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Abstract: Owing to the shallowness of waters, vast areas, and spatial complexity, 
reefscape mapping requires Digital Depth Models (DDM) at a fine scale but over large 
areas. Outperforming waterborne surveys limited by shallow water depths and costly 
airborne campaigns, recently launched satellite sensors, endowed with high spectral and 
very high spatial capabilities, can adequately address the raised issues. Doubling the 
number of spectral bands, the innovative eight band WorldView-2 (WV2) imagery is very 
susceptible to enhance the DDM retrieved from the traditional four band QuickBird-2 
(QB2). Based on an efficiently recognized algorithm (ratio transform), resolving for the 
clear water bathymetry, we compared DDM derived from simulated QB2 with WV2 
spectral combinations using acoustic ground-truthing in Moorea (French Polynesia). Three 
outcomes emerged from this study. Increasing spatial resolution from 2 to 0.5 m led to 
reduced agreement between modeled and in situ water depths. The analytical atmospheric 
correction (FLAASH) provided poorer results than those derived without atmospheric 
correction and empirical dark object correction. The purple, green, yellow and NIR3 (WV2 
1st-3rd-4th-8th bands) spectral combination, processed with the atmospheric correction at  
the 2 m resolution, furnished the most robust consistency with ground-truthing (30 m  
(r = 0.65)), gaining 10 m of penetration relative to other spaceborne-derived bathymetric 
retrievals. The integration of the WV2-boosted bathymetry estimation into radiative 
transfer model holds great promise to frequently monitor the reefscape features at the 
colony-scale level. 
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1. Introduction 

Many tropical reefscape ecological processes are intricately linked with bathymetry and bathymetric 
gradients. Characterizing the structure and monitoring changes in coral ecosystems requires accurate 
information on water depth [1]. Knowledge of the bathymetry at various spatial scales constitutes a 
cornerstone of the tropical reefscape ecology. When focused on the ecological processes related to 
community-scale, very high spatial resolution Digital Depth Models (DDM) are necessary to render 
features such as coral bommies or thickets over reef flats, reef crest, and spur-and-groove topography. 

In open water, sonar measurements have allowed benthic habitat to be evaluated from the abyssal 
landscape to the littoral fringe. However, waterborne systems have limited capacity to perform surveys 
over shallow coral reefs. Moreover, they can be difficult mobilize in remote areas and for repeated 
surveys to study seasonal changes. Bathymetric Light Detection And Ranging (LiDAR) measurements 
are well suited to surveying both land and shallow waters simultaneously [2] but can be prohibitively 
expensive, particularly in remote coral reef islands and atolls. Although LiDAR technology delivers 
DDM at a 0.25 m vertical accuracy, the horizontal accuracy is usually 5 m, but can attain 2 m at high 
prices, often making it cost-prohibitive. Very high resolution (VHR) mapping can also be obtained 
either by multispectral spaceborne imagery (QuickBird-2; QB2 hereafter) or hyperspectral airborne 
acquisition (Compact Airborne Spectrographic Imager). The hyperspectral mapping of reef bathymetry 
has been successful across a range sites including Hawaii [3], the Bahamas [4], and Honduras [5]. 
These studies have all exploited knowledge of water depth to assess benthic chromatism (visible 
albedo), enhancing habitat mapping [6,7]. Providing very high spectral resolution with more than 200 
narrow bands, the hyperspectral method permitted improvements to bathymetry retrieval and 
discrimination of coral pigments. However the long-term planning and associated costs undermines its 
utility for campaigns over large or remote reefs ecosystems. Since the launch of the QB2 sensor in 
2001, spaceborne passive remote sensing has become a valuable tool for retrieving water depth at a 
spatial scale relevant to community processes [6,8–10].  

Passive remote sensors over reefscapes measure reflected sunlight that attenuates exponentially 
with water depth. This exponential decay rate is proportional to the wavelength involved. The radiative 
transfer model developed by Lyzenga [11] showed that two bands could provide a good estimate of the 
water depth. Improvements to the radiative transfer model integrated effects induced by variations in 
water clarity [12], although this effect can be comparatively small in oligotrophic waters found on 
many tropical reefscapes. Based on a variation of this empirical linear model, the detection of water 
depths from 18 to 20 m by QB2 imagery has been satisfactorily achieved on coral reefscapes [6,13]. 
Lee et al. [14] developed a non-linear optimization of a semi-analytical model, which has been used  
to retrieve water depths up to 20 m from a QB2 acquisition over Kanehoe Bay in Hawaii [9]. 
Nevertheless, the latter assessment required simplification of the semi-analytical algorithm, which is 
rather dedicated to hyperspectral approaches, lying beneath the purpose of this paper. Solving the 
empirical model necessitates finding five unknowns that have to be measured in situ or derived from 
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published measurements. Such tuning can raise substantial logistical issues particularly for very 
shallow and remote areas where benthic and water column parameters can be strongly problematic to 
elucidate. In delving into the mapping of relatively large and remote reefscape regions, Stumpf et al. [15] 
proposed an alternative empirical method that only requires one tunable constant. Based on an 
algorithm involving a ratio transform between two bands, the bathymetry has been reliably resolved up 
to approximately 20 m in clear water (northwestern Hawaiian islands). However, this work was 
applied to an IKONOS imagery, delivering four bands at four meter spatial resolution, that is 
susceptible to smoothing of ecological heterogeneity occurring at the community-level scale.  

Refining the QB2 spatial resolution, the WorldView-2 (WV2 hereafter) system collects data at 1.84 m 
at nadir (versus 2.62 m for QB2) but doubles the QB2 spectral abilities providing five visible bands, 
from purple to red, and three near-infrareds (Table 1). One might expect that the purple band, offering 
the highest water penetration of the VHR spaceborne remote sensing, to potentially increase the limit 
of the water depth that can be extracted. In this study, the ratio transform developed by Stumpf et al. [15] 
was applied to WV2 data of a reefscape on the island of Moorea (Society Islands archipelago, French 
Polynesia, Figure 1). The model was employed to estimate the bathymetry as a function of the spectral 
bands and atmospheric correction. To increase spatial resolution to the grain-size where colony-related 
processes are of importance, pansharpened data (0.5 m) were also evaluated with respect to both 
previous modalities. The effectiveness of the method was evaluated by comparison between depths 
retrieved from WV2 imagery and ground-truth depths acquired by a waterborne digital sonar acoustic 
system. The contribution of the new WV2 spectral bands to the enhancement of the bathymetry 
estimation and the benefits to understanding reefscape ecology stemming from these novel findings are 
then discussed. 

Table 1. Spectral characteristics of the two best Very High Resolution spaceborne sensors, 
Worldview-2 (WV2) and QuickBird-2 (QB2). 

Waveband 
Colours 

Waveband 
Numbers 

Waveband 
Names 

WV2 Wavelength Range 
(nm) 

QB2 Wavelength 
Range (nm) 

Purple 1 “Coastal blue” 400–450  
Blue 2 Blue 450–510 450–520 

Green 3 Green 510–580 520–600 
Yellow 4 Yellow 585–625  

Red 5 Red 630–690 630–690 
NIR1 6 “Red edge” 705–745  
NIR2 7 Near InfraRed 1 770–895 760–890 
NIR3 8 Near InfraRed 2 860–1040  

  Panchromatic 450–800 450–900 

2. Methodology 

2.1. Study Area 

The study site was located in a coral reef lagoon along the northeastern coast of Moorea (17°47′S, 
149°80′W), a 1.2 million-year-old volcanic island in the Society Islands of French Polynesia. Moorea 
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Since the water surface and water column did not have significant roughness or plume, the  
glint-removal procedure was circumvented and we assumed that the water column was sufficiently 
homogeneous over the entire scene to apply the following model of bathymetry retrieval without 
weighting regions within the study area. However, prior to carrying out the analysis, two corrections 
were applied using the image processing software IDL-ENVI (Research Systems, Inc.). A geometric 
correction was applied using the metadata describing the sun-sensor-scene geometry (.rpb file) and 
geolocalized ground control points readily identifiable on the imagery. The warping model (nearest 
neighbor), implemented only where the GCP whose Root Mean Square Errors were ≤0.5 m, was fitted 
with a second order polynomial to correct elementary non-linear projection errors. Also, the at-sensor 
radiance calibration permitted the 11-bit digital values to be converted into physically meaningful units 
(in W·m−2·sr−1) using the band-related coefficients (contained in the .imd file). 

2.2.2. Pansharpening 

Pansharpening is an image fusion method in which low spatial resolution multispectral data are 
fused with higher spatial resolution panchromatic data to build a multispectral high-resolution dataset. 
Even though the spectral response to a pansharpened pixel (or sub-pixel) cannot be refined, the textural 
information benefits from a fourfold increase in our study (from 2 to 0.5 m). The consensus view of 
image processing scientists is that the Gram-Schmidt (GS) algorithm outperforms other transformations 
such as Principal Components or Color Normalized spectral sharpening, because it relies on the spectral 
response function of the specific sensor to simulate the low-resolution panchromatic image [19]. A 
series of five steps were carried out, according to Laben and Brover [20]: (a) simulating a low-resolution 
panchromatic image using the WV2 spectral response function; (b) performing a GS transformation 
on the previous simulated band, set as the first band, as well as the other eight low-resolution bands; 
(c) adjusting the histogram of the initial panchromatic image to match the first GS-transformed band; 
(d) substituting the adjusted initial panchromatic image for the first GS-transformed band; and finally, 
(e) inverse GS, transforming the new set of transform bands to produce the enhanced spatial resolution 
multispectral digital image. 

Given the trade-off between the surplus of textural information and the interpolation of spectral 
values, the impact of the pansharpening procedure on the bathymetry extraction was investigated by 
examining a dataset with no pansharpening, at 2 m resolution (Figure 3(A)), and a pansharpened 
dataset, at 0.5 m resolution (Figure 3(B)). 

2.2.3. Atmospheric Correction 

Atmospheric gases, aerosol particles and water vapor interact with electro-magnetic radiation 
(EMR), resulting in a decrease in transmission as a function of wavelength. However, for scientific 
purposes, the atmospheric correction can be either highly advocated (e.g., modeling the benthic 
albedo) or, conversely, discarded where a single image is being analyzed. The influence of the 
atmosphere on the measured signal tends to sharpen the image, facilitating the benthic classification, 
but this sharpening is likely to exacerbate spatial discontinuity/artifacts of the spectral relationships, 
contributing to reduce the quality of the bathymetry extraction model. 
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height of the water column. The wavelength terms inherent to R, Ab, R∞, and k parameters are omitted 
for clarity.  

Elucidating the bathymetry, z, requires rearranging (1) and solving for Ab. However, an empirical 
approach avoids solving for the latter parameter and estimates the bathymetry by correcting for albedo 
using a ratio of two wavelengths (or wavebands in our study) [24]. Although this method demonstrated 
satisfactory results for localized areas, Stumpf et al. [15] stressed that the constraint on this method is 
that five parameters need to be empirically determined, which either turns out to be time-consuming or 
demands potentially unrealistically strong assumptions of spatial homogeneity. Because the purpose of 
this work was to define an optimal combination of spectral bands for the bathymetry retrieval, we 
sought an algorithm providing an optimal trade-off between proficiency and simplicity. The ratio 
transform proposed by Stumpf et al. [15] adequately responded to the selection criteria. Endowed with 
capabilities of retrieving bathymetry over variable benthic types, even the darker ones relative to R∞, 
and requiring a unique parameter to adjust, the ratio transform was solved for bathymetry as follows:  ݖ ൌ ݉1 ln ሺܴ݊iሻln ሺܴ݊jሻ െ ݉0 (2) 

where Ri and Rj refer to radiances of wavebands i and j, respectively, m1 is an adjustable function 
allowing the ratio to be depth-scaled, n is a fixed constant ensuring the natural logarithm to be positive, 
and m0 is the offset. Since the tidal level in Moorea varies within the bathymetric accuracy (<0.2 m), 
m0 was fixed at 0.  

The underlying principle of the ratio transform is that depth-driven change is significantly larger 
than the corresponding benthic albedo-driven change. Stumpf et al. [15] built and used the ratio 
transform with two IKONOS wavebands, characterized by differential water attenuation. We extended 
the methodology by employing the ratio transform for four various wavebands. Based upon the  
per-pixel result of the ratio transform, Digital Relative Depths Models (DRDM) were calculated at 2 m 
(514 × 568 floating points) and 0.5 m resolution (2,053 × 2,269 floating points).  

2.3. Spectral Combinations 

The novelty of the spectral capabilities of WV2 imagery was fully exploited in testing of all 
possible combinations as datasets intended for bathymetry retrieval. The ratio transform algorithm 
integrated four wavebands displaying four various diffuse water attenuation coefficients, sorted from 
the smallest to largest. Some constraints were applied when building the spectral datasets. Given the 
decreasing difference between coefficients, the first band, among the four encompassed in the spectral 
combination, was either purple or blue WV2 wavebands; the second band was either blue or green; the 
third band comprised green, yellow, red and NIR1 (very near-infrared), while the fourth and last band 
encompassed WV2 wavebands ≥725 nm (i.e., near-infrared). For each of the modalities of spatial 
resolution (measured 2 m and pansharpened 0.5 m) and atmospheric correction (none, empirical dark 
object subtraction and analytical FLAASH correction), an array of 27 band combinations was subject 
to the bathymetry retrieval procedure. The spectral combinations can be illustrated with a flowchart 
(Figure 6). A total of 162 (=27 × 6) DRDM were thereby carried out to be tested against the in situ 
bathymetry measurements. 
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NIR3 combination (1348) for a water depth of 14 m (|r| = 0.77, p-value < 0.001). Conversely, the 
spectral combinations involving purple, blue, green and NIR3 (1238), purple, blue, yellow and NIR3 
(1248), purple, blue, red and NIR3 (1258), purple, blue, NIR1 and NIR3 (1268) displayed the poorest 
performance at 1 m depth (|r| = 1.25 × 10−16, NS). Regarding the average performance across the water 
depth gradient, the best correlation was reached by the purple, green, yellow and NIR3 combination 
(1348, |r| = 0.63), while the worst correlation was obtained from the purple, green, NIR1 and NIR3 
combination (1368, |r| = 0.08). This overall description necessitated a refinement in the analysis, 
taking into account the influence of the spatial resolution and atmospheric correction. 

Table 3. Pearson product-moment correlation coefficients (r) of the best and worst 
averaged and performance of the bathymetry retrievals against spatial resolution and 
atmospheric correction. 

  No Correction Dark Object Subtraction FLAASH 

  2 m 0.5 m 2 m 0.5 m 2 m 0.5 m 

Averaged 
Maximum 0.63 0.5 0.63 0.53 0.46 0.46 

Minimum 0.16 0.13 0.13 0.08 0.08 0.16 

Punctual 

Maximum 0.84 *** 0.58 *** 0.85 *** 0.63 *** 0.81 *** 0.73 *** 

Minimum 
5.78 × 10−4  

(NS, p = 0.95) 

1.89 × 10−3  

(NS, p = 0.92) 

4.81 × 10−4  

(NS, p = 0.97) 

1.38 × 10−3  

(NS, p = 0.94) 

1.25 × 10−16 

(NaN) 

2.21 × 10−4  

(NS, p = 0.99) 
NB: *** means p-value < 0.0001, NS means No Significance (p-value >0.01), and NaN means Not a Number owing to 
the constant value of one the two variables to be correlated. 

3.1.1. Influence of Spatial Resolution on Bathymetry Retrieval 

A global trend of decreasing correlations was identified when the spatial resolution was enhanced 
from the measured 2 m to the pansharpened 0.5 m. For most spectral combinations, focusing on the 
most proficient ones, both the 67–34 m plateau and the 34–10/20 m trend had a decline in performance. 
This overall trend was suggested by a pattern of attraction towards zero (Figure 8). While the 2 m best 
correlations were 0.85 (1357 combination at 1 m depth) and 0.63 (1348 combination), punctually  
and averagely, respectively, they topped at 0.73 (2358 combination at 2 m depth) and 0.53  
(1347 combination) when the bathymetry was retrieved from the 0.5 m DRDM. Regarding the 
minima, the water depth-averaged correlations bottomed at 0.08 for both spatial resolutions, while the 
lowest punctual results were attributed to the 2 m retrievals (1238, 1248, 1258 and 1268 combinations 
at 1 m depth). However, the lowest results derived from both spatial datasets might be considered as 
null (i.e., 0.00). In addition, the fluctuating correlation curves resulting from the significant decrease 
pointed out before (i.e., greater than) 5 m, turned into a nexus for the high resolution mode. From this 
minimum (close to zero), correlation curves continued fluctuating for the 2 m datasets, while they 
clearly increased (seemingly fitted with an exponential model) to peaks akin to 2 m, in the 0.5 m 
modalities. Interpretation of the spatial influence fairly suited with the first two atmospheric modalities 
(i.e., none and dark object subtraction) but not satisfactorily with the rigorously corrected dataset (i.e., 
FLAASH). Although the 5 m nexus was more highlighted and the 2 m peaks were lower in the 0.5 m 
mode, the 34–10/20 m trend and the 67–34 m plateau leveraged significant greater correlations  
(sensu stricto not in absolute values) than those stemming from the 2 m mode. This assessment 
encouraged us to decipher the impact of the atmospheric correction. 
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0.5 than in the 2 m datasets (from 0.5 to 0.53 and from 0.58 to 0.63, respectively). While the averaged 
minima fell from 0.16 to 0.08, the punctual minima stagnated at 0.00.  

On the other hand, rigorously correcting the atmospheric impact using the analytical FLAASH 
procedure substantially undermined the retrieval of bathymetry. This loss of performance was 
unambiguously illustrated by the (re-)attraction of the correlation curves towards 0, clearly evident in 
the 2 m dataset. Maxima statistics derived from the 2 m dataset corroborated the visual analysis, 
diminishing from 0.63 to 0.46 and from 0.85 to 0.81, for averaged and punctual datasets. Even if the 
averaged maxima diminished from 0.53 to 0.46, the 0.5 m dataset allowed the punctual maximum to 
increase from 0.63 to 0.73. Following the same blueprint as maxima, averaged minima declined in the 
2 m dataset (0.13 to 0.08) and augmented in the 0.5 m dataset (0.08 to 0.16), while punctual minima all 
neighbored zero, regardless of the modalities. 

3.2. Mapping the Bathymetry Using the Best Spectral Band Combinations 

Searching for the modality yielding the most efficient bathymetry retrieval, we used the best 
spectral combinations within the Raod modality, i.e., the original 2 m with a dark object subtraction by 
way of atmospheric correction. Topping the correlation curves, three spectral combinations succeeded 
one another across the water depth gradient (Figure 8(B)).  

From 67 to 30 m depth, the correlation inherent to the 1267 combination, involving the purple, blue, 
NIR1 and NIR2 bands slightly decreased from 0.71 to 0.67 (Figure 8(B)). From all measurements (i.e., 
8,489 soundings), a linear model well explained the 1267-DRDM values and the corresponding DGDM 
data (R2adj. = 0.51, Figure 9(A)). While the model reproduced actual depths up to approximately 20 m, a 
threshold around 25 m indicated the failure of the prediction. However, from 25 to 40 m, the same 
linear regression retrieved again meaningful water depths. The spatialized DRDM was calibrated 
with such an equation to build a DADM. The 1267-DADM, deemed the deep DADM, showed that 
spurs-and-grooves, visually revealed by two consecutive levels, and even the outer sandy spread 
(darkest feature off-shore) could be unraveled. Conversely, reefscape elements just above and under 
the water surface such as emerged and very shallow reefs with active wave breaking (seen as white 
zones inside the water body) were not elucidated by the model. 

From 29 to 2 m depth, the correlation curve specific to the 1348 combination (i.e., purple, green, 
yellow and NIR3 bands) outperformed the 1267 curve. Increasing from 0.67 to 0.77 (14 m), the 
correlation dramatically fell from 10 to 3 m, nearly 0.45 (Figure 8(B)). Interestingly, for r values less 
than or equal to one, the correlation neighbored the best values (|r| = 0.83). The relationships between 
the 7775 points defined in the two-dimensional 1348-DRDM/DGDM space were correctly translated 
by a natural logarithmic model (R2adj. = 0.61, Figure 9(B)). Although the model adequately followed 
the crescent-like patterns of the data cloud, the scattering around it gradually increased with water 
depth, and especially from 15 m. Compared to the previous DADM, the 1348-DADM, called the 
intermediate DADM, substantially refined shallower reefscape features such as the furrowed platform, 
the reef crest, surge channels, the barrier and fringing reef flats. Water surface discrepancies noticed in 
the previous DADM were circumvented by this model. However, the improvements emerged at the 
expense of rendering spur-and-groove features and the outer sandy spread. 
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the linear model. Despite the negative model, the color ramp of the DADM matched those of both 
previous DADMs for the sake of readability. Bound by 0 and 1.5 m, the DADM, called the shallow 
DADM, put the emphasis on the extremely shallow reefscape elements, such as the reef crest, the 
barrier and fringing reef flats punctuated with micro-atolls. Since the model was selected for its 
performance between 0 and 1 m, modeled water depths seaward the reef crest and within the channel 
(both globally rendered in darker tones) did not retrieve actual bathymetry. 

4. Discussion 

4.1. Differential Contributions of the Pansharpening and Atmospheric Corrections 

Testing the respective influence of spatial resolution and atmospheric correction on 
bathymetry retrieval addressed recurrent questions that are important when using spaceborne passive 
multispectral remote sensing for reefscape characterization. The bathymetry retrieval globally 
diminished with spatial resolution. In addition, the so-called nexus around 5 m strongly determined the 
influence of the enhancement of the spatial resolution. This blueprint corroborated previous work by 
Adler-Golden et al. [9], who pointed out that the systematic error reached a maximum at around 6 m 
depth. The loss of consistency with ground-truthing might result from the pansharpening procedure. 
This approach scaled up considerably more relevant information about textural gradients for the 
multispectral dataset but did not elucidate spectral measurements at the panchromatic spatial 
resolution. While being very useful for refining spatial variations of features detectable in the 
panchromatic range, the pansharpening method failed to assign absolute values to features not or 
poorly captured by all spectral bands. Based on the band ratio, the products of the transform did not 
account for subtle spectral variations (decisive for distinguishing benthic from water column 
contribution) and were unavoidably less proficient to those stemming from originally measured bands. 
Typically, the water depth over coral colonies whose pigments interacted with purple EMR (not 
comprised into the panchromatic range) and whose diameter was <2 m was highly susceptible to be 
inconsistent with reality. However, retrieving bathymetry using the pansharpening method might be 
advocated for some spectral combinations, showing sizable congruency with ground-truthing (e.g., 
1346, 1347, 1348 and 2368 whose correlation was >0.5). As discussed above, mapping bathymetry at 
higher spatial resolution would have to be conducted over benthic features that interact with all the bands 
comprised into the panchromatic range, such as Porites lobata, whose detection was enhanced by spectral 
indices involving green, yellow and red bands [7]. Note that the 1347 and 1348 best performances in 
the 0.5 m datasets occurred for a specific atmospheric correction, namely dark object subtraction. 

The agreement between modeled and actual depths varied as a function of the atmospheric 
correction. While no correction and dark object subtraction provided similar patterns of correlation 
curves against water depths (in favor of the dark subtraction), the FLAASH correction yielded 
exclusively negative correlations (slightly lower, in absolute numbers, than those issued from none) 
except for very shallow water depths, which were positive. Rigorously correcting the atmospheric 
influence, through an analytical procedure, was intuitively expected to yield the best performance for 
handling water-leaving Rrs, and thus for optimally retrieving bathymetry. However, the rigorous 
correction was surpassed by both no correction and the empirical approach, dark object subtraction. A 
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reason why this correction performed poorly might pertain to the fact that the FLAASH package was 
robust over bright objects (typically, land) but was not so proficient over darker objects (typically, 
underwater). Other rigorous atmospheric algorithms should be tested, such as Tafkaa [25], to evaluate 
their improvement of correction over water bodies. Despite the recognized accuracy of atmospheric 
procedures, Rrs products have remained likely due to significant errors arising from radiometric 
calibration of the sensor [9,26]. Processing radiometric errors by applying a simple offset, computing 
from the minimum Rrs values (water-leaving radiances) for each spectral channel, enabled  
Adler-Golden et al. [9] to successfully correct FLAASH images (in the same way as the dark object 
subtraction is treated the at-sensor radiances). Another alternative might use spectral polishing 
consisting of a uniform linear transformation aiming at removing spectral artifacts by employing 
reference pixels from which band-dependent gain factors and offsets could be calculated [27]. 
Designed for hyperspectral datasets, these further analyses require that artifacts conveyed by the 
broadness of the WV2 multispectral bands are taken into account. Finally, in the case where a punctual 
study without attempt of spatio-temporal comparisons is planned, it is recommended to retrieve the 
bathymetry directly from imagery deprived of atmospheric correction (i.e., at-sensor radiance) given 
the consistency highlighted above. 

4.2. Spectral Enhancement Implied a Refinement of the Bathymetry Retrieval 

Integrating the novel bands derived from the WV2 imagery enhanced the bathymetry retrieval in 
tropical clear water using the ratio transform approach. Based on the four bands inherent to either QB2 
or IKONOS, the bathymetry was resolved up to 20 m ([9] and [15] respectively). The three visible and 
one NIR bands pertaining to the two latter sensors could be related to the WV2 2357 combination 
(namely, blue, green, red and NIR2). The best performance showed by the pseudo QB2 combination 
was found within the 2 m/no atmospheric correction modality (Lao). From the 67 to 34 m, the plateau 
slightly increased from 0.11 to 0.15, then rapidly grew to 9 m, meeting 0.55, momentarily fluctuating 
between 0.54 and 0.37 to 3 m, and finally topped at 0.84 (in absolute values) at 1 m. An inflection 
point visible at 20 m may concur with both above-cited works. However, using the four novel WV2 
bands (purple, yellow, NIR1 and NIR3), the bathymetry retrieval was strongly refined relative to the 
pseudo QB2 results: from 67 to 30 m, the WV2 1267 combination varied between 0.67 and 0.71, from 
30 to 3 through 14 m, the WV2 1348 combination met 0.67, 0.77 and 0.44, respectively, and finally 
the WV2 1357 combination reached 0.85 (in absolute values) at 1 m. Those results stemmed from the 
2 m/dark object correction modality (Raod). We thereafter compared Lao 2357 (pseudo QB2) and Raod 
1267/1348/1357 spectral combinations so that the gain conveyed by the WV2 four novel bands can be 
accurately quantified (Figure 10). Except for 3 and 4 m, the best WV2 combination systematically 
outperformed the pseudo QB2 results, gaining a high increase in correlation values from 4 to 34 m 
(from 0 to 0.54, respectively) and a more moderate growth from 34 to 67 m (from 0.54 to 0.6). The 
overall accuracy, close to 1 m, might be assumed as the effect of the noise integrated into the EMR 
measurement, detectable as random variance within 1 pixel lag. Since we found the two most sharply 
contrasted average performances to within one spectral band of difference (1348, |r| = 0.63 and 1368, 
|r| = 0.08), we suggest that the selection of bands played a crucial role in subsequent retrievals. 
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reference bathymetry was acquired during a waterborne high resolution digital sonar survey. Three 
main outcomes emerged from our study. Increasing spatial resolution from 2 to 0.5 m led to a 
diminution of agreement between modeled and measured water depths, more sharply evidenced 
around the actual 5 m. Counter-intuitively, the analytical atmospheric correction provided poorer 
results than those stemming from no atmospheric correction and empirical dark object correction. 
When considered with this latter correction at the 2 m resolution, the purple, blue, NIR1 and NIR2 
(WV2 1st-2nd-6th-7th bands), the purple, green, yellow and NIR3 (WV2 1st-3rd-4th-8th bands), and 
the purple, green, red and NIR2 (WV2 1st-3rd-5th-7th bands) spectral combinations furnished the 
greatest agreement with ground-truthing at actual 39 m (r = 0.7), 30 m (r = 0.65) and 1 m (|r| = 0.85), 
respectively. However, given the amount of data involved for the models’ computation and related 
discrepancies pointed out, the intermediate 1348 model was deemed as the most reliable model 
attaining 30 m. Compared to the literature on spaceborne-derived bathymetric products, it represented 
an increase in depth penetration close to 10 m. This finding was reinforced by comparison with results 
derived from a simulated QB2, examined in this work. Gains of correlation of 0.47 and 0.36 were 
reckoned for depths of 30 and 20 m, respectively. The integration of the innovative WV2 spectral 
bands into the ratio algorithm therefore consists of a meaningful improvement for robustly 
characterizing reefscape features from spaceborne multispectral products. This enhancement can be 
combined with the best methods to determine the diffuse attenuation coefficient so that reefscape 
evolution, facing major disturbances, can be frequently updated at the colony-scale level. 
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