mineral mapping represents a unique approach. Only the 8 well-placed SWIR bands proposed for  
WV-3 make this worth considering. Confusion matrix analyses comparing the simulated WV-3 
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mapping results to full-spectral-resolution AVIRIS data indicate that this approach was only partially 
successful, however, principally because of the similarity of many minerals when using only a few 
multispectral bands (versus HSI, with up to hundreds of spectral bands). The simulated WV-3 data 
allowed extraction and mapping of specific mineral spectra; however, spectra for certain similar 
minerals are only subtly different. These include a broad range of minerals with absorption features 
near 2.2 μm (such as kaolinite, alunite, muscovite, and silica), which are easily confused in the 
simulated WV-3 data. Simulated WV-3 performance for specific minerals ranged from approximately 
40%–60% match for minerals with similar absorption features to 75%–85% match for minerals with 
distinctly different absorption features. Even so, standard HSI analysis methods were successfully 
applied to the WV-3 data to produce detailed mineral maps that separated some of these materials. The 
AVIRIS data produce a more conservative (and accurate) mineral map taking mineral mixing into 
consideration, however, the WV-3 data do capture the known alteration patterns at the Cuprite, Nevada 
site. Additional error analysis demonstrates that improved performance in terms of the classification 
statistics can be achieved by combining mineral classes with similar spectral signatures. When similar 
minerals are grouped together, matches between the HSI and WV-3 data improve to better than 
approximately 75% match. While this does improve the overall accuracy, the images, however, clearly 
show that there is valuable mineralogic information in the mineral maps produced using the full 
mineral suite that cannot be replicated in the reduced endmember case. This points towards the need to 
include additional, narrower multispectral SWIR bands in future sensors. 

These simulation results demonstrate that WV-3 will provide significant new capabilities for 
multispectral mineral mapping from space. The simulated WV-3 data produce similar low spectral 
resolution spectra to those extracted from reflectance-corrected ASTER data; however WV-3 will 
significantly outperform ASTER for mineral mapping because of additional SWIR bands and the 
improvement in spatial resolution to 7.5 m from ASTER’s 30 m pixel size. The limited release 
(government only) 3.7 m spatial resolution data will be even more capable. The WV-3 simulation does 
demonstrate reduced capabilities compared to AVIRIS, however, manifested as misclassification and 
“smoothing” of the spectral mapping because of confusion between similar minerals. This is not 
unexpected (hyperspectral data are inherently more capable), and despite this fact, the 7.5 m spatial 
resolution and the simulated spectral resolution appear to generally be well suited to resolving typical 
mineral occurrences in a hydrothermally altered area. The WV-3 spectral bands should permit 
identification and mapping of key minerals, while the improved spatial resolution will provide 
improved discrimination of complex alteration mineral patterns. The WV-3 results are promising and 
indicate that this sensor will be a significant tool for geologic remote sensing. Additional research is 
required for additional sites with different mineral distributions. There may also be some benefit to 
combined analysis of the eight (8) WV-3 visible/near infrared (VNIR) bands with the SWIR bands. 
This will require further research and case histories. 
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