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Abstract: Kettle holes, small inland water bodies usually less than 1 ha in size, are 

subjected to pollution, drainage, and structural alteration by intensive land use practices. 

This study presents the analysis of spectral signatures from kettle holes based on in situ 

water sampling and reflectance measurements in application for chlorophyll estimation. 

Water samples and surface reflectance from kettle holes were collected from 6 ponds in 15 

field campaigns (5 in 2007 and 10 in 2008), resulting in a total of 80 spectral datasets. We 

assessed the existing semi-empirical algorithms to determine chlorophyll content for 

different types of kettle holes using seasonal and cross-seasonal volume reflectance and 

derivative spectra. Based on this analysis and optical properties of water leaving 

reflectance from kettle holes, the following typology of the remote signal interpretation 

was proposed: Submerged vegetation, Phytoplankton dominated and Mixed type. 
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1. Introduction 

The acquisition of inland water quality (WQ) parameters by means of remote sensing is an 

important but tedious task due to the pronounced spatial and temporal variability of the most in-water 

constituents, especially in small shallow water bodies. Small inland waters such as kettle holes (usually 

less than 1 ha in size) are subjected to pollution, drainage, and structural alteration by intensive land 

use practices [1]. Therefore, the fast yet efficient and precise determination of the water quality and the 

temporal development in kettle holes is required to assess the sustainability of agricultural and 

conservation measures, as well as to evaluate the impact of changing weather conditions on terrestrial 

ecosystems in general [2].  

Hyperspectral Remote Sensing (HRS) provides data in contiguous narrow bands which may assist 

in WQ monitoring campaigns [3]. Over the last two decades, visible and near-infrared spectroscopy 

(VNIRS) has evolved as an important nondestructive tool to characterize soil, vegetation and water 

bodies. Compared to conventional laboratory analysis, VNIRS is accepted as rapid and potentially 

cost-effective method. Additionally, it can be applied in the field by portable spectrometers [4]. Field 

spectroscopy has an important role in environmental science in which it allows to characterize the 

object being observed with in situ measurements [5]. With proper equipment and methodology, 

spectrometry can be conducted under a variety of conditions [6].  

Spectral reflectance is widely used for qualitative and quantitative assessments of the in-water 

constituents including algae chlorophyll content [7–11]. However, the water leaving signal is highly 

influenced by surface, volume (water column) and bottom of water bodies [12,13]. Therefore, the 

subsurface irradiance reflectance (volume or normalized reflectance) is used in semi-analytical 

methods to correlate with the water constituent concentrations. Volume reflectance is nearly 

independent of atmospheric properties and entirely determined by the Inherent Optical Properties 

(IOPs) and its constituents [14]. At the same time, the quantification of water quality parameters (e.g., 

chlorophyll content) in shallow waters and their corresponding remotely sensed data can be linear or 

nonlinear, but are nearly always site specific [15].  

Kneubuehler et al. [16] analyzed all existing semi-empirical algorithms for spectrophotometric data 

collected from shallow lakes with a water depth of app. 1–2 m. The Magnitude of the Peak Above a 

Baseline and the Position of the Peak algorithms showed promising results when using a linear curve 

fit with a relative error of 8% and 6%, respectively [3]. Wiangwang [7] identified optimal spectral 

bands which are the most sensitive to water quality indicators using volume reflectance over Michigan 

lakes. Igamberdiev et al. [3] compared the existing semi-empirical algorithms to determine chlorophyll 

content for several kettle holes with in situ data collected between July and October 2007 at five 

occasions. Linear regression between TCHL (total chlorophyll) and Peak Magnitude algorithm gave 

best results for kettle holes with high algae concentration (0.80 < R2 < 0.99). At low algae contents, 

however, Peak Magnitude Above a Baseline and Position of Peak algorithms and CHL gave consistent 

correlations. These results showed that the response of the kettle holes to agricultural activity in terms 

of water quality can be determined by means of remote sensing. However, no single relationship exists 

for the various types of kettle holes that relate spectral information to chlorophyll concentration. 

Therefore, the objective of this research article is to analyze the cross-seasonal spectral signatures 

from kettle holes based on two-year field spectrometry data (collected on 2007 and 2008 cropping 
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seasons). The specific objective is to show a typology of spectral response using semi-empirical 

algorithms for biomass estimations and accuracy assessment of these methods. 

2. Methods 

2.1. Study Area 

The test area is located close to Demmin (small town), about 150 km north of the city of Berlin, and 

covers approximately 10 km2 (Figure 1). A survey in May 2007 showed that all kettle holes are within 

agricultural fields and have different shapes, sizes, depths, water regimes and trophic states. After 

elimination of permanently dry kettle holes, the primary monitoring program included nine sampling 

stations (Figure 1). However, some kettle holes dry out during summer, so the kettle holes K8 and K9 

were excluded from further monitoring. Kettle hole K3 was entirely covered by duckweed (botanic 

Lemna spp.) and was also not considered in the study. In the summer of 2008, kettle hole K2 dried out 

and it was also excluded from further monitoring. 

Figure 1. True color composite image (15 May 2008) of test area (close to the village 

Schmarsow, Demmin suburbs, Germany) with kettle holes numeration. 

 

2.2. Kettle Holes’ Hydro-Morphological Characteristics 

The basis for the characterization of the kettle holes was the investigation of hydro-morphological 

factors (length, width, depth, shore slope and algae content) and the application of the typology as 

described by Kalettka and Rudat [17]. Field research showed that all kettle holes belong to the “storage 

type” with semi-permanent and permanent water regimes. Subtype categories, according to Kalettka 

and Rudat [17], specifically spectral response type and some hydro-morphological characteristics, are 

given in Table 1. 
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Table 1. Kettle holes’ hydromorphological characteristics and spectral response types. 

Name 
Area 

(ha) 
Depth (m) Algae Coverage Water Color Subtype 

Spectral 

Response Type 

K1 0.12  1  1.5 Close to the surface  Transparent Big shallow 
Submerged 

vegetation 

K2 0.14  0.5  1.0 Close to the surface Transparent Big shallow 
Submerged 

vegetation 

K4 0.80  2.5  3.5 Very Low Dark green Big deep 
Phytoplankton 

dominated 

K5 0.10  0.3  0.5 Close to the surface 
2007-Light brown  

2008-Transparent 

Small 

wadeable 
Mixed 

K6 0.25  0.6  1.3 Only on the banks Transparent Big shallow 
Phytoplankton 

dominated 

K7 0.23  0.8  1.2 Low Transparent Big shallow 
Phytoplankton 

dominated 

2.3. Field Sampling 

Field data were collected from six kettle holes in the period between June and October 2007 (a total 

of seven datasets, five of which were with spectral data). In 2008, ground truth data were collected in 

10 field campaigns from five kettle holes in the period between May and September 2008. Chlorophyll 

was determined by using N,N'-dimethylformamide (DMF) extraction as described by Porra et al. [18]. 

Samples were filtered using Whatman GF/F filters and incubated with 3 mL DMF for 12 h in 

darkness. Absorption was measured with a UV/VIS spectrophotometer (Lambda 2, Perkin Elmer) from 

400 nm up to 750 nm. Pigment contents (μg·L−1) were calculated from the absorbance spectra of the 

extracts according to Porra et al. [18].  

2.4. Measurement of Spectral Reflectance 

A field spectrometer (ASD FieldSpec HH ultraviolet/visible and near-infrared (UV/VNIR)) was 

used to measure the upwelling radiance of the water at each sampling station during water sampling. 

The instrument records a continuous spectrum with 25° field of view (FOV) in 512 bands, ranging 

from 274n nm to 1,085 nm with 1,587 nm spectral resolution (ASD Inc.). Upwelling radiance from the 

water body is being retrieved as relative reflectance in relation to the down-welling radiance spectrum 

measured from a reference panel (Spectralon, Barium sulfate plate with approximately 100% 

reflectance, 25–30 cm above the panel). At each sampling station, the reference panel was scanned 

first. Depending on the depth and size of the kettle hole, the spectral measurement took place either on 

the board of a boat or at the shoreline. The measuring unit was held above the water and oriented away 

from the boat side within the light propagation to minimize sun glint from waves, and far enough not 

to be affected by the boat shadow. In both cases data was collected at or close to the central part of the 

kettle hole at the height of 30 cm in vertical downward direction between 10:00 a.m. and 2:00 p.m. 

At least ten measurements (sample size) were taken from each kettle hole repetitively, which were 

afterwards averaged to minimize random effects. 
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Following Igamberdiev et al. [3] complete reflectance datasets from all kettle holes were de-noised 

using discrete wavelet transformation (DWT) and then processed to volume reflectance. 

2.5. Statistical Methods 

Semi-empirical algorithms describe physical characteristics of the light in the water for the 

determination of the model but determination of the correlations coefficients is based on statistical 

analysis [16]. All models used in this study are linked to the in situ data by means of linear regression 

analysis to derive the semi-empirical correlation coefficients. In this way, the model is calibrated to the 

spatial and/or seasonal or cross-seasonal characteristics of kettle holes in the study area. In the 

literature, the Root Mean Square Error (RMSE) is mostly taken to describe the quality of linear 

regressions [19]. The RMSE is calculated for better comparison with other research results in this field 

of science. Within these calculations, the residues become squared, which weights the outlier as 

stronger. Since in this study a few samples were available for each kettle hole, the absolute Mean 

Deviation (MDa) is taken for analysis residues variations.  

RMSE is defined in the case of linear regression analysis as:  
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where N is the total number of samples in the dataset, yi is the measured in situ value and iy  is the 

estimated value. 

Within these calculations, the residues become squared, which weights the outlier as stronger. The 

RMSE is the distance, on average, of a data point from the fitted line, measured along a vertical line. 

The MDa is defined as the mean of the absolute deviations of a set of data divided by the data’s 

mean [16,19]. For a number of samples N, the mean deviation is defined by: 
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3. Results 

3.1. Typology of Spectral Response 

Kalettka and Rudat [17] developed a hydrogeomorphic approach for the classification and 

functional assessment of kettle holes. Based on the two-year analysis of field observations of various 

small shallow waters and their corresponding reflectance datasets, we proposed the following typology 

of spectral response [20]: Submerged vegetation, Phytoplankton dominated and Mixed type. Figure 2 

shows the examples of volume reflectance from the kettle holes collected in 2007 and 2008 according 

to the proposed typology. The calculation of the volume reflectance from the surface reflectance is 

given in Igamberdiev et al. [3]. 

The spectral signatures from the Submerged vegetation type of kettle holes are comparable to 

reflection from vegetation cover (e.g., in Jensen [6]) with a smaller magnitude. Figure 2(a) shows an 
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example for this type of reflectance taken from kettle hole K1.The signal is most likely caused by high 

algae content. In K1, algae grew almost to the surface. The reflectance in the green electromagnetic 

spectrum (500–600 nm) is characterized by the first chlorophyll peak (i.e. the algae spectral response 

from the bottom). The Red/NIR range (650–850 nm) has the highest magnitude and two distinctive 

reflection peaks one following the other. Mostly, the first Red/NIR range peak is higher than the 

second. The results of this study showed that spectral response from kettle hole K2 also belongs to the 

Submerged vegetation type [3]. 

Figure 2. (a–c) Kettle holes’ volume reflectance collected in 2007 and 2008 according to 

proposed typology with example of field images (sample size n ≥ 10). (d) Field images of 

the kettle holes. 

 
(a) 

 
(b) 
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Figure 2. Cont. 

 
(c) 

(d) 

The reflectance curves from the Phytoplankton dominated type exhibit a distinct signal in the green 

electromagnetic spectrum range, which can only be explained by the presence of phycobilins typical 

for blue-green algae. The magnitude of reflection is comparable with the Red/NIR region. The  

red-edge peak can be distinguished in all spectral curves. This type of reflection peak at 700 nm is 

commonly used in remote sensing for chlorophyll concentration determination [12,21]. This type of 

spectra is characterized by high signal variation at the range in 750–900 nm, which consequently 

stabilized at 930 nm or 970–980 nm regions (depends on turbidity), as well as by the magnitude of 

reflectance that is two times lower compared to the Submerged vegetation type. Spectral response from 

kettle hole K4 is shown on Figure 2(b) as an example for this type of reflections. Regardless of the 

denoising techniques application [3], the reflectance curves of K4 still have high variations caused by 

windy conditions during the measurements. This noise can be a limiting factor for spectral signatures 

classification and biomass data retrieval correlations. Spectral signatures from kettle holes K6 and K7 

have the same type of curves.  
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The Mixed type consists of spectral curves from both Submerged vegetation and Phytoplankton 

dominated reflection types. This mixed spectral response is due to alga bloom caused by agricultural 

practice and nutrients input in a catchments area of the kettle hole [3]. For instance, analysis of  

two-year spectral data from kettle hole K5 revealed mixed reflectance (Figure 2(c)). In 2007, K5 had a 

brown water color and, consequently, low transparency. In 2008, the situation changed due to a 

different amount of precipitation in the summer period. In the research area, the summer of 2007 

provided more precipitation than the summer of 2008 which subsequently influenced the amount of 

water that reached all water bodies, including kettle holes (Figure 3). The total suspended solids (TSS) 

values of 7 June and 2 July 2007 were 111 mg·L−1 and 100 mg·L−1, respectively, with an average value 

for the whole season of 36 mg·L−1 (Table 2) [3]. In summer/autumn of 2008, the average TSS values 

were around 14–15 mg·L−1. Therefore, the spectral signatures of K5 have two types of reflectance 

shapes: those influenced by phytoplankton domination, and coupled with turbid waters and algae. For the 

whole field campaign of 2007 and the beginning of 2008, pond K5 had light brown (turbid)-colored 

water (Table 1). Consequently, the spectral response from moderately turbid water is described by 

Doxaran et al. [22]. Starting from June–July 2008, the smaller amount of rain (and subsequent smaller 

input of sediments) caused intensive growth of algae (Figure 3). The analysis of spectral signatures of K5 

shows how the changes of the water leaving signal take place in small shallow water bodies on a 

hyperspatial scale, and highlights their influence on the remote sensing signal (Figure 3(c)).  

Table 2. Chlorophyll-a (P1 in μg·L−1), total chlorophyll (P2 in μg·L−1) and total suspended 

solids (P3 in mg·L−1) collected for all studied kettle hole (for 2007–08 season). 

Date 
K1 K4 K5 K6 K7 

P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3 

07.06.07 15.8 20.0 5.7 33.4 41.7 2.3 94.3 111.4 21.3 17.3 19.4 9.4 1.9 3.0 2.0 

02.07.07 4.6 9.5 2.0 64.6 95.3 13.8 62.0 100.6 12.3 3.2 5.5 6.0 4.6 9.5 2.0 

23.08.07 1.9 3.1 1.6 43.2 62.7 3.9 4.2 6.8 8.7 4.5 7.3 2.4 1.9 3.1 1.6 

06.09.07 2.1 2.5 1.7 80.9 109.9 6.0 5.0 11.0 7.4 54.8 55.0 5.8 2.1 2.5 1.7 

16.09.07 5.1 10.6 1.7 35.0 42.3 12.0 2.3 3.5 11.8 14.9 20.9 2.4 5.1 10.6 1.7 

24.10.07 2.4 2.9 4.7 83.7 93.0 10.4 2.6 3.4 7.0 6.5 6.9 2.8 2.4 2.9 4.7 

06.05.08 1.2 1.6 2.1 108.0 110.8 5.2 7.0 7.0 3.2 2.2 3.2 1.7 1.2 1.6 2.1 

15.05.08 2.5 3.2 2.5 78.6 102.9 13.9 3.4 4.6 2.6 5.9 10.2 3.1 2.5 3.2 2.5 

03.06.08 6.4 7.5 1.9 59.0 61.3 17.4 17.0 18.6 5.3 9.5 10.2 2.3 6.4 7.5 1.9 

16.06.08 6.3 6.8 4.3 30.0 34.8 5.9 8.5 9.4 2.2 4.2 6.1 1.5 6.3 6.8 4.3 

15.07.08 5.2 7.1 4.4 79.2 87.1 7.2 2.5 3.3 9.2 5.3 7.1 1.4 5.2 7.1 4.4 

29.07.08 3.2 4.3 4.0 32.9 40.2 4.8 4.4 6.2 2.3 3.2 4.0 0.8 3.2 4.3 4.0 

12.08.08 3.3 4.9 3.0 156.1 224.7 11.7 18.9 33.6 6.5 5.0 7.0 1.4 3.3 4.9 3.0 

26.08.08 4.4 6.6 1.1 129.2 145.3 11.6 5.4 6.1 4.9 10.3 12.2 3.9 4.4 6.6 1.1 

09.09.08 2.7 5.3 1.3 181.0 218.9 13.3 23.4 28.5 6.0 4.3 8.7 0.8 2.7 5.3 1.3 

26.09.08 3.6 6.8 1.8 143.0 171.9 8.8 15.1 24.1 8.4 3.6 5.2 0.9 3.6 6.8 1.8 
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Figure 3. Daily precipitation data from a nearby weather station (Greifswald) during 

sampling period (May–October of 2007 and 2008). 
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3.2. Spectral Algebra Algorithms and Biomass Concentrations 

Seasonal and cross-seasonal de-noised volume reflectance from all kettle holes has been tested for 

existing semi-empirical algorithms based on spectral algebra [16,23] and first derivative analysis [24]. 

The ratio between the minimum near 670 nm and the maximum near 700 nm was successfully applied to 

the data obtained in highly diverse aquatic ecosystems dominated by different algal assemblages [23,25].  

The height of the peak above a baseline between 670 nm and 750 nm depends mainly on 

phytoplankton density and was used as its quantitative measure [23]. In the case of K1, K2 and K6, 

spectral signatures are highly influenced by phytoplankton and correspond to the vegetation 

reflectance shape with lower magnitudes. From this type of curve, the maximum magnitude near 

700 nm produces the best results [3]. 

The effectiveness of derivative analysis in estimating chlorophyll-a concentration in coastal waters 

has been tested by Han [26]. This study proved that the derivative spectra were relatively independent 

of wave effects and therefore continued to show the absorption features of chlorophyll under windy 

conditions. The spectral regions of derivative spectra 630–645 nm, 660–670 nm, 680–687 nm and 

700–735 nm were found to be potential regions where the first derivatives can be used to estimate 

chlorophyll concentration.  

The theory of chlorophyll-laden waters showed that decreasing CHL absorption and increasing 

absorption of pure water is the major factor influencing the reflectance peak near 700 nm [27,28]. 

Thus, the vast majority of investigations were dedicated to establishing correlations between CHL and 

remotely sensed data. At the same time, Kneubuehler et al. [16] determined ≈0 μg·L−1 CHL 
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concentration for two samples of the same lake, whereas measured spectra showed the presence of at 

least small contents of chlorophyll. However, the majority of the phytoplankton consist of 

cyanobacteria, and the main part of the Chlorophyll-a is likely of cyanobacterial origin [29], so  

laboratory-measured TCHL was used for the regression analysis, assuming that TCHL represents the 

concentration of exclusively CHL. By using TCHL, the same assumption was followed. Therefore, 

algorithms based on spectral algebra and derivative analyses were applied for both biomass 

concentrations values, i.e., CHL and TCHL. Figure 4 illustrates the first derivative spectra of kettle 

holes K1, K4 and K5 calculated from the volume reflectance for the 2007 and 2008 datasets. 

3.3. Derivative Reflectance Analysis 

Figure 4(a) illustrates the first derivative spectra of kettle hole K1 calculated from the volume 

reflectance for the 2007 and 2008 datasets. The first derivatives for steeper slopes of reflectance curves 

tended to have higher absolute values. Note that the lower variations of the derivative spectra as 

compared to original reflectance in Figure 2(a). The peak in the 680–700 nm range which corresponds 

to the so-called Peak near 700 nm or Red-edge can clearly be seen. 

The chlorophyll-laden peak at around 700 nm is also clearly recognizable on Figure 4(b) from the 

first derivative spectra of kettle hole K4 extracted from normalized reflectance of 2007 and 2008 

datasets. K4 can be considered as a small lake; its volume reflectance and derivative spectra act 

accordingly. As is expected, similar to volume reflectance, the magnitude of derivative spectra from 

K4 is lower than from K1.  

Figure 4. First derivative spectra of kettle holes K1, K4 and K5 calculated from volume 

reflectance from 2007 and 2008 datasets. 

 
(a) 
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Figure 4. Cont. 

 
(b) 

 
(c) 

Kettle hole K5 was a very shallow kettle hole (30–50 cm) with high algae content. It had  

brown-colored waters in season 2007 and was transparent the next year. These changes can be easily 

seen in the spectral signatures of both years caused by the amount of precipitation (Figure 3). 

Consequently, the same types of change have affected the derivative spectra. Figure 4(c) illustrates 

derivative spectra from K5 calculated from volume reflectance. Two chlorophyll reflectance peaks near 

700 nm with different magnitudes can be observed in the derivative spectra: the first with a lower 

magnitude caused by turbid waters in 2007 and beginning of 2008; and the second with a higher 

magnitude influenced by algae-dominated shallow water. The first confirms the decreasing chlorophyll-a 

absorption and increasing absorption of water content, which have the major influence on the red-edge 

reflectance peak in chlorophyll-a laden waters [30]. Therefore, depending on water content and 

domination type, the red-edge peak pattern is modified either within season or inter-seasonally.  
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3.4. Application of Remote Sensing Techniques for Chlorophyll Estimation 

The radar diagrams of the best linear correlation coefficients between chlorophyll concentrations 

and remote sensing data are shown on Figure 5. CHL and TCHL estimation from volume reflectance 

and derivative spectra was based on following methodologies frequently described in the literature: 

(1) Spectral algebra (application of Peak Magnitude, Magnitude of the Peak Above a Baseline 

and the Position of the Peak Algorithms). Source: Gitelson et al. [23], Kneubuhler et al. [16] 

and Igamberdiev et al. [20]; 

(2) Pearson’s correlation (testing the reflectance value at a specific wavelength). Source:  

Jiao et al. [31], Murphy et al. [32] and Wang et al. [33]. 

The analysis of remote sensing data from the Submerged vegetation type shows that the best linear 

regression coefficients for the season of 2007 were between TCHL and the volume reflectance and 

derivative spectra (Figure 5(a)). The best correlation algorithms using volume reflectance for the 

season of 2007 were Peak Magnitude and Magnitude at 721 nm [3], whereas for derivative spectra, the 

magnitude is at 697 nm. In the season of 2008, correlation with TCHL is still very high; nevertheless, 

the best linear regressions are with CHL values. Therefore, cross-seasonal correlation with CHL 

concentration produces higher linear regression values compared with TCHL concentrations. This is 

probably caused by the differences in the number of samples in the season of 2007 (5 samples) and 

2008 (10 samples). The best algorithms for 2008 and 2007–08 (cross-seasonal correlations) seasons 

are a Peak Magnitude above a Baseline and Magnitude at 697 nm between CHL and volume 

reflectance (R2 = 0.93) and derivative spectra (R2 = 0.87), respectively. 

Figure 5. Radar diagrams of the correlation coefficients calculated for biomass 

concentrations’ estimation using various algorithms for kettle holes K1, K4 and K5 (n = 15 

of 2007–08).  

(a) 
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Figure 5. Cont. 

(b) 

(c) 

Volume reflectance of kettle holes K4 (Phytoplankton dominated type) in 2007 is correlated best 

with CHL using the classic algorithms Peak Magnitude Above a Baseline and Position of Peak  

(Figures 5(b) and 6(b)). Derivative spectra of 2007 and biomass data perform the best correlation using 

the Peak Magnitude algorithm. For the season of 2008, the linear regression analyses between the 

derivative spectra and TCHL produces a high determination coefficient using the Peak Magnitude 

algorithm. Correlation for CHL (R2 = 0.83) is slightly lower than TCHL (R2 = 0.84). Finally, the best  
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cross-seasonal (2007–08) correlation uses derivative spectra and the Peak Magnitude algorithm  

(R2 = 0.84) despite high noise influences. This was expected because the hydro-morphological 

characteristics of this kettle hole could be compared to the shallow lakes with moderate chlorophyll 

and TSS concentrations, as described by Scheffer [29]. Han and Rundquist [34] found that for such 

lakes, the application derivative analysis approach produced the best correlations.  

Coefficients of linear determinations between volume reflectance and biomass concentrations 

produced low values for the season of 2008 and, consequently, for cross-seasonal combination (Mixed 

type). Only the season of 2007 has stable and high correlations for a chlorophyll absorption range of  

680–690 nm. Similar to volume reflectance correlations between TCHL and derivative spectra, they 

are consistent only for 2007 (R2 = 0.94). Although the correlations with derivative spectra are better 

than with volume reflectance, the cross-seasonal linear regression coefficients are still very low  

(0.1 ≤ R2 ≤ 0.3). 

The only stable correlation is at 482 nm with derivative spectra. Derivative spectra in this 

wavelength are an interaction zone in the visual region of light between the blue (400–500 nm) and 

green (500–600) ranges. At the same time, derivative spectra are an objective tool in isolating the 

absorption features of phytoplankton [35]. In Figure 2(c), it is seen that the reflections shapes are 

similar for both seasons in the green electromagnetic spectrum. Therefore, the best linear regression 

coefficients were calculated using Magnitude at 482 nm of 1st derivative algorithm (R2 = 0.73). 

Analysis of correlation revealed that K5’s derivative reflection at this wavelength has a higher 

correlation with chlorophyll content based on logarithmic distribution (Figure 6(c,d)).  

Figure 6. Received correlations between various algorithms and biomass concentration for 

kettle holes K1, K4 and K5. Note scale, axes and algorithms differences. 

(a) (b) 

(c) (d) 
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The application of logarithmic and power functions is a part of the statistical analysis also used in 

regression models between in situ measured chlorophyll concentration and reflectance derived at 

various wavelengths [31,36]. 

3.5. Analysis of Biomass Estimation Algorithms Accuracy 

Table 3 shows the accuracy of the best cross-seasonal algorithms for all studied kettle holes. The 

results of accuracy assessment of the best cross-seasonal algorithms reveal that despite good and, in 

some cases, high seasonal correlations with TCHL (e.g., kettle hole K1 with R2 = 0.997 for Peak 

Magnitude algorithm in the season of 2007), application CHL as a water quality parameter produces 

better results. In almost all kettle holes, cross-seasonal correlations with parameter CHL have higher 

values than TCHL. 

Table 3. Accuracy assessment of the best cross-seasonal algorithms for all studied kettle 

holes (n = 15 for 2007–08 season, only for K2 n = 5 in 2007). 

Kettle 

Hole 

Spectral Response 

Type 
Algorithm 

Biomass 

Type 
R2 

RMSE 

(μg·L−1) 
MDa 

K1 Submerged vegetation 
Peak Magnitude above a Baseline CHL 0.93 0.088 2.09 

Magnitude at 697 nm of 1st derivative CHL 0.87 0.11 3.00 

K2 Submerged vegetation 
Magnitude at 743 nm CHL 0.98 0.05 0.09 

Magnitude at 697 nm of 1st derivative CHL 0.82 0.14 0.31 

K4 
Phytoplankton 

dominated 
Peak Magnitude of 1st derivative CHL 0.84 0.11 16.65 

K5 Mixed 

Magnitude at 482 nm of 1st derivative 

(linear) 
CHL 0.73 0.30 3.46 

Magnitude at 482 nm of 1st derivative 

(logarithmic) 
CHL 0.82 0.16 2.39 

K6 
Phytoplankton 

dominated 
Peak Magnitude of 1st derivative TCHL 0.59 0.52 8.70 

K7 
Phytoplankton 

dominated 

Peak Magnitude above a Baseline CHL 0.85 0.09 0.52 

Peak Magnitude of 1st derivative CHL 0.76 0.13 0.81 

The study of spectral algebra algorithms based on volume reflectance and derivative spectra shows 

that in spite of a high variety of hydro-morphological, physical and bio-ecological factors influencing 

upwelling radiance from water bodies, the application of the derivative analysis approach produces 

stable correlations with chlorophyll concentrations. On the other hand, linear regression between CHL 

and the Peak Magnitude algorithm gives consistent correlation for high algae content in kettle holes. 

At low algae content, Peak Magnitude Above a Baseline algorithm gives the best results as, for 

example, with kettle hole K7.  

The methods based on the reflectance values at a specific wavelength are highly applicable for 

algae-dominated ponds, like for kettle holes K1, K2 and K5. For a “typical small lake” with 

moderately turbid water, K4 application of derivative analysis approach is the best methodology (the 
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derivative analysis is able to reduce influence of suspended sediment on water leaving  

reflectance; Han [26]).  

Kettle hole K6 had the worst correlation coefficients out of all the ponds. A study of linear 

correlations coefficients from this kettle hole reveals that spectral data collection in overcast weather 

conditions is still noise affected despite the air–water correction and de-noising. This type of kettle 

hole, due to hydro-morphological characteristics (Table 1), has an immediate response from 

agricultural activities from surrounding areas. Derivative spectra have a good correlation for 2007 [3], 

but are low for 2008 and, consequently, for the 2007–08 seasons. Possible reasons for low correlation 

in the 2008 dataset are difficulties in some days of data collection caused by shifting the boat (i.e., 

handheld spectrometer) from the collecting point due to strong winds. Nevertheless, the promising 

approach for this type of kettle hole is the application of derivative analysis.  

4. Conclusions 

The study results show that the upwelling radiance of kettle holes is highly influenced by the 

variability of hydro-morphological and climate factors within the catchment area. Analysis of spectral 

signatures from various kettle holes showed that received spectra can be grouped in three types, i.e., 

Submerged vegetation, Phytoplankton dominated, and Mixed type. Application of the derivative 

analysis approach produces stable correlations with chlorophyll concentrations with all types of kettle 

holes, despite high noise influence on the surface reflectance caused by windy conditions during 

measurements. For example, in a typical small lake, K4 had its moderately turbid water, or for the 

shallow kettle hole K7, with its sandy bottom (Phytoplankton dominated type), the application of the 

derivative analysis approach is the best methodology. Derivative spectra of 2007 and biomass data 

perform the best correlation using the Peak Magnitude algorithm. For the season of 2008, the linear 

regression analyses between the derivative spectra and total chlorophyll (TCHL) produces a high 

determination coefficient using the Peak Magnitude algorithm. Correlation for chlorophyll-a (CHL) 

(R2 = 0.83) is slightly lower than TCHL (R2 = 0.84). Finally, the best cross-seasonal (2007–08) 

correlation uses derivative spectra and the Peak Magnitude algorithm (R2 = 0.84), despite high 

noise influences. 

The method based on the reflectance values at a specific wavelength is the best applicable for  

high-algae-dominated ponds (Submerged vegetation type), such as K1 and K2 kettle holes. For 

example, linear regression between CHL and the Peak Magnitude algorithm gives consistent 

correlation for high algae content in kettle holes. At low algae content, Peak Magnitude Above a 

Baseline algorithm gives the best results, for instance, with kettle hole K7. However, the application of 

derivative analysis for this type of reflection also produces stable correlations. 

Extraction of seasonal and, especially, cross-seasonal correlations for Mixed type of spectral 

signatures is a difficult task due to the high difference in the reflectance shapes. The available nutrients 

in kettle holes will either cause intensive algae growth (Submerged vegetation type) or cyanobacteria 

(Phytoplankton type), which will then benefit from the nutrient input and the lake becomes turbid with 

a dark green color [37]. Coefficients of linear determinations between volume reflectance and biomass 

concentrations produced low values for the season of 2008 and, consequently, for cross-seasonal 

combination (Mixed type). Only the season of 2007 has stable and high correlation near a chlorophyll 

absorption range of 680–690 nm. Similar to volume reflectance correlations between TCHL and 
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derivative spectra, it produces consistency only for 2007 (R2 = 0.94). Although the correlations with 

derivative spectra are better than with volume reflectance, the cross-seasonal linear regression 

coefficients are still very low (0.1 ≤ R2 ≤ 0.3). Therefore, in the time of remote sensing image 

acquisition, kettle holes are dominated either by algae or phytoplankton [38]. Thus, the semiempirical 

algorithms have to be applied accordingly.  

The accuracy assessment of the best cross-seasonal algorithms reveals that application of CHL as a 

proxy for the chlorophyll concentration produces good and stable results (Table 3). In almost all of the 

kettle holes, the cross-seasonal correlations with the CHL parameter have higher values than with 

TCHL. Field data analysis (Table 2) shows that the spectral signatures of the water bodies are kettle 

holes type specific and depend on the agricultural activity and respective nutrient status. The 

correlation between the spectral signals and the chlorophyll concentration is stable over one season as 

long as the type of kettle hole does not change. 

Received results are important for water quality studies of kettle holes by means of airborne and 

satellite remote sensing. Unlike field spectrometers, the airborne and satellite remote sensors do not 

have such high spectral resolution. Therefore, integration of field spectrometry data for interpretation 

of the remote sensing images is an essential component in the classification of small shallow water 

bodies. Future research in the field of spectrometry can be focused on subsurface measurement and 

influence of fluorescence on the water leaving signal [5,39]. Precise understanding of the light 

attenuation under shallow waters can lead to detail interpretation of upwelling radiance.  
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