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Abstract: Basalt outcrops are significant features in the Western United States and 

consistently present challenges to Natural Resources Conservation Service (NRCS) soil 

mapping efforts. Current soil survey methods to estimate basalt outcrops involve field 

transects and are impractical for mapping regionally extensive areas. The purpose of this 

research was to investigate remote sensing methods to effectively determine the presence 

of basalt rock outcrops. Five Landsat 5 TM scenes (path 39, row 29) over the year 2007 

growing season were processed and analyzed to detect and quantify basalt outcrops across 

the Clark Area Soil Survey, ID, USA (4,570 km
2
). The Robust Classification Method 

(RCM) using the Spectral Angle Mapper (SAM) method and Random Forest (RF) 

classifications was applied to individual scenes and to a multitemporal stack of the five 

images. The highest performing RCM basalt classification was obtained using the 18 July 

scene, which yielded an overall accuracy of 60.45%. The RF classifications applied to the 

same datasets yielded slightly better overall classification rates when using the 

multitemporal stack (72.35%) than when using the 18 July scene (71.13%) and the same 

rate of successfully predicting basalt (61.76%) using out-of-bag sampling. For optimal 

RCM and RF classifications, uncertainty tended to be lowest in irrigated areas; however, 

the RCM uncertainty map included more extensive areas of low uncertainty that also 

encompassed forested hillslopes and riparian areas. RCM uncertainty was sensitive to the 

influence of bright soil reflectance, while RF uncertainty was sensitive to the influence of 

shadows. Quantification of basalt requires continued investigation to reduce the influence 
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of vegetation, lichen and loess on basalt detection. With further development, remote 

sensing tools have the potential to support soil survey mapping of lava fields covering 

expansive areas in the Western United States and other regions of the world with  

similar soilscapes. 

Keywords: Landsat; multispectral; multitemporal; basalt; geology; lichen;  

Robust Classification Method; Random Forests; soil survey 

 

1. Introduction 

Landowners and managers use soil map units in local Natural Resources Conservation Service 

(NRCS) soil surveys to understand the land use limitations of an area. Each type of soil map unit in the 

survey includes a description, in terms of percent of composition, of any feature with the potential to 

adversely affect land management practices (e.g., rock outcrop). Presently, the most accurate way to 

determine the percentage of rock outcrop in any soil map unit involves field transect data collection. 

While transect data collection is an adequate estimation method for a small area, it is a time-intensive 

and an impractical mapping technique for large areas, such as Idaho’s Eastern Snake River Plain 

(ESRP). A common member of the soil map unit descriptions in this survey area is exposed basalt 

bedrock. The amount of rock outcrop present is highly variable, because of the relief and eruption time 

of the lava flows and the amount of soil that has been deposited on them. The quantity of forage 

available for domestic animals and wildlife, as well as the placement of routes for energy infrastructure, 

such as water pipelines and roads, are highly dependent on the amount and location of rock outcrops. 

As a result, new remote mapping methods are needed to accurately determine the spatial extent of rock 

outcrops in soil map units across this and similar landscapes. The purpose of this research is to 

investigate remote sensing methods for effectively determining the presence of basalt rock outcrops for 

soil mapping in regions, such as the Clark Area Soil Survey area, Idaho, USA. 

Remote sensing techniques that have recently been investigated for mapping soil and rock outcrops 

from moderate resolution imagery (i.e., Landsat 30-m pixels) include using band ratios, coupled with 

Synthetic Aperture Radar (SAR) data, vegetation masking and linear spectral unmixing. For example, 

several studies have leveraged the multiple broad bands available from Landsat 5 TM and Landsat 7 

ETM sensors by testing the usefulness of band combinations and band ratios (e.g., red band/NIR bad) 

in detecting organic carbon-based soils, gypsic and natric soils, limestone outcrops and lithologic units 

and to separate dry soil from other components [1–7]. Landsat has also been coupled with Synthetic 

Aperture Radar (SAR) data, because the optical data from Landsat is complimentary to microwave 

data, which can provide estimates of surface terrain, such as elevation and roughness. Such fusion 

techniques have been used to successfully discriminate various geologic features and depositional 

components, including granites, pelitic schist and mafic and non-mafic igneous rocks [8,9]. In addition, 

the Normalized Difference Vegetation Index (NDVI), which ranges from −1 to one and is relatable to 

vegetation characteristics associated with photosynthetically active radiation [10], has been used in 

geological applications to mask the influence of vegetation [7,11]. Vegetation masks are built by 

identifying values at the threshold between vegetation and non-vegetation and can be applied during 
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classification to remove vegetation and to improve lithological discrimination. Linear spectral 

unmixing techniques have been used with some success to generate fraction images from multispectral 

imagery for geology and soil applications (e.g., [2,9,12–17]). Leverington and Moon evaluated the 

ability to discriminate among igneous and metamorphic exposed outcrops in a Landsat TM image 

using linear spectral unmixing and found challenges associated with the spectral diversity of 

lithological classes in the study area and the confounding effects of lichen [2]. 

A previous remote sensing investigation by Moore et al., ―Quantifying basalt rock outcrops in 

NRCS soil map units using Landsat 5 TM data‖, attempted to quantify rock outcrops on lava fields in 

the same Clark County, Idaho location that is the focus of this study [18]. Rock outcrops were 

classified using the Spectral Angle Mapper (SAM) classification method to an overall estimated 

accuracy level of 82%. Moore et al. [18] used a single date (July 2006) Landsat 5 TM image without 

using the thermal band. However the incorporation of the thermal infrared band into the classification 

process has been found to improve land cover classification accuracy [19–21] and has a potential to 

improve discrimination of vegetation and rock outcrops. Furthermore, using single date imagery has 

inherent limitations, as it does not account for vegetation heterogeneity, due to phenological variation, 

which can be important to separate vegetation from basalt outcrop areas. Specifically, classification 

using a multi-date stack of Landsat imagery can have several advantages. First, the multitemporal 

stack aggregates vegetation spectral information at various phenological stages and has the potential to 

compensate for limited spectral information from a single image [22,23]. It also helps capture a range 

of the bidirectional reflectance distribution function (BRDF) effect on surface reflectance and 

phenology as the sun angle changes with the season [24]. Finally, multitemporal stacking generates a 

higher number of predictor variables, which are amenable to machine learning ensemble approaches to 

classification by providing robust class accuracy without causing the model to overfit [25,26]. This is 

in contrast to traditional remote sensing classifications, such as maximum likelihood, where high  

data-dimensionality may result in lower classification accuracies [27,28]. The study presented in this 

paper builds upon the work of Moore et al. [18] by expanding ground sampling efforts and including 

both individual scene dates and a multitemporal stack of multispectral imagery, as well as assessing 

the effectiveness of combinations of different band transformations and ratios, including the thermal 

band, for basalt classification. We also expand the SAM classification by Moore et al. [18] by 

implementing it in the Robust Classification Method (RCM) [6] and Random Forests (RF) [29] in 

order to generate statistically robust accuracy assessments. 

The RCM is a new procedure that has been developed and tested for surficial materials in northern 

latitudes [6,7]. The RCM is designed to account for a wide range of variability in the spectral 

responses of ground reference targets and operates by randomly and repeatedly sampling a training 

dataset, producing classifications and, then, independently validating the dataset through  

cross-validation. The RCM can be applied to a suite of supervised classification algorithms (e.g., SAM, 

parallelepiped, maximum likelihood), and the number of repetitions is specified by the user, as are the 

portions of ground reference data to be used for training and validation. The procedure generates a 

series of classified maps (range of solutions), along with uncertainty maps (training area variability) 

and summary statistics. A detailed discussion of RCM can be found in the Harris et al. 2012 

publication [6]. In addition to RCM, we also evaluated Landsat basalt mapping capabilities using the 

RF variable selection method. The RF is a machine learning algorithm that uses a tree-based classifier 
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method and is iterative in design to address limitations associated with overfitting and instability that 

can arise when using conventional classification tree-based approaches. Multiple bootstrap samples 

from the original training dataset are selected (with replacement) to generate multiple classification 

trees, and pixels are classified by taking the most popular voted class from all the tree predictors in the 

forest [30]. Final outputs include two measurements of variable importance. One of these 

measurements is based on the degree to which including the remote sensing variable in the model 

reduces mean squared error. The other measurement of variable importance is the Gini index and 

represents a degree of node impurity [31]. To our knowledge, this work represents one of the first 

studies to evaluate the use of both RCM and RF in geological mapping applications using moderate 

resolution optical data. 

2. Materials and Methods 

2.1. Study Area 

Research was conducted in a lava field (1,153 km
2
) along the southeastern and south-central regions 

of Clark County, ID, USA, with emphasis on a Soil Survey Map Unit area (68 km
2
) located within the 

lava field, where basalt rock outcrops are prevalent features (Figure 1). Clark County lies within the 

northern-most region of the ESRP. The upper Snake River basin stretches nearly 92,722 km
2
 across 

southern Idaho and into western Wyoming, USA. The ESRP is located within this basin and comprised 

of lava fields measuring roughly 97 km by 274 km and covering almost 27,972 km
2
. This cold, arid 

landscape is situated along the mountain ranges and valley that lie at the foot of the continental divide. 

The average annual air temperature is approximately 6 °C, and average annual precipitation is 33 cm. 

The average number of days with at least 2.5 cm of snow on the ground is 118. The nearest towns are 

Dubois (44°10'26''N, 112°13'54''W) and Spencer (44°22'2''N, 112°11'32''W), ID, USA, with respective 

elevations of 1,569 and 1,793 m. Daily precipitation recorded by the Dubois Experiment Station 

National Weather Service network for the months of May, June, July, August and September, 2007, 

indicated the following rain events: 10.67 mm from 3 to 4 May; 8.38 mm on 22 May; 6.60 mm from 3 

to 7 June; 2.03 mm from 7 to 8 July; 10.16 mm from 24 to 26 July; 7.11 mm from 3 to 5 August; 

17.76 mm from 4 to 6 September; 2.54 mm on 18 September; 8.38 mm on 23 September. 

The soils in the study area are formed dominantly in loess and eolian sands over basalt and have 

varying degrees of development depending on the age of the individual lava flows and where they are 

found. Exposed basalt outcrop is common on this landscape, though the amount present is highly 

variable, due to the relief and eruption time of the flows and the amount of soil parent material that has 

been deposited over them. 

The extent of the rock outcrops is also variable. Pleistocene basalt lava fields cover much of the 

central and eastern valley floor. Quaternary alluvial deposits cover the western portion of the valley 

floor moving into Pliocene and Upper Miocene felsic volcanic rocks and rhyolite flows in the 

mountain range [32]. The Pleistocene lava fields are comprised of pahoehoe and a’a lava flows. 

Pahoehoe flows are characterized by smooth or rope-like surfaces, and a’a flows are characterized by a 

rough, jagged, cindery surface [33]. Pressure ridges and tumuli (mounds formed as lava flows and 

cools at different rates) that are bare or partially obscured by vegetation are common on pahoehoe 
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flows. These same types of rock outcrops are also present on a’a flows, but generally have a multitude 

of rock fragments around them. Equally as common are rock outcrops exposed as high points on the 

undulating lava flows. Eolian depositions have not covered all of the high points, and in some areas, 

rock is exposed even in concave or smooth positions. Cinder cones, fissure vents, troughs, buttes and 

ends of lava flow lobes also contribute to the amount of rock outcrops present on the landscape  

(Figure 2). 

Figure 1. The basalt mapping study area and field sampling locations in Clark County, 

ID, USA.  

 

Figure 2. The extent and amount of exposed basalt rock outcrops is highly variable on the 

Eastern Snake River Plain, with most outcrops partially obscured by grasses and sagebrush. 

(a) Pressure ridges. (b) Columnar vesicular basalt. 

 

(a) (b) 
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2.2. Field Data Collection 

Field data were collected over the 2007 and 2008 summer seasons. Field sampling was based on 

field knowledge and random points generated in a geographic information system (GIS) using Hawth’s 

Analysis Tools [34]. A stratified random sampling approach was utilized to collect polygons  

(the perimeter of selected areas) and points (center of selected areas) of basalt rock outcrops, rhyolite 

outcrops, non-irrigated vegetation and soil on the valley floor of the study area. The stratified random 

sampling was based on proportionally stratifying data collection in areas that were feasible to access 

and where outcrops of basalt and/or rhyolite were generally known to occur (in consultation with 

USDA NRCS personnel). A Trimble GeoXT GPS unit (Trimble Navigation Limited, Westminster, CO, 

USA) was used to record the geographic locations of the sample sites, which were later differentially 

corrected to sub-meter accuracy via Trimble Pathfinder Office automated post-processing software. 

Field data polygons ranged in an area from approximately 20 m
2
 to 925 m

2
 in length and/or width. 

Efforts were made to obtain polygons equal to or greater than 30-m in size to best match the Landsat 

spectral response. This was accomplished where possible; however, it was difficult to locate basalt and 

soil polygons that did not contain varying percentages of mixed components (basalt, soil and 

vegetation). Recorded field observations consisted of visual estimates of the percent presence for each 

class, summing to 100% within each polygon. Slope gradient and shape (convex, concave, linear) and 

rock fragment size [35] were recorded for each polygon. Also noted were plant species, percent litter 

and the percent cover of lichen on the rocks along with photograph(s) and a description of nearby 

components outside the polygon boundary. 

A total of 68 basalt outcrop polygons were collected within the boundaries of Clark County, Idaho. 

The basalt polygons contained 35% to 100% basalt, with the majority of polygons containing 

approximately 70% basalt. The lack of knowledge and/or existence of large rhyolite and bare soil sites 

resulted in the collection of fewer polygons for these classes (5 for rhyolite and 3 for soil). Even so, 

these classes were sampled, because preliminary analyses [18] indicated that they are among the 

components in the study area with which basalt was spectrally confused. Rhyolite polygons contained 

60% to 90% rhyolite and 0% basalt. Two of the soil polygons contained 100% bare ground and the 

third contained 35% soil. A total of 33 rangeland vegetation polygons were collected within Clark 

County, and when combined with the rhyolite and soil, a total of 41 ―non-basalt‖ polygons were 

collected. All of the vegetation polygons contained at least 55% vegetation, with the exception of  

two polygons that contained 30% to 35% vegetation, but 30% to 80% litter. Basalt was present in only 

one of the non-basalt polygons, but in trace amounts less than 5%. A separate lichen class was not 

defined for this study, because occurrences had high physical and spatial variability across the study 

area. In addition, a high degree of spectral confusion between lichen and other vegetation targets is 

expected using Landsat imagery. 

2.3. Image Acquisition and Preprocessing 

Five Landsat 5 TM scenes (path 39, row 29) dated 15 May (1% cloud cover), 2 July (8% cloud 

cover), 18 July (0% cloud cover), 3 August (9% cloud cover) and 20 September (0% cloud cover) were 

acquired for the year 2007 growing season from the US Geological Survey. All five Level 1T standard 
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terrain corrected images were processed using the Environment for Visualizing Images (ENVI) 

version 4.8 software [36] and Environmental Systems Research Institute (ESRI) ArcGIS version 10.1 

software [37]. The Landsat images were spectrally subset to contain Band 1 (blue, 0.45–0.52 µm), 

Band 2 (green, 0.52–0.60 µm), Band 3 (red, 0.63–0.69 µm), Band 4 (near-infrared, 0.76–0.90 µm), 

Band 5 (mid-infrared, 1.55–1.75 µm) and Band 7 (mid-infrared, 2.08–2.35 µm). Landsat images were 

converted to calibrated radiance and, then, further converted to surface reflectance in FLAASH [38] 

for the purpose of facilitating multi-date scene comparisons and multitemporal stacking. FLAASH 

parameters were specific to the Landsat 5 TM sensor. A mid-latitude atmospheric model was used in 

combination with a rural aerosol model and water column multiplier of 1.0 and a 2-band  

Kaufman-Tanre aerosol retrieval (Band 7 for the upper channel and Band 3 for the lower channel). 

Band 6 (thermal, 11.45 µm, resampled to 30 m) data were atmospherically corrected to surface 

reflectance in a separate process that involved use of local transmittance, upwelling radiance, and 

downwelling radiance values provided by NASA and the formula provided by Coll et al. [39]. 

Georegistration error was assessed by calculating average error from the Ground Control Point (GCP) 

files associated with the 5 May, 2 July, 18 July, 3 August and 20 September Level 1T Landsat scenes 

and was estimated at 4.60 m, 3.82 m, 3.86 m, 3.93 m and 3.73 m, respectively. Lastly, the images were 

spatially subset to the Clark County, Idaho, boundary using a mask in order to focus classification 

efforts on the study area (hereafter referred to as Landsat scenes) and to minimize the influence of 

cloud cover on classification results. A multitemporal stack of the five Landsat scenes was generated 

by selecting the 20 September scene as the base image (the image with the lowest average 

georegistration error) and co-registering the remaining scenes to the September scene. Co-registration 

accuracy was evaluated using 11 to 13 GCPs manually defined throughout the Landsat scenes. 

Average root mean squared error (RMSE) ranged from 0.02 to 0.33 m among the co-registered images. 

2.4. Image Processing 

The RCM (SAM component) and RF classifications were applied to each of the five individual 

Landsat scenes acquired over the 2007 growing season and to a multitemporal stack comprised of  

65 bands—13 for each of the five acquisition dates. Each set of 13 bands consisted of all seven 

Landsat bands (surface reflectance); a second version of the thermal band converted to temperature 

(Kelvins), tasseled cap (TC) transformed indices (Brightness, Greenness and Wetness), a Band 4 to 

Band 6 ratio and NDVI. Tasseled cap transformations rotate Landsat TM data, such that the data 

occupies three primary dimensions. Brightness is a measure of overall reflectance that can differentiate 

light and dark soils. Greenness is a contrast between near-infrared and visible reflectance and,  

therefore, related to vegetation density. Wetness is a contrast between visible/near-infrared (VNIR) 

and shortwave-infrared (SWIR) reflectance and is related to soil features, including moisture status. 

Transition zones between these dimensions represent partially vegetated pixels [40]. The Band 4 to 

Band 6 ratio was included by the authors after exploratory data analysis indicated greater spectral 

separability at these near- and mid-infrared locations. 

Separability was also evaluated using single-date classifications, in combination with basalt and 

non-basalt ground reference data classes to calculate Jeffries-Matusita (JM) and transformed 

divergence (TD) values. Both measurements range from 0 to 2.0 and indicate how well selected region 



Remote Sens. 2013, 5 4864 

 

 

of interest (ROI) pairs are statistically separate. A value greater than 1.9 indicates good pair 

separability [41]. The tasseled cap transformed bands were not included in the separability analysis, 

because these indices do not permit matrix inversions—operations that are part of the separability 

calculations. To create ROIs from the ground reference polygons, it was necessary to edit the polygon 

mapping, such that each polygon was converted to a point (based on the geometric center of the 

boundary) used to extract a single corresponding Landsat pixel. This conversion resulted in 68 basalt 

pixels and 41 non-basalt pixels. 

In the multi-date RCM and RF classifications, five images over a single growing season were 

stacked and processed to improve the separation of vegetation from rock by leveraging changes in 

vegetation phenology over the growing season. Previous work suggests that stacking multispectral 

images can produce an image that has proven useful for discriminating vegetation cover types and for 

distinguishing temporally dynamic targets, such as vegetation from temporally stable targets, such as 

rock outcrops (e.g., [22,42–44]). 

2.4.1. RCM Classifications 

A series of RCM runs were applied to each of the five individual Landsat scenes (13 bands per 

scene) and to a 65-band multitemporal stack derived from the five scenes. The single and multi-date 

RCM classifications were performed using the SAM classification method, because a SAM 

classification was used in the first study [18] and because SAM yielded an overall accuracy of up to 

72% using 2000 Landsat 7 ETM+ imagery as part of a preliminary evaluation of this study. For each 

RCM run, we specified 60 as the number of repetitions and pixel as the sampling type (rather than 

polygon). We hypothesized that results should stabilize well before 60 repetitions, because 30 to 40 

repetitions was considered sufficient in past studies with less within-class training data [6,7]. Pixels 

were selected as the sampling unit, because ENVI software limitations associated with converting 

subpixel polygon features to ROIs made it necessary to convert the original polygon mapping into 

points in order to extract spectral information from the appropriate corresponding pixels. We also 

specified that 50% of the basalt ROI pixels (n = 68) and 50% the non-basalt ROI pixels (n = 41) be 

used as training data and the remaining 50% be used as validation data. The rationale for selecting a 50% 

threshold is based on results from an unrelated case study and that the average accuracy obtained from 

RCM is unbiased when half of the dataset is used for training and the other half for validation [6]. 

RCM classifications produce several map outputs that are summarized on a pixel-to-pixel basis: a 

majority classification; a majority classification, percent majority; a variability map; and rule images 

for each class. The majority classification represents the class to which a pixel is assigned most 

frequently. The percent majority classification depicts the percent of occurrences for which a pixel is 

classified ―correctly‖, or as the majority. The percent majority classification is an uncertainty map 

whereby a higher percent majority equates to greater confidence that the pixel is classified correctly. 

For example, if two pixels have a basalt majority classification (at least 50% of the repetitions are 

basalt), then the pixel that is classified as basalt for all 60 repetitions (100% majority) is more likely to 

be classified correctly than a pixel that was classified as basalt for 35 of the repetitions (58% majority). 

The remaining uncertainty maps are variations of the percent majority classification map. The 

variability map is expressed in terms of absolute values or, in other words, a count of the number of 
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different class assignments that occurred across all repetitions. In the case of our study, the variability 

map is populated with values of one, two or three (i.e., non-basalt, basalt and unclassified or tied). Rule 

images (average and standard deviation of repetitions) are also generated from the RCM classifications 

for average, best and worst case scenarios. 

2.4.2. RF Classifications 

A series of RF classifications were applied to each of the five individual Landsat scenes acquired 

over the 2007 growing season and to a multitemporal stack comprised of 65 bands (13 for each of the 

five acquisition dates). Training data consisted of basalt ROI pixels (n = 68) and non-basalt pixels  

(n = 41) derived from the original polygon data collected in the field. For each RF run, a total of 

bootstrap 2,500 trees were grown with three predictors considered for each node. To estimate the 

classification accuracy and variable importance, out-of-bag (OOB) sampling [28] was used. The OOB 

sampling method uses the remaining training samples not in a particular tree to construct synthetic 

learning samples and eliminates the need for test data sets or cross-validation. An iterative variable 

reduction using the Gini importance index [45] criteria was used to select the important bands. The 

band with the lowest importance index was removed each iteration, with the final selected set of bands 

producing the lowest classification errors. The RF model with the best subset variables was used to 

classify (score) the remaining study area. The RF uses a weighted voting system, whereby the entire 

forest votes for each class and generates probabilities of class membership for each class. Basalt and 

non-basalt classes were generated for every grid record using a probability threshold of 0.5. In other 

words, if a grid has greater than a 0.5 probability of basalt membership, the grid is assigned to the 

basalt class, and vice versa, which resulted in generation of no unclassified grids. A classification 

uncertainty map was also generated by computing the maximum of the probability of class 

membership between basalt and non-basalt classes. 

3. Results and Discussion 

The analysis of separability between basalt and non-basalt classes across 10 bands (surface 

reflectance, temperature, Band 4 to Band 6 ratio and NDVI) for individual Landsat scene dates  

(Figure 3) indicated that the July 18 scene demonstrated evidence of good ROI pair separability with a 

TD value of 1.98 (1.60 JM). The 2 July scene had the second highest level of separability with a TD 

value of 1.66 (1.4 JM). Higher degrees of separability between basalt and non-basalt targets in the July 

scenes may have been due in part to dry vegetation conditions, as there was only 6.60 mm of rain in 

June, preceding the 2 July scene, and only 2.03 mm of rain had fallen before the 18 July scene. By 

comparison, 51.56 mm of rain had fallen 10 to 11 days before the 15 May Landsat scene. There was a 

rain event during the 3 August overpass, and 14.22 mm of rain had fallen between the 3 August scene 

and the 20 September scene. It should also be noted that separability decreased when fewer than  

10 bands were considered for a given scene. 
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Figure 3. Measures of separability obtained from individual scene dates in 2007 (15 May, 

2 July, 18 July, 3 August and 20 September) between pairs of basalt and non-basalt reference 

data. Values greater than 1.9 are considered to have good separability for classification. 

 

3.1. RCM Classifications 

Classification results using RCM and the SAM method indicate that, on average, slightly greater 

accuracies are achieved using 18 July, rather than other single-date collections or the multitemporal 

stack (Table 1). The improved results from 18 July are likely influenced by the separability described 

above, with vegetation senesced and basalt cover maximized. User’s and producer’s accuracies were 

consistently close in value, which indicates a tendency to neither over-predict nor under-predict; 

however, low kappa coefficients suggest that the classifications could be performing only slightly 

better than classification results generated by chance. Overall, basalt classification accuracies were 

higher than non-basalt classification accuracies and may be related to the number of basalt ROI pixels 

(n = 68) compared to the number of non-basalt ROI pixels (n = 41). The majority classification map 

that was generated by the RCM classifications (Figure 4a) indicated the presence of basalt across areas 

of known lava fields in the southeastern portion of Clark County; however, occurrences outside of the 

general area of lava flow may be false positives. Many of these occurrences coincide with areas of low 

uncertainty (50%–70% majority), which could be improved through additional sampling efforts. 

Classification uncertainty, as measured by the percent of repetitions for which individual pixels were 

assigned to the majority class (Figure 4b), was lowest across irrigated land, riparian areas and forested 

hillslopes. Classification uncertainty tended to be highest in xeric areas and areas of bright soil 

reflectance, including dirt roads. 
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Table 1. A comparison of average producer’s, user’s and overall accuracy results obtained 

from the Robust Classification Method (RCM) using the Spectral Angle Mapper (SAM) 

classification method to detect basalt outcrops. 

 Basalt  

Average 

(User’s|Producer’s) 

Non-Basalt  

Average 

(User’s|Producer’s) 

Avg. Overall 

Average 

Accuracy 

Average 

Kappa 

Coefficient 

15 May 2007 (13 bands) 66.77%|63.50% 44.97%|48.31% 57.70% 0.12 

2 July 2007 (13 bands) 66.01%|58.82% 45.45%|51.38% 55.98% 0.10 

18 July 2007 (13 bands) 66.28%|68.65% 49.32%|51.03% 60.45% 0.12 

3 August 2007 (13 bands) 62.40%|57.03% 39.55%|44.72% 52.32% 0.02 

20 September 2007 (13 bands) 59.08%|53.87% 34.89%|59.02% 48.58% −0.06 

Multitemporal Stack (65 bands) 66.12%|67.80% 46.74%|43.89% 58.67% 0.12 

Figure 4. Basalt mapping results obtained from 18 July Landsat scene using the Robust 

Classification Method (RCM) and the Spectral Angle Mapper (SAM) method, in Clark 

County, ID, USA. Average overall classification accuracy is 60.45%. (a) A classification 

uncertainty map was also generated by calculating where the percent majority is the 

percent of repetitions (60) that resulted in the pixel being assigned to the majority class. 

(b) A high percent majority value equates to low uncertainty. 

 
  

(a) 
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Figure 4. Cont. 

 

3.2. RF Classifications 

Random Forest results indicated that the multi-temporal stack performed better than any individual 

scene date when considering overall classification rate and receiver operator characteristic (ROC) area 

under curve (AUC) statistics (Table 2). The three most important variables in predicting basalt and 

non-basalt locations in the multitemporal stack were TC greenness values from the 2 July and  

the 20 September scenes and Band 4 from the 18 July scene. The TC greenness index was also 

consistently identified as an important variable for all five single-date classifications. Even though the 

TC greenness index is sensitive to topography [46], it is known to be less sensitive to soil type and 

moisture [47], thus providing an important measure for separating vegetation from basalt rocks in a 

study area with relatively flat terrain. Of interest also is the identification of Band 1 as an important 

variable in the July 18 classification, which performed as well as the multitemporal stack in predicting 

basalt. The spectral information from Band 1 may have emphasized the basalt weathering and/or 

mineralogy during a time of vegetation senescence. Contrary to our expectations, the thermal band did 

not perform well and was not one of the top ten best variables in any of the single date or 

multitemporal stack imagery. This might be due to the scale (120 m) of the thermal band in Landsat 

(which was resampled to 30 m) being too coarse compared to the rock outcrop ROIs. 

 

(b) 
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Table 2. A comparison of classification accuracy results obtained using Random Forest (RF) to detect basalt outcrops. ROC, receiver operator 

characteristic; OOB, out-of-bag; NDVI, Normalized Difference Vegetation Index. 

Landsat Data 
No. of 

Bands 

Average Log 

Likelihood 

ROC (Area 

Under Curve) 

Non-Basalt 

Prediction (OOB) 

Success 

Basalt 

Prediction 

(OOB) Success 

Classificatio

n Rate 

(Overall) 

Best Variables 

5 time series (5/15/2007 to 

9/20/2007) 
65 0.57 0.79 82.93% 61.76% 72.35% 

Greenness (7/2/2007) 

Band 4 (0.83 µm 7/18/2007) 

Greenness (9/20/2007) 

15 May 2007 13 0.76 0.63 75.61% 50.00% 62.81% 

NDVI 

Greenness 

Brightness 

Band 7 (2.215 µm) 

2 July 2007 13 0.65 0.73 85.37% 55.88% 70.63% 

Greenness 

Band 4 (0.83 µm) 

Wetness 

NDVI 

18 July 2007 13 0.66 0.72 80.49% 61.76% 71.13% 

Band 4 (0.83 µm) 

Greenness 

Band 1 (0.485 µm) 

3 August 2007 13 0.69 0.66 73.17% 41.18% 57.18% 

Wetness 

Band 4 (0.83 µm) 

Greenness 

Band Ratio 4:7  

(0.83 µm: 2.215 µm) 

20 September 2007 13 0.74 0.64 70.73% 54.41% 62.57% 

Greenness 

Band 4 (0.83 µm) 

Band Ratio 4:7  

(0.83 µm: 2.215 µm) 
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Figure 5. (a) Basalt mapping results obtained from the multitemporal Landsat scene using 

the Random Forest (RF) method, in Clark County, ID, USA. The overall classification rate 

is 72.35%. (b) A classification uncertainty map was also generated by computing the 

maximum of the probability of class membership between basalt and non-basalt classes. A 

high probability value equates to low uncertainty. 

 

 

The best performing classification output (multitemporal stack) that was generated by the RF 

classifications (Figure 5a) indicated the presence of basalt across areas of known lava fields in the 

southeastern portion of Clark County; however, occurrences outside of the general area of lava flow 

may be false positives. Classification uncertainty, as measured by computing the maximum of the 

probability of class membership between basalt and non-basalt classes (Figure 4b), resulted in an 

(a) 

(b) 
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evenly distributed range of values. Areas of lower uncertainty tended to coincide with irrigated lands 

and, to a lesser extent, with riparian areas and forested hillslopes. Classification uncertainty tended to 

be highest in areas influenced by shadow. 

3.3. Comparative Results 

For both the RCM and the RF approach, the highest basalt classification results were achieved 

using the 18 July scene (13 bands). The RCM approach resulted in a 68.65% producer’s accuracy and 

a 66.28% user’s accuracy. The RF approach resulted in a 61.76% rate of successful basalt prediction. 

The multitemporal stack performed equally as well as the 18 July scene in predicting basalt in the RF 

classification and generated the highest overall classification accuracy (72.35%). The OOB estimates 

of error generated by the RF classification, although not directly comparable to the user’s and 

producer’s accuracy rates generated in RCM, do suggest that RF classification did a better job overall 

at predicting non-basalt occurrences. The OOB estimates of non-basalt prediction success for RF 

classification ranged from 70.73% to 82.93%, while the non-basalt user’s and producer’s accuracies 

for RCM ranged from 34.89% to 46.74% and from 43.89% to 59.02%, respectively. The OOB 

estimates of successful basalt prediction using RF ranged from 41.18% to 61.76%, while the basalt 

user’s and producer’s accuracies for RCM ranged from 59.08% to 66.77% and from 53.87% to 68.65%, 

respectively. The RCM approach using the SAM method compares the spectral similarity by 

calculating the angle between the image spectra and the training endmember spectra, whereby smaller 

angles represent greater degrees of similarity. In contrast, the RF approach is decision-tree based and 

tends to perform better when a large number of predictor variables are included in the analysis. This 

could explain why the multitemporal stack performed best using RF, while the July 18 scenario 

performed best using the RCM. On the other hand, it should be noted that the greenness from July and 

the greenness from August in the multitemporal stack are not significantly correlated (r = 0.67, n. s. at 

0.05). This example highlights the importance of using a multi-date stack to represent a range of 

spectral variability within the best predictor(s) (the greenness band in this case). For optimal RCM and 

RF classifications, uncertainty tended to be lowest in irrigated areas; however, the RCM uncertainty 

map included more extensive areas of low uncertainty that also encompassed forested hillslopes and 

riparian areas (Figures 4a and 5b). RCM uncertainty was sensitive to the influence of bright soil 

reflectance, while RF uncertainty was sensitive to the influence of shadows. 

3.4. Limitations 

Primary limitations for this study were related to field data collection, image acquisition dates, 

accuracy assessment methods and, to a lesser degree, georegistration errors. The time lag between the 

2007 images and 2007–2008 field data collection left some speculation as to the validity of recorded 

field observations in relation to the imagery. The fractional presence of exposed basalt could be 

confounded by changes in vegetation and soil coverage between image acquisition and field data 

collection dates. In addition, the number of polygons collected within the project area was not balanced 

between basalt and vegetation; therefore, bias may have been introduced in the accuracy assessments 

and could have contributed to low producer’s accuracies. Selection of a specific map unit and a 

balanced collection of polygons within its boundary before image processing begins would provide 
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more conclusive results. Another limitation associated with field data collection was a range of 

polygon sizes and composition. Uncertainty is expected to increase in cases where overlap between 

Landsat pixels and ground reference polygons was minimal; for example, in areas where small 

polygons were located on the boundary of two Landsat pixels. Uncertainty is also expected to increase 

in cases where basalt ground reference polygons cover small areas or where the percent coverage is 

relatively low. Georegistration errors in the terrain-corrected imagery were low (3.73 to 4.60 m), as 

were the co-registration errors (0.02 to 0.33 m), and errors from the GPS locations of ground truth data 

were estimated to be less than 1 m (Trimble Navigation Limited, Westminster, CO, USA). Because 

these errors were well within one image pixel (30 m), the application of buffers to the ground truth 

data to accommodate potential positioning errors were not used in this study. A topographic correction 

was not applied to the imagery; while there is large topographic relief in the northern portions of Clark 

County, the majority of the mapping occurred across elevation ranging less than 500 m. Regardless, a 

topographic correction could assist with normalizing the reflectance across dates, thus improving 

sensitivity to basalt. 

3.5. Further Research 

Continued studies should focus on methods to overcome the effects of mixed pixels and maximize 

class separation by accentuating the target and minimizing background components. Hybrid techniques 

that combine multiple methods, such as NDVI, supervised classification, spectral mixture analysis and 

image segmentation on multitemporal images have been found to effectively increase performance 

over traditional multispectral classification methods [48,49]. We suggest more selective band choices 

to create a multitemporal stack [42], stacking images acquired over multiple years and possibly 

coupling the Landsat data with information from LiDAR, InSAR or IFSAR to emphasize both spectral 

and textural features [8,9]. 

Considering the high percentage of lichen cover on basalt in the study area, methods to detect  

lichen should also be investigated as a means to indirectly detect basalt and rock outcrops in similar 

soilscapes. The spectral reflectance of rock growing lichens has been found to be unique to that of 

other surface types and land covers [50], and the spectral response changes with the availability  

of water F53 [51]. 

4. Conclusions 

Our study demonstrates that Landsat imagery can detect the presence of basalt outcrops in western 

rangelands with an overall accuracy rate of 72.35% using RF classification using a multitemporal stack 

of Landsat images that included both surface reflectance values and derivatives, such as band ratios 

and indices (i.e., NDVI, TC greenness, wetness and brightness; Band 4 to Band 6 ratio). The highest 

overall classification accuracy generated from the RCM classifications (SAM method) was 60.45% 

and was influenced by relatively low non-basalt user’s and producers accuracies (50.06% to 50.80%). 

These basalt classifications represent a significant first step toward quantification and warrant 

continued research to obtain sub-pixel abundance values and resolve over-predictions of basalt caused 

by mixed pixels from vegetation, lichen and loess. We recommend that future studies investigate the 

variability of lichen spectral reflectance across space and time and under different soil moisture 
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conditions using a field spectroradiometer to determine if spectral mixing techniques (e.g., [52])  

are feasible at the 30-m pixel resolution with an added focus on lichen coverage estimated from 

hyperspectral sensors, such as Hyperion [53]. We also recommend developing and testing a  

multi-sensor approach that adds textural and height components, additional field data that are  

more coincident with remote sensing acquisitions and decision tree classification. With further 

development, remote sensing can be a useful tool to support soil survey efforts in the Western United 

States and other regions of the world with similar soilscapes. 
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