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Abstract: Automotive particulate matter (PM) causes deleterious effects on health and
visibility. Physical and chemical properties of PM also influence climate change. Roadside
remote sensing of automotive emissions is a valuable option for assessing the contribution
of individual vehicles to the total PM burden. LiDAR represents a unique approach that
allows measuring PM emissions from in-use vehicles with high sensitivity. This
publication reviews vehicle emission remote sensing measurements using ultraviolet
LiDAR and transmissometer systems. The paper discusses the measurement theory and
documents examples of how these techniques provide a unique perspective for exhaust
emissions of individual and groups of vehicles.
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1. Introduction and Background

Gases and particulate matter (PM) emitted by vehicles can greatly affect ambient air quality and have
direct implications for human health [1], climate change [2], visibility [3], ecosystem productivity [4],
and artistic and historic buildings preservation [5], all with consequences for society and national
safety and security. Pollutants emitted by vehicles are typically regulated by government agencies
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(e.g., the US Environmental Protection Agency in the USA) and typically include: carbon monoxide
(CO) and hydrocarbons (HC) (emitted during fuel-rich combustion conditions), nitrogen oxides (NO)
(emitted during high-temperature combustion conditions), and PM. In the last few years the interest in
PM emissions has grown substantially due to both air quality issues and the co-effects of new PM
emission regulations on global and regional radiative forcing and therefore climate change [6,7].

Measuring PM emission factors of vehicles represents a major technical and scientific challenge
due to the complexity of PM physical and chemical properties including PM shape and size
distribution, chemical composition and mixing state (i.e., internal vs. external). These properties are
affected by interactions with the environment and change with time after emission. Most of the PM
mass from vehicle exhaust is characterized as (1) Organic carbon (OC) PM composed of a complex
mixture of organic compounds that are generally weak light-absorbers and form particles of spherical
shape (i.e., white smoke) and (2) black carbon (BC) PM, consisting of fractal-like aggregates of
smaller quasi-spherical carbon monomers with disordered crystalline or amorphous carbon structure
(i.e., soot or black smoke). As indicated by its name, BC PM strongly absorbs visible and near visible
light [8,9] with a very large mass absorption efficiency, which has been estimated to be on the order of
7.5 + 1.2 m%/g [10]. These two types of particles might be internally and/or externally mixed in
emissions from an individual vehicle and their mixing increases with longer permanence in the
atmosphere, especially when exposed to other pollutants.

A LlIght Detection And Ranging (LiDAR) approach to measure vehicle PM emissions in realistic
conditions was recently developed and employed to measure the distribution of emissions of many
1,000s of vehicles. This paper reviews the remote sensing system [11], the theory of operation [12],
and its use in multiple field campaigns [13-18].

The review is organized in five sections: in the remaining part of Section 1 (introduction and
background) we introduce, in a general manner the problem of vehicle emission measurements and the
technical challenges and possible approaches. In Section 2, we describe the theoretical framework used
to quantify the vehicle emission factors in terms of mass of pollutant emitted by each individual
vehicle per mass of fuel consumed. In Section 3, we enter into the details of the specific UV LiDAR
and transmissometer system that is the subject of this review and that was developed for the on-road
quantification of PM emission factors. Section 3 includes a discussion of the apparatus, the noise and
sources of uncertainty, and the theory used to convert the optical measurement into a PM mass
concentration and/or column content. A specific example drawn from an on-road deployment of the
system is used to illustrate the procedure followed for the emission factor calculation. Results from a
field validation study are also presented. In Section 4, we describe some selected results from a couple
of field campaigns using the UV LiDAR and transmissometer system in conjunction with a gaseous
remote sensing system. Section 5 summarizes the different topics discussed and concludes the review.

1.1. Vehicle Emissions

Variability of vehicle exhaust emissions stems from many complicating and confounding factors
including for example, but not limited to: (a) wide variety of vehicle and engine types; (b) vehicle use
and maintenance; (c) vehicle operating conditions; (d) vehicle age; (e) fuel type and quality; (f) driving
habits; (g) weather conditions; (h) road conditions; (i) traffic conditions; (j) enforcements of inspection
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and maintenance programs or other emission control programs. Due to the large number of parameters
and the wide range of variability for each, it is difficult to obtain a representative and statistically
relevant sample of vehicle emission factors. To make the task even more formidable, the emission
distribution across the vehicle fleet is often strongly skewed, making a few vehicles responsible for the
largest fraction of the total fleet emissions. The emission distribution skewness has been shown to be
especially severe for CO and PM emissions with ~10% of the vehicles contributing more than 70% of
the total fleet emissions for passenger cars [14,19,20]. Therefore, normal parametric statistical
approaches are prone to bias, especially when sample counts are low (i.e., <1,000 vehicles). Large
samples sets are needed to accurately capture the tail of the emission distribution and to stratify
emissions by the different confounding variables.

An effective strategy to quantify and then reduce the deleterious effects of vehicle emissions needs
to be two-fold: first, detailed emission inventories need to be assembled using measurements from
broad geographical areas; second, a reliable prediction tool needs to be developed to estimate future
emissions and to infer vehicle exhaust emissions in areas where emission measurements are not
available. In both cases—database and model development—a measurement approach needs to be
developed to overcome the difficulties related to the multi-parameter problem mentioned above. No
individual measurement technique is currently available that can precisely stratify these parameters. In
addition, emissions are also continuously changing in response to societal dynamics, emission control
strategies, and technological advances.

The need for remote sensing of automotive PM emissions is made more urgent by the fact that the
PM emission factors from passenger cars are skewed and that this skewness will likely become more
severe with technology improvements on later model years and with more stringent regulatory
policies. This necessitates the development of reliable technology to detect the very few gross emitters
in large in-use fleets.

1.2. Measurement Challenges

Many approaches have been explored and developed over the years to measure exhaust emissions
from vehicles. Laboratory studies are probably the most controlled and therefore most accurate and
precise methods, however the cost and time needed for the measurement of an individual vehicle
strongly limit the sample size (in terms of number of total vehicles) that is realistically achievable. In
addition, it is difficult to attain and demonstrate the ability to accurately reproduce real-world
conditions in the laboratory. Techniques, such as tunnel studies, can provide large sample sizes, but
vehicle specificity is compromised and the availability of suitable and representative locations is
severely limited [21,22]. Partial solutions to the representativeness of “real-world conditions” are
provided by chase studies [23,24] and on-board measurements [25,26], but both of these techniques
still suffer from the practical limitations to obtain large and statistically representative samples.

Among the many techniques available for vehicle emission measurements, remote sensing (i.e.,
measurement of optical scattering and/or extinction across an active roadway) presents a unique set of
advantages. First, remote sensing offers the possibility to collect data for thousands of vehicles at a
reasonable cost, and with modest time and human resource investments. Second, remote sensing is the
only currently available technique that is able to collect data representative of a large and realistic
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ensemble of vehicles, maintaining at the same time the specificity of “single vehicle” emission
measurement via images of the vehicle’s license plate [27]. Remote sensing also incorporates a set of
restrictions that limit its applicability. For example, remote sensing captures just a “snapshot” of the
emissions of each vehicle, generally represented by just a half a second measurement [28]. In addition,
as is true of most remote sensing techniques, vehicle remote sensing is limited to the use of
electromagnetic radiation as a sensing tool.

Before remote sensing became available for vehicle emissions however, little was known about the
statistical distribution of real-world vehicle exhaust emissions [20]. Distribution information is useful
to determine contributions from different fleet segments (e.g., high emitters, older vehicles) and the
variability of emissions within a subcategory (e.g., model year). Some studies have integrated remote
sensing with roadside, dynamometer or on-board testing or tunnel studies in a hybrid approach that can
exploit the unique advantages of the different techniques (e.g., using remote sensing to identify high
emitters) and combine the strengths of the individual methods [29-31].

1.3. Vehicle Emission Remote Sensing Systems

Vehicle emissions remote sensing systems (VERSSs) can measure gaseous emission factors for
large numbers of individual vehicles (on the order of 1,000 vehicles per hour) by deploying light
sources and detectors on the road-side on a single lane road. Suitable sites are often on-ramps of
freeways or congested urban roads where the traffic passing through the optical beam is accelerating
and has been restricted to a single lane by using traffic cones and signals.

Gaseous VERSSs measure infrared (mostly for carbon dioxide, carbon monoxide and
hydrocarbons) and ultraviolet (mostly for nitrogen oxide) extinction across the road to quantify the
mass column content of the gases of interest [31-45]. Often an infrared (IR) source and an ultraviolet
(UV) lamp are placed on one side of the road together with a set of bandpass filters and a detection
system. On the opposite side of the road, a retroreflector is installed to allow a double pass of the IR
and UV radiation through the plume. Mass column content is a two-dimensional mass density (with
dimension of mass/area) of the emitted gas of interest. The total carbon mass content in the vehicle
exhaust is mostly in the form of carbon dioxide (CO,) and some CO and HC, and it is used to calculate
fuel-based emission factors (EFs).

The remote sensing measurements have a high temporal resolution (~10 ms) to yield multiple
sampling (typically 20-50 samples) before and after the vehicle passes through the sensor. The
sampling done immediately before the vehicle passes through the sensor is used to estimate the
ambient background. It is assumed that during the short time of the measurement the background
remains substantially unchanged. The accuracy of this assumption is quantified for each individual
vehicle by calculating the standard deviation of the 20 measurements collected immediately before the
vehicle passed through the system; if the standard deviation is larger than a threshold specified by the
operator, the measurement is flagged as invalid (e.g., in the case of a plume from a previous car not
yet dissipated).
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2. Fuel-Based Pollutant Emission Factors Calculation

Since the carbon mass fraction of automotive fuel is known, the ratio of the two mass column
contents (the pollutant column content and the total carbon column content) can be used to calculate
the mass emission of the pollutant of interest per mass of fuel consumed, yielding a fuel-based
emission factor [11]. This emission factor (EFp) for pollutant (P) is defined as the ratio of the mass of
pollutant emitted (Mp) per mass of fuel consumed (Mj,e1):

M,

B = (M)

fuel

Defining CMF},.; as the carbon mass fraction of the fuel (i.e., the carbon mass of the fuel (CMj.:)
divided by its mass (Mj.;)), the fuel mass (Mj,.;) can be replaced, yielding

M
EF, =CMF,,, ——"— )
CMfuel ( )
The carbon mass emitted by the vehicle equals the carbon mass of the fuel consumed (carbon
balance). Thereby, the fuel carbon mass (CMj..;) can be replaced by the carbon mass of the exhaust,
which is the sum of the mass of its main carbon-containing components, weighted by their respective
carbon mass fraction:
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where the mass ratios have been replaced by the ratios of the respective exhaust mass column contents
(pep and p.;) as measured by a VERSS. Expanding the sum over the main carbon-containing

components of gaseous emissions (i.e., CO,, CO, and HC) and dividing the numerator and
denominator by the CO, mass M, yields [11]:

p c—P
EF, = CMF,, Peco )
CMF,, +| CMF,, =0 4 CMF,,. Pe-tc.
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where the terms in parentheses may be neglected for most vehicles with the exception of gross CO or
HC emitters. The contribution of particulate carbon emissions is even less significant and has been
neglected from the denominator in Equation (4). The fuel-based EFp can be determined from a VERSS
measurement of the mass column contents p. using Equation (4), if the carbon mass fractions (CMF)

are known. For CO and CO,, CMFs can be calculated directly from the respective atomic masses
yielding CMFco = 42.9% and CMF,, = 27.3%. For fuels, one may assume empirical formulas of

C,H, 825, for gasoline and C,H», for diesel, resulting in CMF gu50iine = 86.7% and CMF jiese1 = 85.6% [46].
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If PM is the pollutant of interest and its mass column content can be measured simultaneously with
the carbon mass column content, fuel-based PM emission factors can be determined using the same
methodology used for gaseous emission factors. Chen et al. [47] demonstrate how the PM closely
follows the gas molecules in the plume while dispersed by turbulence, with negligible deviations
during the short sampling time. While measurements of gaseous on-road emissions with remote
sensors have become routine, VERSS technology to measure on-road PM emission factors has not
been available until recently.

3. UV LiDAR and Transmissometer System for Vehicle PM Emission Measurements
3.1. Measurement Approach and Instrument Design

As described in the previous section, fuel-based PM EFs can be calculated from PM mass column
content (PM mass concentration intergraded over the path length) that has been measured
simultaneously with the carbon mass column content measured by gaseous VERSS [11]. Properties of
automotive PM emissions such as PM chemical composition, size distribution, internal/external
mixing, particle shape, and refractive indices of components vary as a function of engine, fuel, exhaust
system, and operating conditions, and influence their optical properties. A PM sensor should measure
PM mass column content with a small dependence on these variables within their normal range;
deviations should be minimized and quantified to yield an instrument of known accuracy. Calculations
of the optical properties of automotive PM and their sensitivity to different parameters are reported in
the next sections.

3.1.1. State of the Art

Optical opacity can be used to estimate PM mass column content although this approach is
quantitatively challenging since the light extinction associated with moderately emitting vehicles may be
very small; the method is mostly suitable for diesel vehicles. Chen et al. [47] for example demonstrate
the feasibility of an opacity-based PM remote sensing unit by measuring opacity at 710 nm from a diesel
vehicle and a diesel bus in a laboratory setting. Morris et al. [48] report road side IR (3.9 um) opacity
data for 314 measurements on individual heavy-duty diesel trucks and found a correlation with the CO
EFs. Stedman and Bishop [49] reported encouraging results on the identification of gross PM emitters
using a combination of three opacity measurements, a UV channel (using an ultraviolet xenon arc lamp
with a bandpass filter at 240 nm), a visible channel (using a He/Ne laser at 632.8 nm), and an IR
channel (using a thermal source with a bandpass filter at 3.9 um) [42]; the experiment was carried out
characterizing emissions from three light duty diesel trucks [49].

A more sensitive method to measure PM EFs from individual vehicles is to detect the light
backscattered from the PM in the vehicle exhaust. For this application, a LIDAR approach needs to be
employed to properly account for the variable spatial distribution and location of the vehicle plume
and for the range-dependence of the backscattered signal. An interesting development, based on
intensity-modulated, stepped frequency CW LiDAR, was proposed by Simpson et al. [50]. The
system, based on CW laser diode operating at 660 nm, showed potential for its low cost and simplicity;
however, to our knowledge, data and analysis from the operational on-road deployment of the system
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are not currently publicly available. A different approach was taken by Koren and Eichinger [51]; they
used a combination of 2D LiDAR aerosol concentration measurements with an inverted Gaussian
diffusion model to determine localized emission inventories. However, this method does not provide a
direct measurement of individual vehicle PM EFs.

Here we focus our attention on reviewing an alternative system based on a short-range and
cross-road UV LiDAR system, combined with a measurement of total plume optical density (i.e., light
transmission through the plume). LiDAR data can be difficult to interpret if the laser beam encounters
substantial (>10%) opacity. In this case, the LiDAR signal is no longer approximately proportional to
the backscattering coefficient, but the range-dependent opacity also has to be taken into account. Such
high opacity across an automotive exhaust plume is rare and occurs only for high-emitting heavy duty
diesel vehicles and for some other gross emitters. Despite the rare occurrence of these PM high
emitters, the quantification of their emissions is of highest importance; as discussed briefly above and
in more detail in Section 4.1.3, high emitters shape the fleet average PM EF since these vehicles
disproportionately contribute to the overall fleet emission. To quantify PM exhaust from high emitters,
a second PM channel uses the LiDAR laser as part of a UV transmissometer to measure the crossroad
opacity. The two PM channels yield simultaneous measurements of PM backscattering and opacity.
These measurements are complementary in a sense that the LiDAR provides a sensitive measure of
PM that becomes less quantitative at high opacity, while the transmissometer measurement is not very
sensitive but it is quantitative at high opacities.

Due to the complex and variable mixture of OC and BC for different vehicles across a fleet, the
backscattering LIDAR and transmissometer measurements can determine the PM mass column content
only if a practical wavelength can be found where BC and OC contribute comparably to both the
backscattering efficiency and the extinction efficiency causing the opacity. At wavelengths much
larger than the particle size, extinction is dominated by light absorption, with a negligible contribution
from OC scattering [8]. Backscattering is dominated to a lesser extent by BC, with BC cross-sections
being about twice those of OC [12]. However, at these long wavelengths, backscattering cross sections
are very small requiring powerful lasers and large collection area receivers. Towards shorter
wavelengths, OC extinction and backscattering cross sections increase faster than those of BC and
start to dominate at UV wavelengths. For the PM LiDAR and transmissometer channels, a UV
wavelength of 266 nm was chosen yielding (a) comparable signals from BC and OC PM components,
(b) negligible background light due to the absorption of solar UV by atmospheric ozone, (c) negligible
gaseous absorption over the typical 11-m propagation length (although atmospheric ozone absorbs UV
radiation, the extinction resulting from ambient ozone is minimal for such short path length [at 266
nm, less than 0.01 km™' for a 100 ppb ozone concentration]), (d) relaxed laser safety requirements as
compared to visible wavelengths, and (e) availability of compact, all-solid-state light sources in the
form of frequency quadrupled Nd:YAG lasers. It should be noticed here that, although the laser itself
is not eye safe, the system is made eye safe through the use of an automated shutter system as
discussed later on. A commercial gaseous remote sensing system measures CO,, CO, HC, and NO
column contents through IR and UV absorption and is used in conjunction with the LiDAR system.
CO,, CO, and HC column contents are used to normalize the PM column content data and to account
for plume dilution, to calculate fuel-based PM EFs.
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3.1.2. UV LiDAR and Transmissometer Unit

The UV LiDAR and transmissometer system described here was developed at the Desert Research
Institute in Reno, Nevada, USA starting in 1999 and has been evolving and improving since then [11].
A typical field set-up is shown in Figure 1. All system components are transported to the site in a
trailer that also serves as a heated/air-conditioned control room. For operation, the trailer is parked at
the side of a road with single-lane traffic. The commercial unit to measure gaseous column contents is
also deployed on the road. The main LiDAR and transmissometer units and the main gaseous units,
containing the light sources and the detectors, are deployed next to the trailer, while the retro units,
containing only passive components (mirrors and retro-reflectors), are deployed on the opposite side of
the road, as shown in Figure 1. The height of the light beam is chosen to maximize the overlap
between the beam and the probable location of the plume for the vehicle of interest (e.g., the light
beam will be higher when sampling buses than for passenger vehicles).

Figure 1. Diagram (a) and picture (b) of a typical field set-up system of the PM LiDAR
and gaseous measurement systems. The main unit contains all the light sources and
detectors, while the retro unit incorporates a set of mirrors and retro-reflectors. A trailer
hosting the data acquisition and computer system is parked on the side of a single-lane
road where the exhaust plume of vehicles passing by is intercepted by the light beams.
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The LiDAR UV transmitter utilizes a frequency-quadrupled, passively Q-switched Nd:YAG laser
(Uniphase PowerChip NanoLaser PNU-001025-040) as a high-repetition rate (~1 kHz) source of
sub-nanosecond, 266-nm pulses (with an energy of ~10 pJ per pulse). An internal photodiode
generates a trigger signal for the data acquisition. The laser beam is directed across the road toward the
retro unit. In the retro unit, two UV mirrors reflect the beam back, with a separation of ~27 cm from
the outgoing beam, to the UV transmissometer receiver also located in the main unit. The UV
transmissometer receiver measures the incident laser power with a large area photodiode operating in
photovoltaic mode (UDT Sensor, Inc. UV-100 with a Corion G10-265-F band-pass filter mounted in
front of it) and using a ~7.6-cm diameter UV fused silica lens that focuses the beam onto the
photodiode. Its signal is processed by an analog gated integrator and digitized for further processing
into a transmission or opacity reading.

The UV LiDAR receiver is located, in a biaxial arrangement, next to the outgoing UV beam. A
15-cm diameter spherical mirror collects the light backscattered by the particles suspended along the



Remote Sens. 2010, 2 1085

laser beam path, at ~180 degree and focuses it onto a fast, solar-blind photomultiplier tube (PMT)
(Hamamatsu R7400U-06 with a quantum efficiency of ~28% (@ 266 nm). A band-pass filter (Corion
G10-265-F) is mounted in front of the PMT to reduce the contribution of background radiation. The
PMT generates a negative current, which is a function of the incident optical power. It is necessary to
operate the LiDAR system with a fast data acquisition system that allows the backscattering
coefficient and consequently the PM concentration, to be measured as a function of range (i.e.,
distance from the main unit along the beam path). This is essential to (a) discriminate against the large
signal from the retro unit, (b) correct for the 1/#* dependence of the collected backscattering signal and
for the overlap function between beam path and field of view of the telescope resulting in range-
independent sensitivity (also see the calibration procedure described below), and (¢) make it possible
to determine the spatial distribution of PM concentration along the beam path. A high bandwidth (i.e.,
1.5 GHz with a 4 GSa/s sampling rate) digital oscilloscope measures the PMT current on a 50 Q load,
yielding a time-dependent waveform for each laser pulse.

This time-dependent waveform is converted to a distance-dependent waveform by multiplication of
the time with one half the speed of light to account for the roundtrip of the UV radiation. The result is
the LiDAR backscattering signal as a function of distance or range. As the UV wavelength of 266 nm
is in the solar blind spectral region, the system can be operated in full sunlight without interference
from solar background light. Figure 2 shows a schematic and a picture of the main unit.

Figure 2. Diagram and picture of the main unit of the UV LiDAR/transmissometer system.
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The diagram includes two IR optical gates encompassing the laser beam in its horizontal and
vertical extension. The two gates are connected to a fast (~1 ms opening/closing time) horizontal blade
mechanical shutter in front of the laser. The two gates are kept activated (implying the mechanical
shutter is open) only when their IR beam from the main unit to the retro unit is free of obstacles, by
means of two plastic corner-cube type retro-reflectors on the other side of the road. If anything
interrupts the optical circuit, the shutter is immediately closed. The reason for the shutter system is
threefold: (1) Eye safety. Should anybody attempt to look into the beam, one or both of the optical
gates would be interrupted and the shutter closed, avoiding any exposure; this is also true for reflected
or diffused light from an object inserted in the path. (2) PMT protection. When a vehicle is passing
through the beam, in absence of a shutter system, a large amount of UV light could be directly
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reflected into the main mirror and focused onto the PMT, potentially causing damage. (3)
Measurement timing. The signal from the gate is used as a timing trigger for the measurement
providing a reference with respect to the vehicle passage.

The acquisition system and data transfer for the experiments described here worked at a frequency
of about 0.5 kHz, although commercially available acquisition cards are now able to sample each laser
pulse at pulse repetition rates up to ~1 kHz. Data for ~300 milliseconds are continuously stored in a
circular buffer. When a blocking trigger signal (a vehicle is passing through and is blocking the beam)
is detected, the upstream optical gate sends a TTL signal to the computer. The buffering is then
stopped and only the last 200 milliseconds of data are retained. These data are collected immediately
before the vehicle passes and are used to estimate the background backscattering and extinction
signals. These data represent the signal due to aerosols and gases that would be in the optical path in
the absence of the vehicle under investigation. The data collected while the laser beam is blocked by
the shutter, during vehicle passage, is used as an internal check to evaluate the “dark™ noise
background on the PMT and the UV-enhanced silicon photodiode. When the downstream optical gate
is unblocked the laser shutter is opened and the vehicle data acquisition records the signals associated
with the background plus the exhaust plume. Backscattering LiDAR returns are acquired for 500
milliseconds and associated, together with the pre-vehicle 200 milliseconds data, with the individual
vehicle identification number. For each vehicle a synchronous picture is also taken by means of a
digital camera. The vehicle PM mass concentration along the path and the column content are
calculated by subtracting the pre-vehicle averaged signal from each post-vehicle LiDAR return and by
calculating the excess backscattering and extinction in the optical path.

3.1.3. Method

a. Transmissometer

The UV transmissometer measures the power of the laser beam returning to the main unit after two
passes through the exhaust plume (i.e., round trip from main unit to retro unit) as
background-corrected photodiode signal (S7) directly yielding the excess two-way opacity (OP,) and
relative two-way transmission (7R;) as

S
OP,=1-TR, =1-—L (5)

T0

where S7y is the photodiode signal measured before the vehicle passes the sensor. The corresponding
one-way excess optical depth 7 (i.e., the optical depth added by the exhaust plume) between main unit

1 1 1 1
7=—In — |=—=In (6)
2 \TR,) 2 (1-0OP,

The excess optical depth 7 is the relevant optical parameter measured by the transmissometer, and is

and retro unit is expressed as

converted to an excess PM mass column content (p. py) by
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when the mass extinction efficiency (E.,,) (dimension of area/mass) for the exhaust PM is known.

The E. for PM emitted by diesel and gasoline vehicles and for freshly entrained road dust is
calculated in Section 3.2, as function of several assumptions. The relative range of E.,, values for
reasonable changes in assumptions is ~10-20%. Therefore, the UV transmissometer gives a direct
measurement of the excess PM mass column content especially suited for the measurement of optically
dense plumes. This measurement is used to calculate the fuel-based PM EFs in conjunction with the
excess carbon mass column content obtained from gaseous measurements. Road dust entrained by the
vehicles from paved roads does not contribute significantly to the transmissometer signal at this
wavelength due to its relatively low mass column content and because its much larger average
diameter yields a low extinction efficiency. Theoretical calculations demonstrating that dust has a
negligible contribution in typical paved-road conditions are presented in Section 3.2.

b. LiDAR Calibration and Inversion

In contrast to the transmissometer, the LiDAR needs to be calibrated to yield the backscattering
coefficients in the beam path. When the PMT response is linear with the incident radiation, the signal
Sy is given by the LiDAR equation as a function of the range () from the LiDAR system and can be
written as:

S, (r) =G, %ﬂ(l’)ﬂ(l’) =C(r) (L) (8)

where Cj is the LIDAR constant including parameters such as laser pulse power, telescope area, PMT
sensitivity, transmission of optical elements, efc.; O(r) is the overlap correction, which accounts for the
geometric overlap of the field of view of the telescope and the laser beam and spatial variations of the
PMT sensitivity [52]; 1/#* accounts for the acceptance solid angle of the receiver aperture; A(r) is the
backscattering coefficient (dimension of 1/(length times spatial angle)); and T>(r) is the two-way
transmission between LiDAR system and range » [53]. The unknown coefficients O(r) and Cy have been
joined with 1/# into the coefficient C(r), which must be determined through experimental calibration.

We should point out that Equation (8) is an approximation valid only for cases where the system
temporal resolution (and therefore the range resolution) is much lower than the laser time pulse-width
(the laser pulse is treated as a delta Dirac function). In our system however, the detection resolution
(~1 ns) is comparable to the temporal pulse-width of the laser (~1 ns) and therefore a convolution with
the laser temporal pulse shape should be included to provide a corrected version of the lidar equation
(for a full treatment see Chapter 7 in Measures [53]). In our application though, we are interested in
the PM emission factors and in the current system these are calculated by integrating the
backscattering signals over the entire column to be compared with the column-content measurements
of CO,, CO, and HC. In this case, the resolution (i.e., the entire width of the road and some more) is
considerably larger than the laser pulse-width making a correction unnecessary.

For most LiDAR systems, experimental calibration is limited as typical maximum ranges vary from
1 km to over 100 km, and calibration cells enclosing the entire range are impractical; although some
novel LiDAR systems have a range close to 100-200 m (e.g., [54,55]). In our application, however,
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the LiDAR 1is used over a typical range of just 5-7 m and therefore a calibration can be easily
performed in the laboratory; a ~8 m-long, ~50 cm-diameter calibration cylindrical plastic bag is
attached to the enclosure of the main unit and terminates the beam with a beam dump (see picture in
Figure 3). This cell can be completely evacuated (the bag collapses if air is removed with a pump) and
then filled with calibration gases having different, well-known backscattering coefficients. The LiDAR
system can be calibrated as a function of r yielding the calibration coefficient, C(r). Examples of
calibration signals from HEPA-filtered air (B, is 27 Mm 'sr ' at standard pressure and temperature)
and CO, (Bco. is 70 Mm 'sr ' at standard pressure and temperature) are shown in Figure 3. From the
figure and the insert it is possible to appreciate that the overlap correction function O(r) for this
LiDAR is such that in the near field, 2—4 m range from the main unit, the signal is almost constant with
r. This is primarily due to the limited overlap of the laser beam with the field of view of the mirror, but
also due to the “shadow” that the rectangular case of the PMT casts on the collecting mirror, especially
in the near field. This peculiar range-dependence is useful because it reduced the severity of the range
correction needed and it is therefore less sensitive to errors or variability in the range correction
function; it also reduces the needed dynamic range for the data acquisition system.

Figure 3. Picture of the calibration procedure and examples of data of the resulting LIDAR
returns for filtered air and CO,. The insert reports the calculated overlap function.
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Once calibrated, the system can be used to determine the backscattering coefficient S(r) as

I §,(r) 1 S,(r)
L(r) C(r) [exp(_ [ ot dﬂ c(r) ©)

where o(r) is the extinction coefficient. In most cases 7»(r) is close to 1. However, as mentioned above,

pr) =

one of the advantages of the system presented here is that the total transmission is also measured. When
the extinction of the laser beam is above a certain threshold (e.g., for optically think plumes with
T < 0.9), a Kunz’s [56] LiDAR inversion algorithm is applied to retrieve the correct backscattering
coefficient by first calculating the range dependent extinction and then substituting into (9):
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or) =L S,(r)/C(r)
2[5,/ Crydr
(1-7,)

where T in this case represents the measured total transmission over the path between the main unit at

[ 8,/ Crydr (10)

position ry and the retro unit at g and back.

The LiDAR measures the backscattering coefficient f(r) before (So(r)) and after (51(r)) the vehicle
passes, yielding the excess backscattering coefficient fe(r) as fe(r) = pi1(r) — Po(r). The Pi(r) is the
relevant parameter measured by the UV LiDAR, and it can be converted to an excess range-dependent
PM mass concentration p(r) using a mass backscattering efficiency [Eps..; dimension of area/(mass
times spatial angle)] that depends on aerosol optical and physical properties. A theoretical calculation
of the Epq 1s described in Section 3.2. Figure 4 shows an example of the PM mass concentration
measured in time immediately after an emitting vehicle passed through the laser beam.

Figure 4. Gasoline vehicle passing through the LiDAR system (the license plate has been
obscured for privacy reasons) deployed near Boise, Idaho, USA in winter 2004. On the
right panel the excess PM mass concentrations emitted by the gasoline vehicle are
represented in an intensity chart. The concentrations were calculated from the LiDAR
returns after correcting for the non-linearity of the detector. Range- and
extinction-corrections have been applied after the background signal has been subtracted.
No correction has been applied to account for the finite temporal pulse width of the laser.
The abscissa axis represents the time (in milliseconds) elapsed after the vehicle passed
through the system. The ordinate axis represents the distance across the road » from the
main unit (in meters). The color scale represents the PM mass concentration (in pg/m’)
with white being the highest concentration; evident is the plume dispersion.
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The PM column content p. pys can be obtained by integrating p across the exhaust plume. As the
exact location of the exhaust plume is generally not known (the tailpipe may be on the left or on the
right side of the vehicle), a conservative procedure integrates over all of the useful LIDAR range from
ry to rg, yielding p. py as
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1

| p(r)dr = j B (r)dr (12)

bscat
In summary, p. py (i.e., the mass column content after passage of the vehicle minus the mass
column content before passage of the vehicle) can be directly calculated from the measured excess UV
LiDAR signal using Epsq. Therefore, the UV LiDAR gives, after calibration, a direct and sensitive
measurement of the excess PM mass column content. This is used to calculate the fuel-based PM EF in
conjunction with the excess carbon mass column content obtained from gaseous VERSS
measurements also deployed in the field. Contributions to the UV LiDAR signal from road dust
entrained by the vehicle on paved roads is typically negligible due to its relatively low concentration
and its lack of correlation with the excess carbon mass column content. A more detailed theoretical
discussion of the dust contribution to extinction and