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Abstract: Haze or cloud always shrouds satellite images, obscuring valuable geographic information
for military surveillance, natural calamity surveillance and mineral resource exploration. Satellite
image dehazing (SID) provides the possibility for better applications of satellite images. Most of
the existing dehazing methods are tailored for natural images and are not very effective for satellite
images with non-homogeneous haze since the semantic structure information and inconsistent
attenuation are not fully considered. To tackle this problem, this study proposes a hierarchical
semantic-guided contextual structure-aware network (SCSNet) for spectral satellite image dehazing.
Specifically, a hybrid CNN–Transformer architecture integrated with a hierarchical semantic guidance
(HSG) module is presented to learn semantic structure information by synergetically complementing
local representation from non-local features. Furthermore, a cross-layer fusion (CLF) module is
specially designed to replace the traditional skip connection during the feature decoding stage so as
to reinforce the attention to the spatial regions and feature channels with more serious attenuation.
The results on the SateHaze1k, RS-Haze, and RSID datasets demonstrated that the proposed SCSNet
can achieve effective dehazing and outperforms existing state-of-the-art methods.

Keywords: satellite image dehazing; CNN–Transformer; hierarchical semantic guidance; cross-layer
fusion

1. Introduction

Satellite images play a pivotal role in numerous fields, from military surveillance [1]
and agricultural monitoring [2,3] to natural disaster response [4,5] and resource explo-
ration [6]. However, their value plummets when shrouded in haze or cloud. Hazy or
cloudy images suffer from drastically reduced contrast and visibility, crippling their po-
tential for downstream computer vision applications. Therefore, dehazing or declouding
has become an important topic in satellite images interpretation, promising to enhance the
enduring quality of satellite images even under adverse atmospheric conditions.

In recent years, a range of dehazing methods have been developed, roughly divided
into prior and deep learning-based methods [7,8]. Most prior-based methods are based on
the atmospheric scattering model and require accurate estimation for the transmission and
atmospheric light [9]. To guide the estimation process, researchers have devised various
prior assumptions about the haze characteristics, such as dark channel prior (DCP) [10]
and color attenuation prior [11]. The DCP method [10] is the milestone study in this field,
which effectively estimates the transmission map but performs poorly in sky images or
white scenes, leading to color distortion. While prior-based methods have proven effective
in many scenarios, they can struggle with dense and non-homogeneous haze due to the
complexity of estimating multiple haze parameters accurately.
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Subsequently, deep learning has revolutionized image dehazing, offering a powerful
alternative to prior-based methods. Instead of relying on hand-crafted features, deep neural
networks automatically learn the complex relationships within hazy images. Early models
like DehazeNet [12] and AOD-Net [13] have focused on estimating transmission maps for
haze removal. Later approaches like FFA-Net [14] emphasized capturing image details
and color fidelity through attention mechanisms. In recent years, the rise of Transformer
models in computer vision [15] has sparked interest in their application to dehazing due to
the ability to capture non-local interaction information. For instance, DehazeFormer [8]
exemplifies this trend with its innovative normalization layer and spatial information
aggregation scheme. In the past two years, some dehazing methods tailored for satellite
images [16–20] have been explored, promoting better applications of satellite images and
sharpening our view from space.

In fact, satellite images exhibit more non-homogeneous hazy distributions, more
complex terrain information, and more severe object occlusion resulting from excessive fog
concentration compared to natural hazy images. Despite the remarkable progress, existing
methods are not very effective for SID with the deepening of haze density and haze non-
homogeneity. This is due to the significant loss of spectral information and texture details,
which are crucial for accurate SID. As shown in Figure 1, all dehazing methods performed
well on the first row of images with light homogeneous haze, except for non-learning
DCP. However, when processing the dense non-homogeneous hazy images in the second
row of Figure 1, both natural image dehazing methods (such as DCP and Restormer) and
dehazing methods tailored for satellite images (such as DCRD-Net), exhibited suboptimal
performance. Although DCRD-Ne is tailored for spectral satellite image dehazing, it still
exhibits significant color distortion.

(a) (b) (e)(d)(c) (f)

Figure 1. Sample results of several representative image dehazing methods. (First row) Light
homogeneous haze. (Second row) Dense non-homogeneous haze. (a) Hazy images. (b) Real clean
images. (c) DCP [10]. (d) Restormer [21]. (e) DCRD-Net [22]. (f) SCSNet (Ours).

Therefore, this study proposes a hierarchical semantic-guided contextual structure-
aware network (SCSNet) for spectral satellite image dehazing (SID) by integrating CNN
and Vision Transformer architecture to fully explore the semantic structure information and
inconsistent attenuation. The network does not rely on prior knowledge or physical models
and is an end-to-end trainable dehazing network capable of directly restoring hazy images
into clear ones, even with limited data. As shown in Figure 2, the proposed SCSNet consists
of a CNN feature encoder branch, Transformer encoder branch, hierarchical semantic
guidance (HSG) module, and image restoration branch. First, the input hazy image is
processed through the CNN feature encoder branch for learning hierarchical local structure
features and the Transformer encoder branch for extracting hierarchical non-local semantic



Remote Sens. 2024, 16, 1525 3 of 18

information. Secondly, the HSG module is devised to learn semantic structure information
by synergetically complementing multi-scale local and non-local information. Thirdly,
the learned semantic structure information and multi-layer local structure features are
combined to restore the hazy-free image. Note that we specially devise a cross-layer fusion
(CLF) module to replace the traditional skip connection in the feature decoding stage,
which can reinforce the attention to the spatial regions and feature channels with more
serious attenuation. The experiments on the SateHaze1k, RS-Haze, and RSID datasets show
that our SCSNet outperforms contemporaneous methods.
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Figure 2. The overall framework of the proposed SCSNet. First, the CNN and Transformer encoder
branches are used to extract the hierarchical local structure and global non-local semantic features,
respectively. Next, the HSG module is devised to learn semantic structure information by synerget-
ically complementing multi-scale local and non-local information. Finally, the semantic structure
information is combined with the multi-layer local features for high-fidelity image restoration and
obtaining a hazy-free image.

In summary, the main contributions of this study are three-fold:

• To better learn semantic structure information in spectral satellite images with non-
homogeneous haze, we propose a hybrid CNN–Transformer architecture, in which a
hierarchical semantic guidance (HSG) module is introduced to synergetically aggre-
gate local structure features and non-local semantic information.

• To fully consider the inconsistent attenuation, we present a cross-layer fusion (CLF)
module, which is significantly better than traditional skip connection for integrating
cross-layer features and reinforcing the attention to the spatial regions and feature
channels with more serious attenuation.

• We establish a hierarchical semantic-guided contextual structure-aware network (SC-
SNet), which can effectively restore hazy-free images from non-homogeneous hazy
satellite ones. Our SCSNet achieves nontrivial performance on three challenging
SID datasets.

The remainder of this study is arranged as follows: Section 2 reviews existing dehazing
methods. Section 3 elaborates the proposed SCSNet. The experimental results are shown
and analyzed in Section 4. Finally, Section 5 gives the conclusion.
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2. Related Work

Current image dehazing techniques can be broadly classified into two main cate-
gories [23]: prior-based methods and deep learning-based methods. This section reviews
the advances of these methods during the past decades. Then, we also investigate recent
dehazing methods tailored for satellite images.

2.1. Prior-Based Methods

Prior-based methods rely on pre-defined priors like dark channel priors (DCP) [10],
color attenuation priors [10], and haze-line priors [24,25]. Each approach tackles specific sce-
narios but faces limitations due to inherent imprecision in prior information. For example,
He et al. [10] pioneered an efficient dark channel prior method that exploits the low pixel
values in non-sky regions of the RGB channels. This enables reliable transmission estima-
tion while potentially introducing color distortion in the sky. Subsequently, Zhu et al. [11]
introduced a mathematical equation considering brightness and saturation disparities to
improve transmission map accuracy. Berman et al. [24,25] utilized a non-local dehazing
method that analyzes haze lines in degraded images, leveraging the tight clusters of haze-
free image colors in the RGB space. Bui and Kim [26] introduced a dehazing method using
color ellipsoids for high contrast, robust transmission values, and artifact-free results with
low complexity. Peng et al. [27] leveraged regression analysis to model depth-dependent
color shifts, then leveraged light differential to estimate medium transmission. Xu et al. [28]
introduced the concept of “virtual depth” in their iterative dehazing method, quantifying
Earth surface coverings to improve transmission estimation and haze removal. To deal with
the problem of transmission map misestimation and oversaturation, Zhao et al. [29] pro-
posed a transmission misestimated recognition method multi-scale optimal fusion model
for single image dehazing. Recently, He et al. [4] proposed a heterogeneous atmospheric
light prior and a side window filter, further enhancing remote sensing image dehazing.

While prior-based methods can enhance image quality, they often struggle with
accurate haze parameter estimation in complex environments. In contrast, our SCSNet is
data-driven, which overcomes this limitation.

2.2. Deep Learning-Based Methods

Deep learning-based methods use deep neural networks to learn a mapping from hazy
images to clear images. Early deep learning-based approaches leverage CNNs to estimate
atmospheric light and transmission maps in the atmospheric scattering model [12,13,30].
Cai et al. [12] pioneered this approach by designing a CNN to map hazy images to their
transmission maps. However, relying on pre-defined priors often leads to inaccuracies
in estimating the atmospheric light and transmission map, resulting in dehazed images
marred by artifacts, color distortion, and loss of detail. Similarly, Gu et al. [30] leveraged
both prior knowledge and CNN-based feature extraction for more robust dehazing. How-
ever, estimating atmospheric light and transmission maps can be challenging due to the
complex and diverse nature of real-world atmospheric conditions. In addition, inaccurate
estimations may lead to artifacts like color distortion or loss in the dehazed image.

To combat image distortions caused by estimation errors of intermediate estimations,
end-to-end dehazing methods have emerged as the dominant approach, which directly
learn the mapping from hazy to clear images [13,31]. This paradigm increases flexibility
and adaptability to complex haze conditions. Specifically, Li et al. [13] proposed AOD-Net
by reconstructing the atmospheric scattering model directly and achieved superior image
clarity. Qin et al. [14] presented a feature fusion attention network (FFA-Net), which can
restore image details and color fidelity by retaining shallow information. Dong et al. [32]
incorporated dense skip connections based on the U-Net architecture for better information
flow. Recently, Transformer models have made breakthroughs in computer vision [18,21,33],
and many modified Transformer architectures have been proposed for low-level vision
tasks. For example, Song et al. [8] made some improvements on the normalization layer
and activation function based on Swin Transformer [34] to adapt to image dehazing.
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Qiu et al. [33] employed the Taylor-based approximation to approximate softmax-attention
in Transformers for image dehazing, achieving linear complexity for efficient computation.
While existing end-to-end dehazing methods show promise in dehazing, they are not very
effective for satellite images with non-homogeneous haze due to data characteristics such
as complex terrain information and severe object occlusion.

In recent years, some dehazing methods tailored for satellite images [16–18] have been
explored. Jiang et al. [35] introduced an empirical haze removal method for visible remote
sensing images by applying an additive haze model. Bie et al. [16] proposed a Gaussian and
physics-guided dehazing network (GPD-Net) to better extract hazy features and guide the
model to real-world conditions. Beyond single-stage networks, Li and Chen [17] presented
a two-stage dehazing network (FCTF-Net) for haze removal tasks on satellite images
by performing coarse dehazing and then refining the results for enhanced performance.
Huang and Chen [22] introduced DCRD-Net, a cascaded residual dense network specifically
designed for SID. Jiang et al. [36] tackled non-uniform haze degradation by combining
discrete wavelet transform with a deep learning network, while KFA-Net [6] extends
the temporal and spatial scope of dehazing applications. Additionally, Chen et al. [37]
leveraged multi-scale features to handle varying haze levels, while Li et al. [38] employed a
multi-model joint estimation and self-correcting framework for improved accuracy and
dehazing outcomes. Subsequently, Huang et al. [39] developed an adaptive region-based
diffusion model for outstanding dehazing performance on both synthetic and real-world
images. While these methods are tailored for satellite images, they often neglect crucial
factors like semantic structure information and the inherent inconsistencies in attenuation.
This oversight leads to subpar dehazing performance.

Compared with existing methods, our SCSNet provides the following unique char-
acteristics: (1) the HSG module bridges the gap between local details and global context,
enabling SCSNet to capture the inherent structure of hazy satellite images; (2) replacing
traditional skip connections, CLF directly fuses features from different network layers,
improving attention towards regions and channels with stronger haze effects.

3. The Proposed Method

As illustrated in Figure 2, the SCSNet is composed of four main parts: CNN encoder
branch for learning hierarchical local structure features, Transformer encoder branch for
extracting hierarchical non-local semantic information, hierarchical semantic guidance
(HSG) module for learning semantic structure information by synergetically complement-
ing multi-scale local and non-local information, and image restoration branch for restoring
the hazy-free image. In this section, we first elaborate on the encoder branches in Sec-
tion 3.1, including both CNN and Transformer encoder branches. Then, the HSG module is
described in detail in Section 3.2. In addition, the image restoration branch with a coarse-
to-fine fusion (CFF) module is introduced in Section 3.3. Finally, we will describe the loss
function in detail.

3.1. Image Encoders

Motivated by the advantages of CNNs in extracting local structure features and the
advantages of Transformers in extracting non-local semantic features, we designed a hybrid
CNN–Transformer image encoder. In the following, we will provide a detailed description
of the two encoders.

3.1.1. CNN Encoder Branch

In satellite scenes, the distribution of haze across different pixels in an image is
non-homogeneous. However, most existing image dehazing methods primarily target
homogeneous haze distribution in natural images, resulting in subpar performance when
dealing with the non-homogeneous distributed haze in satellite images. Inspired by [40],
we design a nested u-structure CNN encoder branch that effectively models the complex
distribution of haze in satellite images by introducing residual and attention mechanisms
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to learn hierarchical local structure features. The nested u-structure CNN encoder branch
consists of 4 cascaded u-structure CNN blocks, which are motivated by the strength of
U-shape architecture in capturing multi-scale contextual information.

As shown in Figure 3, each u-structure CNN block includes three fundamental
stages: (1) The input convolution layer applies basic convolutions to the input feature
map Xin

i ∈ RH×W×Cin for generating a locally intermediate feature Xin
local ∈ RH×W×Cout .

(2) A symmetric U-Net-like structure with D layers is designed as the intra-block encoding–
decoding stage for progressively extracting and encoding multi-scale contextual feature
U (Xlocal

i ) ∈ RH×W×Cout from the intermediate features, where U represents the symmetric
U-Net-like structure. Increasing D expands receptive fields, leading to richer represen-
tations encompassing both local details and global context. Notably, configuring the
parameter D enables effective multi-scale feature extraction from diverse input resolutions
through step-wise upsampling, feature fusion, and subsequent convolutions. This mitigates
the loss of details often encountered in direct large-scale upsampling. It is worth noting that
channel attention and spatial attention are introduced into the fusion process of intra-block
encoding and decoding features. The combination of channel attention and spatial attention
contributes to guiding the model in attending to the dense haze area and reducing the
attention to the thin haze area,thereby improving the discriminative performance of feature
representation. (3) The local feature Xin

local and the multi-scale feature U (Xlocal
i ) extracted by

the U-Net-like structure are fused via summation to obtain the rich local structure feature:

Fce
i = Xlocal

i + U (Xlocal
i ) (1)

This summation serves to preserve detailed information that might be lost through
direct upsampling.

With the u-structure CNN block, the local structure feature obtained by the CNN
encoder branch not only contains local structure information but also exhibits spatial
adaptability. For efficiency, the CNN encoder branch is achieved by four cascading u-
structure CNN blocks, obtaining four hierarchical local structure features Fce

i , i ∈ {1, · · · , 4}.
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3.1.2. Transformer Encoder Branch

Given the advantages of Transformer models in capturing global semantic features and
the excellent performance of Dehazeformer [8] in image dehazing, we adopt an improved
dehazeformer as the basic module of the Transformer encoder branch. As shown in Figure 2,
the Transformer encoder branch consists of four groups of cascaded Transformer blocks.
Unlike the original DehazeFormer, the devised Transformer encoder branch only adopts
the first 3 groups of Transformer blocks from the original Dehazeformer, and the fourth
group is self-designed. This design is intended to keep the output features of the same
spatial size as the CNN encoder branch in Section 3.1.1.

The architecture of each Transformer block is shown in Figure 4. To empower image
dehazing, the Transformer block is equipped with a powerful combination of techniques:
re-scale layer normalization, window-shifted multi-head self-attention with parallel con-
volution (W-MHSA-PC) as a pivotal component, affine transformation, and multi-layer
perceptron (MLP). The details can be found in [8]. For efficiency, each group of Transformer
blocks consists of 8 cascading Transformer blocks. With the Transformer branch based on
4 groups of transformer blocks, the non-local semantic features Fte

i , i ∈ {1, · · · , 4} can be
captured to emphasize spatially varying haze distribution features.
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Figure 4. The workflow of the Transformer block.

3.2. Hierarchical Semantic Guidance Module

In order to guide the CNN encoder branch capture hierarchical local structure features
with non-local semantic information, a hierarchical semantic guidance (HSG) module is
proposed, which can dynamically combine shared information and faithfully preserve their
unique complementary properties. As shown in Figure 5, the HSG module mainly consists
of two main steps: coarse guidance and fine guidance. The coarse-guidance step generates
a global feature descriptor by combining information from local structure features and
non-local semantic features. The fine-guidance step uses these descriptors to re-calibrate
and aggregate local structure features and non-local semantic features. The implementation
is as follows.

(1) Coarse-guidance: First, the local structure features Fce
i and non-local semantic features

Fd
i are combined using the concatenation operation and compressed via channel

reduction by:
Fcoarse

i = h̄1×1(concat(Fce
i , Fte

i )) (2)

where Fcoarse
i is the coarse-guidance feature, h̄1×1 denotes the 1× 1 convolutional

layer with batch normalization for channel reduction, and concat(·, ·) represents the
concatenation operation. Then, we use global average pooling on the spatial dimen-
sion of the coarse-guidance Fcoarse

i to compute the channel-wise descriptor. Finally,
we use two parallel 1 × 1 convolution layers to process the channel-wise descriptor,
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obtaining w1 and w2, which enhance the interaction between local structure features
and non-local semantic features.

(2) Fine-guidance: We apply the softmax function to w1 and w2 generating attention
activations, which are leveraged to adaptively re-calibrate the local structure features
Fce

i and the non-local semantic features Fte
i . Finally, the hierarchical semantic guidance

feature obtained after the fine-graining is:

Fhs
i = softmax(w1) · Fce

i + softmax(w2) · Fte
i (3)

1 1C  
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Figure 5. The proposed hierarchical semantic guidance (HSG) module.

Through the coarse-to-fine guidance strategy, we can efficiently integrate local struc-
ture features and non-local semantic features, and achieve efficient interaction between the
two, which is beneficial for better preserving the structural details and color information of
reconstructed hazy-free images.

3.3. Image Restoration

In satellite scenes, terrain information is quite complex. In order to preserve more
detailed information and fully leverage the features from non-adjacent levels in the recon-
structed hazy-free images, we propose a cross-layer fusion (CLF) module. Different from
the simple concatenation, the CLF module introduces the dense contextual feature learning
and context residual learning in the fusion stage, which is more effective. The workflow of
the proposed CLF module is shown in Figure 6.
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Firstly, to explore the potential of features from non-adjacent layers, the combined
feature Fi is captured by concatenating the decoder feature Fd

i and local structure features
Fce

i . Note that Fd
i = Fhs

i + Fce
i , when i = 0.

Secondly, to obtain better dense context features, the dense connection operation is
applied to integrate the feature maps from the previous layers, which increases the variation
of the input to subsequent layers and thus enhances the representation ability. Because the
concatenation operation in the dense block increases the channels of the obtained features,
we adopt an element-wise summation operation instead of the concatenation operation to
reduce its channel number. This strategy has fewer parameters and a faster computation
speed. In order to capture more information, we combine all the output feature maps. Then,
the 1× 1 convolution is utilized to achieve dense context feature fusion as follows:

Fc
i = conv1(concat(Fi,1, Fi,2, Fi,3, Fi,4)) (4)

where Fc
i represents the dense context fusion feature, and conv1(·) denotes the 1 × 1

convolution operation.
Thirdly, to preserve previous information, we also conduct the context residual learn-

ing. Based on the input feature Fi, the channel weight descriptor is computed with the
residual learning mechanism guided by channel attention. Then, the leaned channel weight
descriptor is applied to re-weight the dense context fusion feature Fc

i , and then the next
decoder feature Fe

i is obtained by context residual learning. The context residual learning
can be represented as:

Fd
i = Upsample(Fi + conv1×2(GAP(Fi)) · Fc

i ) (5)

where GAP(·) denotes the global average pooling operation, Upsample stands for the
operation of increasing the resolution of feature by a factor of 2, and conv1×2 represents 2
stacked 1× 1 convolutional layers. The context residual learning ensures that the model
adapts to skip less important information such as thin fog or low-frequency areas and
focuses more on dense fog areas. After four cascaded CLF modules, the final decoder
feature F4 is obtained for restoring haze-free images. To this end, a readout network is
designed for post processing and restoring haze-free images. Specifically, the operation of
the readout network can be expressed as:

Ipred = (tanh(conv3×2(De)) + 1)/2 (6)

where conv3×2 means 2 stacked 3× 3 convolutional layers.

3.4. Loss Function

We adopt two different loss functions to train the proposed network, including smooth
L1 loss and perceptual loss. The smooth L1 loss can ensure that the reconstructed hazy-free
image is close to the clean image, and has been proven to be superior to L2 loss in many
image restoration tasks, and more robust than L1 loss. Let Ipred indicate the reconstructed
hazy-free image and Igt represent the clean image. The smooth L1 loss can be written as:

Ll1 =
1
N

N

∑
x=1

3

∑
j=1

smoothL1(I
pred
j (x)− Igt

j (x)) (7)

in which,

smoothL1(y) =


0.5y2, i f |y| < 1

|y| − 0.5, otherwise
(8)

where j indexes the j-th color channel for images and N is the total number of pixels.
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The perceptual loss can provide additional supervision in the high-level feature space,
which is used to quantify the visual difference between the reconstructed hazy-free image
and the clean image. The perceptual loss function is described as follows:

Lperc =
3

∑
j=1

1
Wj HjCj

‖ f j(Igt)− f j(Ipred)‖2
2, (9)

where f j(Igt) and f j(Ipred) mean the feature maps extracted by the pre-trained VGG16
model associated with the clean image and the reconstructed hazy-free image, respectively.

Finally, the total loss function is defined as:

Lfinal = Ll1 + λ · Lperc (10)

where λ is the coefficient that balances the two losses. The optimization of the entire model
is achieved by minimizing the total loss.

4. Experiment and Results

In this section, we first describe the experimental settings, including the dataset,
training details, and evaluation metrics. Then, we compare the proposed SCSNet with
other state-of-the-art dehazing methods quantitatively and qualitatively. Finally, ablation
studies are conducted to further demonstrate the superiority of the proposed SCSNet and
the effectiveness of different components in the proposed SCSNet.

4.1. Datasets

We evaluated the proposed SCSNet using the SateHaze1k [41], RS-Haze [8], and
RSID [1] datasets.

(1) SateHaze1k: The SateHaze1k dataset [41] consists of 1200 pairs of hazy images, corre-
sponding clear images, and SAR images. The dataset has three levels of haze, covering
thin, medium, and thick haze, each with 400 pairs, which is beneficial for evaluating
the robustness of the proposed method. Following the previous work [41], we divided
the training, validation, and testing data ratio into 8:1:1 for each level of haze. In
addition, in order to better evaluate the dehazing effect in real situations, we mixed
the data of the three different haze levels together.

(2) RS-Haze: The RS-Haze dataset [8] is a challenging and representative large-scale image
dehazing dataset consisting of 51,300 paired images, of which 51,030 are for training
and 270 are for testing. The dataset covers a variety of scenes and haze intensities,
including urban, forest, beach, and mountain scenes.

(3) RSID: The RSID dataset [1] offers a collection of 1000 image pairs, each consisting of
a hazy and haze-free counterpart. Following the previous work [42], we randomly
selected 900 of these pairs. The remaining 100 pairs were reserved as a distinct test set
to assess the model’s ability to generalize to unknown data.

4.2. Implementation Details and Evaluation Metrics

During the training process, in order to avoid overfitting, we augment the training set
with random rotation at 90, 180, and 270 degrees, horizontal flips, and vertical flips. The
Adam optimizer is utilized to optimize the model. The initial learning rate is set to 0.0001,
and we use the cosine annealing strategy to adjust the learning rate until convergence.
The batch size is set to 64, and the training epoch is set to 30. Considering the high
cost of adjusting the weighting coefficients, we adopt a multi-task learning strategy with
equal variances and uncertainties [43] to learn the optimal weighting coefficients. The
proposed SCSNet is implemented using the PyTorch library on an RTX 3090 GPU with
24 GB of memory.
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We quantitatively evaluate the dehazing performance using commonly used metrics,
including peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM). The
formula expression of PSNR is as follows:

PSNR = 20 · log10(
MAXI√

MSE
) (11)

where MAXI refers to the maximum possible pixel value of the input clean image Igt, and
MSE represents the mean squared error between corresponding pixels of the input clean
image Igt and the reconstructed hazy-free image Ipred.

The formula expression of SSIM is as follows:

SSIM(Igt, Ipred) =
(2µgtµpred + c1)(2σgtpred + c2)

(µ2
gt + µ2

pred + c1)(σ
2
gt + σ2

pred + c2)
(12)

where µgt and µpred are the mean values of Igt and Ipred, respectively. σgt and σpred denote
the standard deviations of Igt and Ipred, respectively. σgtpred means the covariance of
Igt and Ipred. c1 and c2 are two constants, typically set as c1 = (0.01 ∗ MAXI)

2 and
c2 = (0.03 ∗MAXI)

2.

4.3. Comparison with State-of-the-Arts

In this subsection, we quantitatively and qualitatively compare the proposed SCSNet
with state-of-the-art methods on the SateHaze1k, RS-Haze, and RSID datasets. These
methods include (1) methods for natural image dehazing, including DCP [10], CEP [26],
MOF [29], AOD-Net [13], Light- DehazeNet [44], FFA-Net [14], Restormer [21], and De-
hazeFormer [8]; and (2) tailored methods for spectral satellite image dehazing, such as
DCRD-Net [22] and FCTF-Net [17]. To ensure a fair comparison, all evaluated methods
were trained using the corresponding authors’ publicly released code and the same data
partition scheme.

Quantitative analysis: Table 1 shows the quantitative comparison results of different
methods trained on the SateHaze1k dataset. According to the results in the table, DCP,
CEP, and MOF methods perform poorly in dehazing, with both low PSNR and SSIM.
This may be because they are prior-based methods, with which it is difficult to learn
discriminative semantic features from the image. The dehazing performance of AOD-
Net and Light-DehazeNet is also mediocre, which may be due to the fact that these two
methods are among the early and lightweight neural networks used for dehazing and are
limited by the depth of the network. Other comparison methods consciously designed their
network structures, so they achieved impressive results with higher PSNR and SSIM. It is
worth noting that DCRD-Net and FCTF-Net are models specifically tailored for spectral
satellite image dehazing and also show good performance. However, compared to them,
our proposed SCSNet achieves the best results in all three levels of haze. It not only
outperforms tailored methods for spectral satellite image dehazing but also achieves higher
metrics than natural image dehazing methods. This indicates that the proposed SCSNet
has high efficiency and generalization in removing haze with different degrees. In addition,
our proposed SCSNet also shows optimal performance in mixed haze data, indicating
better practical application. Table 2 shows the quantitative comparison results of different
methods trained on RS-Haze and RSID datasets. Based on the result, we can find that
our proposed SCSNet delivers substantial PSNR improvements of 2.5724 and 2.6962 on
RS-Haze and RSID datasets, respectively. This highlighting the exceptional generalization
capabilities of our proposed SCSNet.
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Table 1. The quantitative comparison on the SateHaze1k dataset.

Methods
Thin Fog Moderate Fog Thick Fog Mixed Fog

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

DCP [10] 19.1183 0.8518 19.8384 0.8812 16.793 0.7701 18.5833 0.8344
CEP [26] 13.5997 0.7222 14.2122 0.7270 16.0824 0.7762 14.6950 0.7512
MOF [29] 15.3891 0.7291 14.7418 0.6256 16.2495 0.6767 15.5146 0.6859

AOD-Net [13] 19.0548 0.7777 19.4211 0.7015 16.4672 0.7123 17.4859 0.6332
Light-DehazeNet [44] 18.4868 0.8658 18.3918 0.8825 16.7662 0.7697 17.8132 0.8352

FFA-Net [14] 20.141 0.8582 22.5586 0.9132 19.1255 0.7976 21.2873 0.8663
Restormer [21] 20.9829 0.8686 23.1574 0.9036 19.6984 0.7739 20.7892 0.8379

DehazeFormer [8] 21.9274 0.8843 24.4407 0.9268 20.2133 0.8049 22.0066 0.8659
DCRD-Net [22] 20.8473 0.8767 23.3119 0.9225 19.725 0.8121 21.7468 0.8812
FCTF-Net [17] 18.3262 0.8369 20.9057 0.8553 17.2551 0.6922 19.5883 0.8434

SCSNet 26.1460 0.9415 28.3501 0.9566 24.6542 0.9015 25.1759 0.9223

Qualitative analysis: Figure 7 shows qualitative comparison results of different
methods on the SateHaze1k dataset. The red boxes in the figure highlight the regions
where the dehazing results of various methods differ significantly. Distinctly, the proposed
SCSNet generated better results with more structural details and color information, which
indicates that our method is superior to all comparison methods and produces significant
visibility improvement. In addition, our proposed SCSNet performs well on images with
thin haze, moderate haze, and thick haze, further demonstrating its better generalization in
removing haze to different degrees. Note that while our method is effective in removing
non-homogeneous fog to a certain extent, it may encounter color distortion in severe fog
inhomogeneity cases, as exemplified by the third row of images depicted in Figure 7. This
distortion arises from the inherent challenges in accurately estimating atmospheric light in
such complex scenarios. In fact, almost all comparison dehazing methods struggle with
this issue. Nonetheless, even with this distortion, our method consistently demonstrated
superior fog removal capabilities compared to other methods.

Table 2. The quantitative comparison on the RS-Haze and RSID datasets.

Methods
RS-Haze RSID

PSNR SSIM PSNR SSIM

DCP [10] 18.1003 0.6704 17.3256 0.7927
CEP [26] 15.9097 0.5772 14.2375 0.7034
MOF [29] 16.1608 0.5628 14.2375 0.7034

AOD-Net [13] 23.9677 0.7207 18.7037 0.7424
Light-DehazeNet [44] 25.5965 0.8209 17.9279 0.8414

FFA-Net [14] 29.1932 0.8846 21.2876 0.9042
Restormer [21] 25.6700 0.7563 11.7240 0.5971

DehazeFormer [8] 29.3419 0.8730 22.6859 0.9118
DCRD-Net [22] 29.6780 0.8878 22.1643 0.8926
FCTF-Net [17] 29.6240 0.8958 20.2556 0.8397

SCSNet 32.2504 0.9271 25.3821 0.9585

Figure 8 shows qualitative comparison results of different methods on the RS-Haze
and RSID datasets. As illustrated, our proposed SCSNet achieves relatively satisfactory
dehazing results, which more closely resemble the groundtruth. It is noteworthy that our
proposed SCSNet significantly outperforms other comparative methods in terms of heavy
haze removal. As shown in the red-boxed areas of the second row images in Figure 7, other
comparison methods, except ours, fail to effectively recover the real objects covered by
fog. While DCRD-Net [22] and FCTF-Net [17] produce reasonably effective dehazing, they
fall short of fully eliminating non-homogeneous haze as shown in the second row images.
Other comparison methods either struggle to remove dense and non-homogeneous haze or
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introduce unwanted color shifts and structural details loss. This further demonstrates the
superiority of our method in detail and color restoration, as we better consider semantic
structure information and inconsistent attenuation.

Hazy Images Groundtruth FCTF-NetDCRD-NetDehazeFormerAODDCP SCSNet(Ours)
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Figure 7. Qualitative results of different methods on the SateHaze1k dataset. The red box highlights
some key areas that need to be compared.

To better compare the generalization ability of different models, they were trained
and tested on two different datasets. Specifically, these models are trained on the RS-Haze
dataset and tested on the RSID dataset. Figure 9 shows the comparison results of different
comparison methods. It can be seen that all methods exhibit performance degradation
compared to the experimental results on the same dataset. However, the degradation
of the proposed SCSNet is not very significant, which indicates that our method has
good generalization ability. This is because the proposed SCSNet adopts hierarchical
semantic guidance, which can better capture the rich semantic information contained in
the input image.



Remote Sens. 2024, 16, 1525 14 of 18

Hazy Images Groundtruth FCTF-NetDCRD-NetDehazeFormerAODDCP SCSNet(Ours)
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Figure 8. Qualitative results of different methods on RS-Haze and RSID datasets. The red box
highlights some key areas that need to be compared.

Hazy Images Groundtruth SCSNet(Ours)DehazeFormerAOD

Figure 9. Qualitative results of different methods trained and tested on different datasets.

4.4. Ablation Analysis

In order to further demonstrate the effectiveness of the proposed SCSNet, we con-
ducted ablation studies by considering the different modules. We primarily focused on the



Remote Sens. 2024, 16, 1525 15 of 18

following factors: (1) the designed u-structure CNN block, (2) the CNN encoder branch for
local structure features extraction, (3) the Transformer encoder branch for non-local seman-
tic information learning, (4) the hierarchical semantic guidance (HSG) module, and (5) the
cross-layer fusion (CLF) module. The corresponding ablation models include (1) w/plain
ConvE: using plain convolutional encoding module to replace the u-structure CNN block;
(2) w/CNN encoder branch; (3) w/Transformer encoder branch; (4) w/o HSG: using the
summation operation to replace the HSG module for semantic guidance; and (5) w/concat:
using the concatenation operation to replace the CLF module for feature fusion.

We conducted ablation experiments on SateHaze1k, RS-Haze, and RSID datasets. The
results are shown in Table 3. We can see that all components can improve the dehazing
performance and the best PSNR achieves 25.1759 dB, 35.2504 dB, and 25.3821 dB by using
the full model on SateHaze1k, RS-Haze, and RSID datasets, respectively. This demonstrates
the effectiveness of each proposed components. Specifically, when using plain convolu-
tional encoding module to replace the u-structure CNN block, the model’s PSNR and
SSIM decrease by 3.1543 and 0.0269 on the SateHaze1k dataset, respectively. This indicates
the superiority of the designed u-structure CNN block in extracting local structural and
spatially adaptive features. When feature learning relies solely on either the CNN encoder
branch or the Transformer encoder branch, the performance experiences a notable decline,
thus highlighting the effectiveness of the introduced hybrid CNN–Transformer architecture.
When using the summation operation to replace the HSG module, the significant drop in
model performance indicates the effectiveness of the designed HSG module in integrating
local structural features and non-local semantic features. When using the concatenation
operation to replace the CLF module, the decrease in model performance indicates the
effectiveness of the designed CLF module in preserving more detailed information and
fully leveraging the features from non-adjacent levels.

Table 3. The experimental results for the ablation study.

Datasets Ablated Components Baselines PSNR SSIM

SateHaze1k

Feature Encoding w/plain ConvE 22.0216 0.8954
CNN Encoder Branch w/CNN Encoder Branch 21.1281 0.8647

Transformer Encoder Branch w/Transformer Encoder Branch 20.6172 0.8470
HSG w/o HSG 21.6719 0.8927
CLF w/add 23.5234 0.9026

Full model (SCSNet) — 25.1759 0.9223

RS-Haze

Feature Encoding w/plain ConvE 30.4251 0.9126
CNN Encoder Branch w/CNN Encoder Branch 29.0637 0.8813

Transformer Encoder Branch w/Transformer Encoder Branch 28.5183 0.8729
HSG w/o HSG 29.4806 0.9081
CLF w/add 31.6208 0.9217

Full model (SCSNet) — 35.2504 0.9471

RSID

Feature Encoding w/plain ConvE 23.7316 0.9218
CNN Encoder Branch w/CNN Encoder Branch 22.8219 0.9075

Transformer Encoder Branch w/Transformer Encoder Branch 22.5311 0.8962
HSG w/o HSG 23.2430 0.9168
CLF w/add 24.0257 0.9349

Full model (SCSNet) — 25.3821 0.9585

5. Conclusions

In this work, we propose a hierarchical semantic-guided contextual structure-aware
network (SCSNet) for effective spectral satellite image dehazing. The key insight of this
work is designing a hybrid CNN–Transformer architecture with hierarchical semantic guid-
ance (HSG) module for synergetically complementing local representation from non-local
features, and devising cross-layer fusion (CLF) module for reinforcing the attention to the
spatial regions and feature channels with more serious attenuation. The experimental re-
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sults on the SateHaze1k, RS-Haze, and RSID datasets demonstrate that the designed hybrid
CNN–Transformer architecture, HSG module, and CLF module, are effective. In addition,
the proposed SCSNet achieves better performance than other state-of-the-art methods.

While the method has demonstrated impressive performance, it still has some limita-
tions, particularly in terms of its lightweightness. In the future, we will aim to develop a
more lightweight, yet powerful model that can be widely deployed on low-resource devices.
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