
Remote Sens. 2013, 5, 891-908; doi:10.3390/rs5020891 
 

Remote Sensing 
ISSN 2072-4292 

www.mdpi.com/journal/remotesensing 

Article 

Relationship between Hyperspectral Measurements and 
Mangrove Leaf Nitrogen Concentrations 

Chunhua Zhang 1,*, John M. Kovacs 2, Mark P. Wachowiak 3 and Francisco Flores-Verdugo 4 

1 Department of Geography and Geology, Algoma University, Sault Ste. Marie, ON P6A 2G4, Canada;  
2 Department of Geography, Nipissing University, North Bay, ON P1B 8L7, Canada;  

E-Mail: johnmk@nipissingu.ca 
3 Department of Computer Science and Mathematics, Nipissing University, North Bay, ON P1B 8L7, 

Canada; E-Mail: markw@nipissingu.ca 
4 Instituto del Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, 

Mazatlán, Sinaloa 82040, Mexico; E-Mail: ffverdugo@gmail.com 

* Author to whom correspondence should be addressed; E-Mail: chunhua.zhang@algomau.ca;  

Tel.: +1-705-949-2301 (ext. 1090); Fax: +1-705-949-6583. 

Received: 20 December 2012; in revised form: 6 February 2013 / Accepted: 16 February 2013 /  

Published: 22 February 2013 

 

Abstract: The use of spectral response curves for estimating nitrogen (N) leaf 

concentrations generally has been found to be a challenging task for a variety of plant 

species. In this investigation, leaf N concentration and corresponding laboratory 

hyperspectral data were examined for two species of mangrove (Avicennia germinans, 

Rhizophora mangle) representing a variety of conditions (healthy, poor condition, dwarf) 

of a degraded mangrove forest located in the Mexican Pacific. This is the first time leaf 

nitrogen content has been examined using close range hyperspectral remote sensing of a 

degraded mangrove forest. Simple comparisons between individual wavebands and N 

concentrations were examined, as well as two models employed to predict N 

concentrations based on multiple wavebands. For one model, an Artificial Neural Network 

(ANN) was developed based on known N absorption bands. For comparative purposes, a 

second model, based on the well-known Stepwise Multiple Linear Regression (SMLR) 

approach, was employed using the entire dataset. For both models, the input data included 

continuum removed reflectance, band depth at the centre of the absorption feature (BNC), 

and log (1/BNC). Weak to moderate correlations were found between N concentration and 

single band spectral responses. The results also indicate that ANNs were more predictive 

for N concentration than was SMLR, and had consistently higher r2 values. The highest r2 
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value (0.91) was observed in the prediction of black mangrove (A. germinans) leaf N 

concentration using the BNC transformation. It is thus suggested that artificial neural 

networks could be used in a complementary manner with other techniques to assess 

mangrove health, thereby improving environmental monitoring in coastal wetlands, which 

is of prime importance to local communities. In addition, it is recommended that the BNC 

transformation be used on the input for such N concentration prediction models. 

Keywords: hyperspectral remote sensing; mangrove; nitrogen; Mexican Pacific; artificial 

neural networks 

 

1. Introduction 

Nitrogen (N) is one of the most important components in plant tissues and, consequently, changes 

in leaf nitrogen concentration could adversely affect the function, structure, and condition of an 

ecosystem. The nitrogen cycle is also closely related to the carbon cycle within forest ecosystems [1]. 

Leaf N concentration therefore indicates the overall nutritional status of forests, including mangroves. 

Traditional methods for analyzing N concentration are quite slow and prohibitively expensive. Remote 

sensing techniques have recently been shown to be the only feasible alternative to these traditional 

approaches for mapping the spatial distribution of N concentration over large areas. Studies employing 

remote sensing have focused on both the leaf (e.g., [2–5]) and canopy (e.g., [6,7]) levels. Moreover, 

research on the relationships between N and spectral response have been conducted on a large variety 

of tree species, including eucalyptus (e.g., [5,6]), red oak, red maple, larch, red pine, as well as many 

others (e.g., [8]).  

Mangrove forests are the basis of coastal communities throughout the tropics and subtropics. 

Unfortunately, these forested wetlands are being cut or degraded as the result of various human 

activities such as hydrological modifications, aquaculture, and pollution [9]. Given the importance of 

these coastal wetlands to a myriad of organisms and as a renewable resource for local communities 

worldwide, it is crucial that the condition of these forests be properly monitored. Consequently, leaf N 

concentration could be used as a possible indicator of mangrove health. In fact, several studies have 

already investigated the changes of N concentration in mangrove leaves in response to changing 

environmental conditions (e.g., [10–14]). However, these studies collected point N concentration data, 

and it is difficult to extrapolate these values to indicate spatial variations. Due to limited accessibility 

and difficulty of movement through these forested wetlands, only a few studies have applied remote 

sensing techniques for identifying plant biochemical component changes in mangroves (e.g., [15]) and 

linking the changes of leaf N concentration with variations in spectral responses (airborne) for 

mangrove forests (e.g., [16,17]). N concentration has been extracted using support vector 

regression [16] and a radiative transfer model [17] using hyperspectral imagery. No N concentration 

studies have been conducted for degraded mangrove forests using close range hyperspectral data. 

Various methods have been applied to examine the relationships between leaf N concentration and 

spectral information in other vegetation types, and could provide the most appropriate technique in 

monitoring N within mangrove forests. For example, linear and non-linear regression have been used 
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to study the relationships based on single wavebands or on narrow band vegetation indices 

(e.g., [18,19]). However, the correlation between leaf N concentration and these spectral responses are 

generally not very high, although a r2 value of 0.7 was recently reported in one of many controlled 

experiments (e.g., [20–22]). Stepwise multiple linear regression (SMLR) has also been used to 

determine the relationship of N concentration and spectral properties (e.g., [2,21,23]). Although 

conventional SMLR is a popular approach, an approximately linear relationship between the input and 

the response variables must be assumed. Data transformations may be helpful in making relationships 

more linear, but they often cannot account for complex nonlinearities in the input-response 

relationship [24]. Furthermore, bands selected from SMLR are not necessarily related to N 

absorption [2]. Consequently, nonlinear regression may be used for suspected nonlinear relationships. 

However, this approach assumes that an a priori model be specified when such detailed information is 

often unknown [24]. Alternatively, the partial least squares regression (PLSR) can be applied to reduce 

the dimensionality of hyperspectral data to a few uncorrelated principal components (e.g., [6,25,26]). 

PLSR models can decrease background effects and avoid the potential overfitting problem typically 

associated with stepwise regression analysis [6]. Useful wavebands for N assessment could be decided 

based on their factor loadings of the principal components from PLSR [25] or from the correlation 

between reflectance and N concentration [6]. Nonetheless, modified PLSR methods were reported to 

provide non-stable results in comparison to the widely varying results from stepwise regression [6]. 

To address some of the shortcomings of regression-based techniques, artificial neural networks 

(ANNs), a computational intelligence technique, were employed in this investigation. ANNs provide 

one approach for modeling the relationships—linear or nonlinear—between input and response 

variables. ANNs were originally developed to model neural interconnections in the brain. They consist 

of an input layer of “neurons” into which input variables (e.g., spectral reflectance values) are 

presented. The inputs are connected to one or more hidden layers (to introduce nonlinearity), which are 

subsequently connected to an output layer consisting of response variables (e.g., N concentration). 

Each connection has its own weight, roughly analogous to coefficients in nonlinear regression. The 

ANN is “trained” by repeated supervised presentation of input values. This training allows the ANN to 

adaptively “learn” the weights that best represent the relationship between input and response 

variables. Such learning is accomplished through an iterative optimization technique, such as gradient 

descent or Levenberg-Marquardt optimization. ANNs are particularly useful in nonlinear modeling 

because of their predictive power and robustness in the presence of noisy or incomplete data [27]. 

However, the use of ANNs for nonlinear modeling has some drawbacks, including complex  

input-response relationships that may not correspond to biological or physical models, the (mostly) 

empirical selection of network architecture (i.e., number of hidden neurons and layers), the sometimes 

unpredictable behaviour in the presence of outlier or boundary data, and long training time. In 

addition, as a computational intelligence technique that relies on stochasticity, very different network 

weights may be obtained from the same architecture after different training sessions, making rigorous 

analysis difficult. Nevertheless, in applications where nonlinear relationships are sought, the benefits 

of using ANNs outweigh the potential shortcomings. ANNs have been used in estimating vegetation 

canopy properties, including estimating forest cover from AVHRR images [27], estimating grass 

quality from spectroscopy data [24], and calculating leaf N concentration from HYMAP data [6,7]. 
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In this investigation, relationships are examined between laboratory hyperspectral data and N 

concentration for mangrove leaves collected from a degraded mangrove forest of the Mexican Pacific. 

In order to determine the most appropriate technique for, ideally, estimating mangrove leaf N 

concentration, the SMLR and ANN are applied to data from both black (Avicennia germinans) and red 

mangroves (Rhizophora mangle).  

2. Study Area 

The area of investigation is a mangrove forest located directly south of the city of Mazatlan, 

Mexico, (Figure 1) that is characterized by a sub-tropical savanna climate with distinct dry and rainy 

seasons. Within this lagoon mangrove complex, the black mangrove dominates. Based on their height, 

leaf color, Leaf Area Index, and distance to water, mangroves in this system can be classified 

according to three conditions: tall healthy, dwarf healthy, and poor condition (Figure 2) [28]. The tall 

healthy black mangroves are found immediately inland along a very thin fringe of mixed mangrove 

that consists primarily of healthy red mangrove and some white mangrove (Laguncularia racemosa). 

Located further inland from the fringe, dwarf black mangroves are commonly found. These trees are 

generally 1.5–2 m in height with green leaves, but often lacking a main stem. In other areas, highly 

stressed poor condition red mangroves can be located further inland from the lagoons and tidal 

channels. Many of the leaves of these trees are yellowish in color, which is indicative of a highly 

stressed condition. The frequency of tidal inundation for these areas may have decreased, and therefore 

changes of hydro-edaphic conditions may have contributed to the observed degradation [12].  

Figure 1. Location of the mangrove sampling area within the Mexican Pacific (Enhanced 

Near Infrared, Red, Green of Advanced Land Observing Satellite date Advanced Visible 

and Near Infrared Radiometer (ALOS AVNIR)-2 dated 28 March 2010). 
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Figure 2. Types of mangrove sampled. From left to right: (a) healthy black mangrove 

(Avicennia germinans), (b) dwarf black mangrove, (c) poor condition black mangrove, 

(d) healthy red mangrove (Rhizophora mangle), (e) poor condition red mangrove. 

 

3. Methods 

3.1. Field Data Collection 

Field work was conducted in mid-December 2008. Leaves from red and black mangroves of various 

conditions were collected from the top canopy branches with the aid of a hook device. For healthy tall 

black and red mangroves, leaves were collected along the water’s edge using the hook device operated 

from a boat. In total, 90 samples for black mangrove and 60 samples for red mangrove were collected, 

resulting in thirty samples for each condition. The collected leaves were placed into plastic bags and 

stored in a cooler at 4 °C prior to analysis of reflectance, conducted on the same day.  
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3.2. Spectral Measurements, Leaf Measurements and Leaf N Concentration  

An indoor black house lab was set up to measure the leaf spectral responses. The leaf reflectance 

was measured using an ASD FieldSpec® 3 JR spectroradiometer (Analytical Spectral Devices, Inc., 

Boulder, CO, USA), whose measurement range is 350–2,500 nm. The spectral resolution is 3 nm from 

350 to 1,000 nm and 30 nm from 1,000 to 2,500 nm. A 50 W halogen light source with an incident 

angle of 80° was used for the indoor measurements. Two layers of mangrove leaves were stacked  

face-up on a matte black 25 cm diameter plate. A 25° viewing angle sensor was mounted directly 

above the plate at a distance of 30 cm. A white reference (spectralon) was then used to calibrate the 

measurements at 5-min intervals. For each measurement, the recorded numbers were based on an 

average of 15 spectral measurements. In addition, to minimize impacts from variations in leaf N 

concentration, a measurement was made after the plate was rotated roughly 90°, resulting in a total of 

four measurements for each sample [29]. The final spectral reflectance data (R) for each sample was 

based on the average of these four measurements.  

Each leaf was then measured individually with a Li-Cor LI-3000C Portable Area Meter. The leaves 

were dried in an oven at 70 °C for 72 h, weighed, and then ground. One gram of dry leaf from each 

sample was then used to determine leaf N concentration following a standard micro-Kjeldahl 

procedure [30].  

3.3. Statistical Analysis 

A one-way ANOVA was used to test the differences in leaf traits and N concentration for the 

various mangrove samples [31]. The ANNs were trained to determine nonlinear relationships between 

spectra and various transformations of these spectra, using reflectance values from 17 wavebands 

corresponding to known N absorption features. These wavebands included 640, 660, 910, 1,020, 1,510, 

1,645, 1,980, 2,060, 2,130, 2,140, 2,150, 2,160, 2,170, 2,180 (the last six wavebands represent an 

absorption feature within wavelength 2130–2180), 2,240, 2,300, and 2,350 nm [32,33]. Stepwise 

multiple linear regression (SMLR) and ANNs were employed to estimate leaf N concentration in red 

and black mangroves. Prior to their input into the ANNs and into the SMLR, various transformations 

were made on these data. Such transformations are commonplace to improve algorithm and network 

performance [6]. The specific transformations included in this study are: (1) continuum removal, 

(2) log transformation of continuum-removed data, (3) band depth normalized to the centre of the 

absorption feature (BNC) [6], and (4) a log transformation of the BNC. Different networks were then 

constructed using one hidden layer consisting of 10, 15, and 20 neurons with the single output neuron 

represented the N concentration.  

Given that there are reflectance differences influenced by N absorption, continuum removal 

analysis, one of the most common methods for measuring depths of N absorption, is generally applied 

prior to statistical analysis. The purpose of this technique is to remove the effects of absorption not 

caused by the waveband of interest [23]. For this transformation, the equation of a line segment 

connecting the reflectance values of the lowest and highest bands in a waveband range of interest R is 

computed (see Figure 3). Wavebands are typically chosen on the basis of known nitrogen absorption 

features. The different continuum-removed spectra are calculated for each waveband in each range of 
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interest (see Figure 4). Based on the literature [6] as well as on empirical investigation, the selected 

wavebands were 583–740 nm, 904–1,076 nm, 1,270–1,669 nm, 1,798–2,211 nm, and 2,230–2,415 nm. 

The continuum-removed spectrum C is given as C = R/Ri where Ri represents the reflectance of the 

continuum line and where the endpoints of C have values of 1. Various transformations of C were 

examined. Pseudo-absorption, a log transformation (Clog = log(1/C)), was first calculated. The spectra 

were further normalized to either the band depth at the center or the area of the absorption region [21]. 

A different transformation is required to normalize C to the band depth at the centre of the absorption 

feature. This band depth normalized to centre transformation, or BNC, is given as  

BNC = (1 − C)/(1 − Rc/Ric), where Rc denotes the reflectance at the absorption feature centre, and Ric 

is the corresponding reflectance of the continuum line at the feature centre [6]. The feature centre is 

defined as the minimum value of the continuum-removed spectrum of a waveband range of 

interest [6]. The log transformation of BNC is given as BNClog = log(1/BNC). The contrast of 

reflectance is then increased after the log transformation (Figure 4). In addition, the first derivative of 

reflectance was also calculated based on the difference in pseudo absorption values from two bands 

with a spectral distance of 4 nm and the range of wavelengths [3,5]. The derivatives were then used to 

locate the red edge position (REP), which indicates the rapid increase in reflectance from the red to the 

near infrared region of the spectrum. The position of the red edge was determined by the wavelength 

corresponding to the largest first derivative value between 680 and 750 nm. 

For the ANNs procedure, the 60 red mangrove and the 90 black mangrove samples were randomly 

divided into groups for the training (36 red, 54 black), validation (12 red, 18 black), and testing (12 

red, 18 black) of the models. For consistency, all ANNs used 15 hidden neurons in one hidden layer, 

which generally provided the best overall results amongst all architectures attempted. The validation 

step minimizes network overfitting (or overtraining), wherein the network “memorizes” the N 

concentration given specific input values. The validation samples are not used in the training 

procedure. However, during training, if the errors in the outputs of the validation inputs increase while 

training errors decrease, then overfitting is occurring, and thus the training should be terminated. 

Testing samples are also not employed during network training but rather are used to verify that the 

network can generalize to recognize new, previously unseen inputs. 

Figure 3. Original reflectance spectrum and continuum lines for healthy black mangroves. 
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Figure 4. Continuum removed (a) mean canopy reflectance spectra for Avicennia germinans 

of three conditions (Tall: n = 30; Dwarf: n = 30; Poor: n = 30); (b) log transformed. 

 

4. Results and Discussion 

4.1. Mangrove Leaf Size and N concentration  

Significant differences in leaf size were observed between the different mangrove species and 

conditions. Leaves of Rhizophora mangle were generally larger than those of Avicennia germinans 

(35.17 cm2 vs 16.93 cm2, p < 0.001). Healthy leaves were also generally larger than those of poor 

condition leaves (46.50 cm2 vs. 23.84 cm2 for Rhizophora mangle and 24.42 cm2 vs. 14.38 cm2 for 

Avicennia germinans, p < 0.001). Dwarf mangrove leaves were significantly smaller than any of the 

other mangrove conditions at a mean size of only 11.74 cm2. The smaller leaves of the dwarf plants 

indicate a low capacity for water transport and reduced turgor, cell expansion, and growth [34]. 

Based on the leaf N concentration, mangroves in the study area exhibit large variation (Table 1). 

Black mangrove leaves had a significantly higher N concentration than red mangrove leaves (1.15% 

vs. 0.82%, p < 0.001). For each species, significant variation between the sampled conditions was also 

observed. For black mangrove, the poor condition indicated the highest leaf N concentration, followed 

by dwarf black and tall black. For the red mangrove, healthy trees recorded higher leaf N 
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concentrations than for the poor condition trees. Although these two recorded observations based on 

the two mangrove species appear to be contradictory, either of the observed trends could be validated 

based on previous literature (e.g., [10,12,14]). For example, leaf N concentrations of Rhizophora 

mangle in Belize were found increased along a gradient from fringe, transitional, to dwarf 

mangrove [10], whereas N concentrations of tall Rhizophora mangle in south Florida were reported 

significantly higher than that of dwarf for the same species [13]. Naidoo [12] reported that for 

Avicennia marina N concentrations were 20% higher in the dwarf mangrove than in the fringe 

mangrove (2.3% vs. 1.7%). A decline in leaf N (range of 0.787%–1.4%) was also recently observed 

from the fringe to the interior for a Campnosperma panamense wetland [35]. A lower leaf N 

concentration was also found for an area with high salinity [36]. 

Table 1. Leaf N concentration and leaf size of Avicennia germinans and Rhizophora 

mangle in a lagoon near Mazatlan, Mexico.  

Species 
Sample 

Size  

N (%) Leaf Area Leaf Length Average Width 

Mean ± 

Standard 

Error 

Range Mean ± 

Standard 

Error 

Range Mean ± 

Standard 

Error 

Range Mean ± 

Standard 

Error 

Range 

Rhizophora 

mangle 

60 0.82 ± 0.04 1.51 35.17 ± 1.7 51.43 13.60 ± 0.29 9.74 2.42 ± 0.07 2.32 

   Healthy  30 0.96 ± 0.06 1.27 46.50 ± 1.51 35.81 15.5 ± 0.24 6.23 2.9 ± 0.07 1.59 

   Poor condition 30 0.69 ± 0.05 0.82 23.85 ± 0.79 23.14 11.71 ± 0.20 5.47 1.94 ± 0.04 1.00 

Avicennia 

germinans 

90 1.15 ± 0.04 2.20 16.93 ± 0.67 29.53 10.57 ± 0.2 9.43 1.52 ± 0.05 1.93 

   Healthy  30 0.86 ± 0.01 0.19 24.42 ± 0.85 19.59 11.91 ± 0.44 9.43 2.03 ± 0.07 1.32 

   Dwarf  30 1.00 ± 0.01 0.23 11.74 ± 0.30 6.45 9.56 ± 0.19 3.59 1.17 ± 0.02 0.53 

  Poor condition 30 1.59 ± 0.07 1.85 14.38 ± 0.42 10.16 10.19 ± 0.14 2.88 1.34 ± 0.03 0.62 

These observed variations can be attributed to a variety of causes. Salinity is one of the most 

important factors controlling the local distributions of mangrove ecosystems [11,37,38], and 

consequently is one of the primary reasons that N concentrations vary within these forests [14]. 

Mangroves evolved in a setting where the rates of photosynthesis and growth are restricted by the 

capacity to maintain a favorable water balance with minimum salt uptake [39]. Lugo et al. [14] 

recently reported that N concentration is related positively to salinity for a variety of mangrove 

species. Variations in N concentration may also be explained by leaf senescence. Finally, nutrient 

limitations are also quite common in mangrove environments [10,12,13,39–41]. Nutrient 

concentrations in mangrove tissues result from long-term adaptations to nutrient availability in the 

surrounding environment. Consequently, local conditions could greatly affect the variation of N 

concentration, and more information is needed regarding the soil type and content as well as the local 

hydrological regime in order to explain such seemingly contradictory observations.  

4.2. Mangrove Spectral Properties 

As shown in Figure 5, the mangrove leaves of the forest studied depict the typical vegetation curve 

with high reflectance in the near-infrared (NIR) and low reflectance in the visible and short wavelength 
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infrared regions. However, there is considerable difference between the two mangrove species with 

respect to spectral reflectance, particularly in the NIR region. Compared with the healthy black 

mangrove, the healthy red mangrove has a much higher reflectance in the NIR and the short 

wavelength infrared bands, and a lower spectral reflectance in the visible region. Although the curves 

for healthy black and poor red are similar in the NIR region, higher reflectance (p < 0.001) in the 

visual light region indicates a yellowish leaf color for poor red. Moreover, the physiological condition 

also appears to influence the spectral response. In particular, the poor condition mangrove has lower 

reflectance in the NIR and a higher reflectance in the visible and short wavelength infrared regions. 

The higher reflectance in the visible region would explain the yellowish leaf color observed for the 

degraded mangroves.  

Figure 5. Mean spectral curves recorded for two mangrove species located near  

Mazatlan, Mexico. 

 

Variations amongst the various mangrove types were also observed when the slopes in the red and 

the red edge position were calculated (Figure 6). The red edge position is known to be related to 

chlorophyll absorption [42], and is therefore closely related to N concentration. The red edge often 

shifts with vegetation conditions such as stress and aging. A strong correlation between red edge 

position and N concentration was recently reported at the canopy level for various grass species [43]. 

In this investigation, healthy red has a steep slope with a peak near 724 nm. This corresponds to the 

sharp change of the spectral curve from concave to convex. For the healthy black, the peak was also 

close to 724 nm. However, these mangroves exhibit a gradually increasing plateau. Poor condition 

mangroves have a peak around 703 nm with steep slopes to the right of the peak. In contrast to the 

poor condition, dwarf black appears less stressed, exhibiting a more gradual decreasing plateau. These 

results are identical to what other investigators have observed for other plant types. Specifically, that 

low leaf chlorophyll concentration (and therefore, N concentration) is associated with REP values near 

700 nm, while high chlorophyll concentration in combination with leaf internal scattering influence 

REP values near 725 nm [44,45]. Consequently, the results of this study confirm that the location of 

the peaks varies with the amount of chlorophyll or N contained in the plant material [42]. 
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Figure 6. The first derivative reflectance of mean mangrove spectral response. The highest 

derivative value indicates the position of the red edge inflection point. 

 

4.3. N Concentration and Wavebands 

Overall, there is low correlation between reflectance/pseudo absorption and N concentration for 

single waveband (Figure 7). Moderate correlations were observed for wavebands in the green, red and 

red edge regions. Specifically, the largest correlation coefficient is −0.60 for black mangrove at 

waveband 599 nm (p < 0.001). This observation agrees with previous studies (e.g., [6]). Consequently, 

multiple wavebands are required to explore the relationships between N concentration and spectral 

responses. The relationships between spectral responses and N concentration are different for black 

and red mangroves, especially for visual light and red edge wavelength regions. There are positive 

correlations between reflectance and N concentration in the green light portion for black mangrove, 

and negative correlation for red mangrove.  

Figure 7. Correlations between mangrove leaf N concentration and leaf reflectance. 
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4.4. Predicting N Concentration Using Spectral Responses 

Both the SMLR and the ANNs could be used to predict N concentration, as quantified by the r2 

values (coefficient of determination), which measures how well future outcomes will be predicted by a 

model (Table 2). The SMLR model was robust, as regressions were all significant at  = 0.05, with all 

p-values less than 0.001 (for instance, for black mangroves, the significance for continuum removal 

(C) is p = 5.71 × 10−10; for log(1/BNC) for red mangroves, p = 1.23 × 10−12). In this case, r2 measures 

the match between observed N concentrations and those predicted by the model. The r2 values are 

generally higher than 0.7 for the analyses using the BNC and the log(1/BNC) (Table 2). However, 

there are consistently larger r2 values calculated for the testing ANN results than for the SMLR. 

Training r2 values for the ANNs were consistently close to 1.0, and therefore are not shown in Table 2. 

ANN performance, indicated by r2 values obtained after training with CR, log(1/CR), BNC, and 

log(1/BNC) are shown for red and black mangroves in Figures 8 and 9, respectively. These figures 

show how well predictions (data points) obtained from the ANNs correspond to the measured values.  

Table 2. Results of SMLR and ANN for N concentration measurements. 

Species Treatments 
SMLR  ANN 

r2 p # wavebands  r2 (Test) r2 (Validation) 

Avicennia 

germinans 

C 0.355 <0.001 1  0.861 0.113 

log(1/C) 0.331 <0.001 1  0.715 0.483 

BNC 0.750 <0.001 10  0.907 0.416 

log(1/BNC) 0.757 <0.001 10  0.830 0.455 

        

Rhizophora 

mangle 

C 0.453 <0.001 4  0.443 0.414 

log(1/C) 0.322 <0.001 4  0.822 0.453 

BNC 0.733 <0.001 7  0.870 0.444 

log(1/BNC) 0.709 <0.001 6  0.773 0.628 

For SMLR, BNC and log(1/BNC) resulted in better linear models for both black and red mangroves 

with a relatively small number of wavebands (between 6 and 10). The BNC transformation generally 

also yielded the best results for the ANNs (Figures 8 and 9). Although the high N concentration point 

seen in Figure 9(a,c) may appear to affect the r2 value, removal of this single point does not 

substantially affect the overall fit. Additionally, because this N concentration value was measured, it 

was included in the analysis. The log transformation reduces the effect of such points. BNC 

transformations were also found to improve the predictive capabilities of ANNs in another study [6]. 

For both SMLR and ANNs, the models for black mangrove N concentration had higher r2 values than 

for red mangroves (see Figure 9). 

Transformations of the continuum-removed reflectance of waveband ranges of interest, particularly 

BNC and log(1/BNC), yield r2 values greater than 0.7 for SMLR. This observation, along with the 

relatively good results for C and log(1/C), especially for red mangrove leaves, suggest a degree of 

nonlinearity between leaf reflectance and N concentration that is better modeled with the nonlinear 

ANN approach. 
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Figure 8. Artificial Neural Network (ANN) testing results for red mangrove reflectance. 

Dashed line indicates measured concentration = predicted concentration (i.e., r2 = 1) 

(a) Continuum-removed (CR), (b) log(1/CR), (c) BNC, (d) log(1/BNC). 

 

Figure 9. Artificial Neural Network (ANN) testing results for black mangrove reflectance. 

Dashed line indicates measured concentration = predicted concentration (i.e., r2 = 1) 

(a) Continuum-removed (CR), (b) log(1/CR), (c) BNC, (d) log(1/BNC). 
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Figure 9. Cont. 

 

Although the results were favourable, they should be approached with caution. Validation r2 values 

are consistently under 0.5 for most predictions, indicating that overfitting is a potential problem. A 

thorough statistical analysis of network weights should be undertaken to assess the relative importance 

of the wavebands selected as inputs [46]. Furthermore, feature selection techniques may indicate inputs 

to maximize network performance [24,47], but nonetheless may not select biochemically meaningful 

features. Consequently, the approach taken in this study, selecting a relatively large number of inputs 

corresponding to known N absorption features, steers a middle course between maximizing network 

performance and producing a model that can be better explained in biochemical terms. 

5. Conclusions 

Environmental monitoring is becoming increasingly important due to observed global and local 

climactic changes, as well as to the impact of environmental factors on communities, particularly those 

in areas with fragile ecosystems that are more likely to be affected by climactic factors. Consequently, 

the value of predictive models correspondingly increases. Assessing the health of mangroves and 

mangrove forests provides vital information about the habitat of tropical coastal wetland areas. In this 

study, predictions of leaf N concentration, one of the indicators of wetland health, based on spectral 

data collected from a degraded system were found to be a potentially important alternative approach 

for monitoring the condition of these important coastal wetlands. This is especially true given the 

range of conditions examined for two of the most common species of mangroves found in the 

Americas and Western Africa.  

In this investigation, significant differences were found between the spectral responses of the red 

and black mangroves, especially in the NIR region. Chemically, black mangrove leaves were also 

found to have a significantly higher N concentration than the red mangrove leaves (1.15% vs. 0.82%). 

When comparing individual wavebands to N concentrations, only weak to moderate correlations 

(−0.6–0.6) were found for these mangrove species. Continuum removed reflectance and other 

transformations of multiple wavebands were utilized to predict N concentration using an Artificial 

Neural Network (ANN) and a stepwise multiple linear regression (SMLR) model. Although the SMLR 

model was robust with low p-values (all < 0.001), the testing results indicated that the predictions from 
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the ANN were consistently better than those from the SMLR on the basis of r2 values. Correlation 

coefficients between measured and predicted N concentration using ANN were generally higher than 

0.82. Consequently, the results presented here suggest the efficacy of such an ANN approach in 

constructing a predictive model of nitrogen concentration based on leaf reflectance, as indicated by 

good agreement (coefficient of determination values) between observed N concentration and that 

predicted by the ANN model. However, as ANNs are highly nonlinear and therefore may be 

susceptible to unpredictable behaviour in the presence of outlier input, it must be emphasized that they 

do not replace standard statistical and biochemical approaches, but should be used in a complementary 

fashion to enhance the quality of information concerning mangrove condition.  

It is recommended that future work include an analysis of network weights to determine N 

concentration for other mangrove species as well as the potential influence of other nutrient 

concentrations (e.g., P and K) upon mangrove growth and spectral response. In addition, it is suggested 

that further exploration of more advanced ANN paradigms (e.g., different methods of training,  

intra-training validation, a more rigorous approach to determining the number of hidden units and 

layers, etc.), as well as research into hybrid statistical-computational intelligence techniques be 

considered to improve predictive power. Finally, it is suggested that further experiments be conducted 

using satellite-borne or air-borne hyperspectral data in conjunction with field N concentration data to 

test the capability of ANN in mapping mangrove N concentration. 
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