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Abstract: In the realm of short-range radar applications, the focus on detecting “low, slow, and small”
(LSS) targets has escalated, marking a pivotal aspect of critical area defense. This study pioneers
the use of one-dimensional convolutional neural networks (1D-CNNs) for direct slow-time dimen-
sion radar feature extraction, sidestepping the complexity tied to frequency and wavelet domain
transformations. It innovatively employs a network architecture enriched with multi-frequency
multi-scale deformable convolution (MFMSDC) layers for nuanced feature extraction, integrates
attention modules to foster comprehensive feature connectivity, and leverages linear operations
to curtail overfitting. Through comparative evaluations and ablation studies, our methodology
not only simplifies the analytic process but also demonstrates superior classification capabilities.
This establishes a new benchmark for efficiently classifying low-altitude entities, such as birds and
unmanned aerial vehicles (UAVs), thereby enhancing the precision and operational efficiency of radar
detection systems.

Keywords: short-range radar; 1D-CNNs; slow-time dimension; MFMSDC; linear operations

1. Introduction

Avian collisions, commonly referred to as bird strikes, occur when aircraft encounter
birds or other wildlife during takeoff, landing, or in flight, leading to disruptions in nor-
mal aviation operations. Annually, these incidents are responsible for approximately
21,000 occurrences worldwide, inflicting financial damages estimated at $1.2 billion [1]. The
increase of flight operations, coupled with environmental enhancements, has heightened
the challenges of avian strike prevention at Chinese airports, establishing such incidents as
predominant safety threats during aircraft operational phases. Concurrently, the prolifer-
ation of low-altitude aerial vehicles, notably UAVs, has rapidly developed, complicating
airport safety due to unauthorized UAV intrusions [2]. Additionally, drones now have
widespread applications in many fields [3], and applications based on drone detection and
tracking [4–8] also have a wide range of demands in civilian security and military recon-
naissance. However, with the rapid increase in the number of drones, their flight safety
also needs to be given attention. Therefore, there is an urgent need to develop surveillance
methods and technologies for “Low, Slow, and Small” targets, such as birds and UAVs, that
are capable of “seeing” (strong detection capabilities) and “discerning” (high identification
probability), in order to achieve refined target description and recognition [9].

Short-range radar systems, integral to airport and vicinity security, employ advanced
resolution and sensitivity in order to detect diminutive targets under adverse weather
conditions, ensuring aviation safety [10]. Despite traditional radar’s limited efficacy against
LSS targets, its utility in aerial and maritime surveillance and in the defense sector for
monitoring and early warning persists. Advances in radar technologies and signal process-
ing now facilitate the identification of low-observable targets, enhancing their capability
to discern minute target characteristics and thus broadening the scope for detection and
recognition in security applications [11,12].
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The foremost strategies for radar-based classification and recognition of birds and
UAVs encompass the following: (1) utilization of prolonged observation or expansive search
techniques to augment Doppler resolution; (2) employment of the distinct micro-motion
signatures of UAVs and birds as an efficacious means for differentiation; (3) implementation
of bistatic radar observations to surmount the constraints imposed by monostatic radar’s
orientation sensitivity and occlusion, thereby harnessing multi-angular perspectives for
enhanced resolution and feature extraction precision; (4) application of advanced deep
learning methodologies for intelligent categorization and identification, transforming range-
Doppler and time–frequency representations into images for deep CNNs to extract and
refine target features comprehensively [13,14].

In the midst of rapid technological evolution and computational advancement, artifi-
cial intelligence has achieved notable success across various fields, particularly in image,
text, and audio signal processing. Deep learning networks have emerged as groundbreak-
ing tools for the intelligent recognition of UAVs and birds, addressing the complexities of
their movements and the environmental variations which traditional modeling struggles to
capture. This approach, utilizing deep CNNs, has proven its strength in the identification
of intricate patterns within high-dimensional data, offering superior feature representation
and accuracy in classification tasks [15–17]. The application of deep learning to radar echo
analysis for LSS targets has garnered attention [18].

Amidst prevalent advancements in deep learning for image-based applications, the
direct employment of one-dimensional radar echo amplitude for identifying UAVs and
avian targets is notably scarce. This manuscript delves into the characteristics of phased-
array radar within LSS defense mechanisms, capturing birds, UAVs, and clutter data over
slow-time dimensions. It underscores the notion that the amplitudes of radar echoes
encompass essential information on a target’s material and shape. Illustrating this with
Figure 1, this study demonstrates the feasibility of leveraging radar echo amplitude data for
the classification and recognition of LSS targets, providing a novel approach to radar-based
target identification.

The main contributions of this research paper can be summarized as follows:

1. Utilizing an S-band phased-array full-domain LSS radar detection system, with a
sampling rate of 20 MHz and a pulse repetition time (PRT) of 115 microseconds,
extensive field collection was conducted. The relevant classification target data were
verified one by one through optoelectronic devices to confirm the authenticity and
accuracy of the targets, thus forming the foundational dataset for the LSS target
detection verification experiment presented in this paper.

2. An in-depth study of the motion frequency characteristics of birds, UAVs, and clutter
targets in radar signals was conducted. The differences in frequencies within the radar
signals show strong discriminability. By integrating the signal frequency difference
characteristics of the targets with the network’s multi-frequency, multi-scale process-
ing, an MFMSDC network was constructed, forming the core processing module of
this paper.

3. By flexibly using attention modules, the differences between targets and the back-
ground, especially in distinguishing clutter signals, were emphasized. This enabled
the network to focus more on the features of birds and UAVs and effectively increased
the network’s attention to the differentiated frequency characteristics of various tar-
gets, thereby improving the model’s performance.

4. Through comparative experiments on the accumulation length of the slow-time di-
mension, it was determined that an accumulation length of 512 offers high timeliness
for target classification. Method comparison experiments and ablation studies have
demonstrated that directly processing one-dimensional radar signals in the slow-time
dimension with a 1D-CNNs can efficiently distinguish categories of LSS targets.
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Figure 1. Schematic diagram of slow-time dimension signals for three types of targets. Each image 
displays the distribution of amplitude normalization values over the accumulation number in the 
slow-time dimension. Here, the row coordinate represents 512 discrete PRT points, and the vertical 
axis represents the normalized amplitude corresponding to each discrete PRT. (a) UAVs. (b) Birds. 
(c) Clutter. 

The main contributions of this research paper can be summarized as follows: 
1. Utilizing an S-band phased-array full-domain LSS radar detection system, with a 

sampling rate of 20 MHz and a pulse repetition time (PRT) of 115 microseconds, 
extensive field collection was conducted. The relevant classification target data were 
verified one by one through optoelectronic devices to confirm the authenticity and 
accuracy of the targets, thus forming the foundational dataset for the LSS target 
detection verification experiment presented in this paper. 

2. An in-depth study of the motion frequency characteristics of birds, UAVs, and clutter 
targets in radar signals was conducted. The differences in frequencies within the 
radar signals show strong discriminability. By integrating the signal frequency 
difference characteristics of the targets with the network’s multi-frequency, multi-
scale processing, an MFMSDC network was constructed, forming the core processing 
module of this paper. 

3. By flexibly using attention modules, the differences between targets and the 
background, especially in distinguishing clutter signals, were emphasized. This 
enabled the network to focus more on the features of birds and UAVs and effectively 
increased the network’s attention to the differentiated frequency characteristics of 
various targets, thereby improving the model’s performance. 

4. Through comparative experiments on the accumulation length of the slow-time 
dimension, it was determined that an accumulation length of 512 offers high 
timeliness for target classification. Method comparison experiments and ablation 
studies have demonstrated that directly processing one-dimensional radar signals in 

A
m

pl
itu

de
 n

or
m

al
iz

at
io

n
A

m
pl

itu
de

 n
or

m
al

iz
at

io
n

A
m

pl
itu

de
 n

or
m

al
iz

at
io

n

Figure 1. Schematic diagram of slow-time dimension signals for three types of targets. Each image
displays the distribution of amplitude normalization values over the accumulation number in the
slow-time dimension. Here, the row coordinate represents 512 discrete PRT points, and the vertical
axis represents the normalized amplitude corresponding to each discrete PRT. (a) UAVs. (b) Birds.
(c) Clutter.

2. Related Works
2.1. 1D-CNNs

1D-CNNs are specialized neural networks designed for processing time-series data,
such as radar signals, where capturing temporal dynamics is crucial [19]. These networks
leverage convolutional layers to automatically and adaptively learn spatial hierarchies of
features from input data. 1D-CNNs have demonstrated effectiveness in various applica-
tions, including anomaly detection, environmental sensing, and particularly in radar signal
processing for target detection and classification.

In recent years, deep learning has emerged as a pivotal technique across various
domains including computer vision [20], speech recognition [21], and beyond, establishing
itself as a cornerstone learning methodology. Its application in the individual identification
of communication stations has garnered significant attention. While traditional methods
like wavelet transform [22], Fourier transform [23], and Hilbert–Huang transform [24]
are commonly employed to extract features from signals in the time, frequency, and time–
frequency domains, they often overlook critical information during the extraction process,
limiting the efficacy of feature characterization. Notably, ref. [25] introduces automated
feature extraction and classification utilizing 1D-CNNs, yielding promising recognition
outcomes. Additionally, ref. [26] demonstrates the direct learning of features from orig-
inal vibration signals and fault diagnosis using 1D-CNNs. This underscores the broad
applicability and efficacy of 1D-CNNs in one-dimensional signal classification tasks.
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1D-CNNs offer a robust framework for handling the complex, noisy nature of radar
data, enabling the extraction of meaningful features without the need for manual feature
engineering [27]. Methods utilizing 1D-CNNs have been developed to address challenges
in detecting and classifying LSS targets, improving signal-to-noise ratios, and reducing
false positives. Recent academic research has advanced 1D-CNN applications in signal
processing, offering robust methods for target recognition, anomaly detection, and signal
classification. Techniques like multi-frequency multi-scale convolution and attention mech-
anisms have been introduced to improve feature extraction and network performance [28].

The research landscape in this domain continues to evolve, with ongoing exploration
into the optimization of network architectures, enhancement of signal preprocessing tech-
niques, and integration of attention mechanisms to improve model interpretability and
performance [29,30]. Despite progress, challenges persist in dealing with highly dynamic
target behaviors, cluttered environments, and adapting models to real-time processing
requirements, indicating rich avenues for future research. In the field of one-dimensional
signal processing research, current effective methodologies span traditional techniques
such as Gaussian Naive Bayes (NB) [31] and Random Forest [32], complemented by deep
learning-based one-dimensional networks like the Auto-Regressive Network (ARNet) [33],
Resolution Adaptive Network (RANet) [34], and Residual Networks (ResNet) [35].

2.2. Radar Signal Processing

In the realm of radar signal processing, traditional methods have primarily focused on
statistical and spectral analysis techniques, with notable contributions from scholars aiming
to enhance detection and classification accuracy. Recently, one-dimensional CNNs have
emerged as a powerful tool for processing radar signals, offering significant improvements
in recognizing complex patterns within the data [36,37].

However, in the context of airport radar systems for UAVs and bird mitigation, current
research has predominantly applied deep learning to extract features from the frequency
and wavelet spectra of radar echoes. Studies by Kim B.K. [38] and Mendis G.J. [39],
utilizing deep CNNs to analyze distinct micro-Doppler signatures of birds and UAVs,
have demonstrated the potential for intelligent signal extraction and recognition. This
is further exemplified by adaptations of CNN architectures for maritime micro-motion
target classification.

In the realm of short-range radar systems, deep-learning-based one-dimensional
signal processing remains an underexplored area. Due to characteristics, such as weight
sharing and sparse connectivity, CNNs possess powerful feature extraction capabilities and
generalizability, significantly enhancing the accuracy of target classification. They have
now become an important solution for target classification in engineering applications.
Researchers have ventured into this domain using various deep learning approaches
for target recognition in high-resolution range profiles (HRRP) [40–42]. For the radar
applications studied in this paper, many scholars employ a method using CNNs to process
radar spectrograms by transforming the original echo signals from one-dimensional time
series signals into two-dimensional image signals. These images are then inputted into
CNNs for feature extraction and recognition classification. Jiang et al. [43] utilized a time–
frequency analysis method based on windowed short-time Fourier transform to analyze
the time–frequency characteristics of time-domain modulated signals. They applied a
convolutional neural network based on transfer learning to classify modulation types
according to RGB spectrogram images. Dongsuk Park et al. [44] proposed a deep-learning-
based classification model that learns the micro-Doppler signatures (MDS) represented
in the radar spectrogram images of targets. This research employs frequency modulated
continuous wave (FMCW) radar to record various targets, including UAVs and human
activities, converting these signals into spectrograms for the dataset. The ResNet-SP model,
with a design based on ResNet-18 but requiring less computation, has demonstrated
greater accuracy and stability, proving the potential of using deep learning for real-time
UAV recognition.
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All of the aforementioned methods require the conversion of one-dimensional signals
into an image form for input, one which does not fully leverage the powerful feature
extraction capabilities of CNNs and which still involves a certain degree of manual in-
tervention [45]. Upon reviewing the literature, it has been found that there is limited
research on the direct classification of birds and UAVs using deep learning convolutions
on radar signals in one-dimensional space. However, one-dimensional convolution has
already been widely applied in the processing of one-dimensional signals. Recent studies
have made significant advances in the application of one-dimensional CNNs for radar
signal processing, demonstrating progress in interference suppression, intelligent noise
interference, and clutter suppression through deep learning techniques. Wang et al. [46] in-
vestigated an innovative interference suppression method that utilizes echo pre-processing
for spread spectrum smearing (SMSP) interference, commonly employed in electronic
countermeasures. This approach is designed to counteract the challenges associated with
the suppression of SMSP interference without losing the energy of real targets, in turn
achieving a 100% target detection probability under certain conditions. Zhu et al. [47]
explored self-defense intelligent noise jamming, examining two typical intelligent noise
barrier methods and proposing a suppression technique based on pulse frequency step-
ping. This method effectively filters radar echoes by exploiting the phase shifts caused
by frequency stepping, thereby mitigating the threat posed by intelligent noise jamming.
Additionally, Zou et al. [48] have devised a novel approach to airborne radar space-time
adaptive processing (STAP), integrating sparse recovery (SR) with CNNs to overcome
the limitations of conventional subscription methods. This hybrid approach, informed
by deep unfolding, enhances the estimation accuracy of the spatiotemporal spectrum of
clutter, thereby improving clutter suppression performance while simultaneously reducing
computational complexity.

Previous approaches to spectrogram conversion have not only resulted in significant
computational costs but also overlooked characteristics such as the target’s own motion
frequency, relying solely on differences in image information. This presents challenges to
the spectrogram conversion method. These advancements illustrate the potent application
of 1D-CNNs in radar signal processing, offering promising solutions to longstanding
challenges through the integration of deep learning algorithms. We conducted feature
analysis on UAVs, birds, and clutter targets from the slow-time dimension and performed
classification experiments using a one-dimensional convolutional network. It was found
that this approach has a comparable classification capability to that of transforming signals
into spectrograms, but with a significantly reduced computational load. Additionally, the
frequency characteristics of UAVs, birds, and clutter targets exhibit considerable regularity
and distinctiveness. The algorithm presented in this paper extracts multi-scale frequency
features of targets through a network-embedded multi-frequency, multi-scale module, and
incorporates an attention mechanism by which to enhance the network’s spatial and channel
associations. This effectively increases the network’s focus on the differentiated frequency
features of various targets, thereby providing stronger feature extraction capabilities than
other algorithms.

3. Our Method

In this section, we explore the detailed application of the proposed CNN network
for the identification of birds and UAVs, utilizing radar detection of slow-time dimension
signals. Initially, a multi-frequency multi-scale convolutional neural network is constructed,
leveraging the periodic characteristics of radar slow-time signals [49–51]. In the network
design for recognition, the network features MFMSDC layers and transition layers. The
MFMSDC layer employs varying stride lengths in the multi-scale convolution process for
analyzing multiple frequencies, thus extracting multi-scale features of slow-time signals
across different frequencies. The transition layers utilize attention modules to weight and
filter the extracted features based on their significance.
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3.1. One-Dimensional Convolutional Neural Network

As depicted in Figure 2, the 1D-CNNs primarily utilize alternating stacks of convolu-
tional layers and pooling layers to extract features from the input samples layer by layer.
This process is followed by the application of fully connected layers that integrate and
classify the extracted features, culminating in the identification of the radar slow-time
dimension signal’s category.
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The essence of the neural network training process lies in the model’s ability to learn
the differences in data distributions. If there is a significant variance in the distribution
of each batch of training samples, the network must adapt to these differences in every
iteration, potentially slowing down the training process. A large discrepancy between the
distributions of the training and test sets can diminish the network’s generalization ability.
Moreover, during back-propagation, the network may experience vanishing gradients
as the number of iterations increases. Therefore, batch normalization (BN) is employed
to optimize the prediction model by alleviating the vanishing gradient issue in deep
networks, accelerating model convergence, and reducing training time. The formula for
BN is as follows:

y =
γ√

Var[x] + ε
•x + β − γE[x]√

Var[x] + ε
(1)

where E[x] and Var[x] represent the unbiased estimates of the mean and variance of all
batch features during the training phase, respectively. ε is a small positive number added
to prevent division by zero, and learnable parameters γ and β are introduced. The purpose
is to allow batch data to undergo scale transformation and shifting, enabling the restoration
of the original data distribution through these adjustable parameters.

3.2. Multi-Frequency Multi-Scale Convolutional Neural Network

In this study, we elaborate on the use of slow-time dimension signals for the classifi-
cation and identification of LSS radar targets. The LSS targets are diverse in nature and
exhibit varying frequencies in the slow-time dimension signals. For instance, birds typically
show low-frequency characteristics in these signals, whereas UAVs primarily exhibit higher
harmonic frequencies. Hence, frequency serves as a crucial basis for identification and
classification. To fully leverage the frequency information within the slow-time dimension
signals, this study designs MFMSDC layers within the network based on the periodic
characteristics of radar slow-time signals. As illustrated in Figure 3, the network comprises
MFMSDC layers and transition layers. The MFMSDC layer employs varying stride lengths
for multi-frequency analysis in order to extract multi-scale features across different frequen-
cies of slow-time signals. In contrast, the transition layers use attention modules to weight
and filter the extracted features based on their significance. The detailed architecture of
both the MFMSDC layers and the transition layers will be further elaborated.
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3.2.1. MFMSDC Module

The constructed network structure comprises two multi-frequency, multi-scale de-
formable convolution branches, one utilizing a convolution stride of 1 and the other
employing a stride of 2, as depicted in Figure 4. Each branch incorporates four multi-
scale convolution modules. This configuration facilitates the analysis of features across
various frequencies of radar slow-time signals, with the stride-2 convolutions effectively
down-sampling the slow-time signals to extract features from differing frequency bands.
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The specific structure of the two multi-scale convolution modules nested within each
multi-scale layer is depicted in Figure 5. It consists of four convolutional channels. The
first channel processes input data with a 1 × 1 convolution and merges it directly with
the data from other channels to preserve shallow feature characteristics. The subsequent
three channels achieve convolutions of 1 × 3, 1 × 5, and 1 × 7, facilitated by stacking
1 × 3 convolutions, enabling multi-scale feature extraction from the input data. Each
channel concludes with a 1 × 1 convolution to standardize the output dimensions across all
channels. This is followed by the concatenation of data from the four channels to integrate
multi-scale features.

Remote Sens. 2024, 16, x FOR PEER REVIEW 8 of 22 
 

 

Concatenate

stride：1×1

Input：

Output：

Concatenate

stride：1×2

Concatenate

1×1 1×3 1×5 1×7 1×1 1×3 1×5 1×7

Muti-scale conv module Muti-scale conv module

Multi-scale Inception:

+

+ +

 

Figure 4. Structure diagram of the MFMSDC module. 

The specific structure of the two multi-scale convolution modules nested within each 

multi-scale layer is depicted in Figure 5. It consists of four convolutional channels. The 

first channel processes input data with a 1 × 1 convolution and merges it directly with the 

data from other channels to preserve shallow feature characteristics. The subsequent three 

channels achieve convolutions of 1 × 3, 1 × 5, and 1 × 7, facilitated by stacking 1 × 3 

convolutions, enabling multi-scale feature extraction from the input data. Each channel 

concludes with a 1 × 1 convolution to standardize the output dimensions across all 

channels. This is followed by the concatenation of data from the four channels to integrate 

multi-scale features. 

Conv1(m, n, 1×1) + BN Conv1(m, n,  1×3) + BN

Conv1(n, n,  1×3) + BN

Conv1(n, n, 1×1) + BN

Conv1(m, n,  1×3) + BN

Conv1(n, n,  1×3) + BN

Conv1(n, n, 1×3) + BN

Conv1(n, n, 1×1) + BN

Conv1(m, n,  1×3) + BN

Conv1(n, n, 1×1) + BN

Concatenate

  Conv:1×1

  Conv:1×3

  Conv:1×7

  Conv:1×5

Input：

Output：

Muti-scale conv module1:

+

 

Figure 5. Structure diagram of the multi-scale convolution module. 

In the structure depicted in Figure 5, each channel incorporates a 1 × 1 convolution 

operation. This operation is instrumental in reducing the number of feature channels, 

thereby decreasing the computational demand of the network. Additionally, it facilitates 

the integration of features across channels, enhancing the network’s capability to 

synthesize information from various sources for more effective analysis and 

interpretation. 

Assuming the input to the MFMSDC layer is 0x
, 0x

 is fed into two multi-scale 

convolution modules. Each module has four channels extracting feature maps of different 

Figure 5. Structure diagram of the multi-scale convolution module.

In the structure depicted in Figure 5, each channel incorporates a 1 × 1 convolution
operation. This operation is instrumental in reducing the number of feature channels,
thereby decreasing the computational demand of the network. Additionally, it facilitates
the integration of features across channels, enhancing the network’s capability to synthesize
information from various sources for more effective analysis and interpretation.

Assuming the input to the MFMSDC layer is x0, x0 is fed into two multi-scale con-
volution modules. Each module has four channels extracting feature maps of different
scales. The feature maps from all channels are then concatenated and fused, which can be
represented by the following formula:

y = H(H([x0•x1•x2•x3]k=1)•H([x0•x1•x2•x3]k=2)) (2)

In the formula, • denotes the concatenation operation of feature vectors across chan-
nels, [x0•x1•x2•x3] represents the concatenated feature vectors extracted by each channel
of the multi-scale convolution module, k is the stride, and H(·) signifies a nonlinear trans-
formation.

3.2.2. Transition Layer

While the multi-scale deformable convolution module captures multi-scale features of
data, not all features equally contribute to the classification decisions. The attention mod-
ules can dynamically allocate weights based on the characteristics of input data, enabling
the network to focus more on functions critical to the task. By dynamically adjusting the
weights of features, attention modules can highlight the differences between targets and the
background. For instance, UAVs in radar slow-time signals are characterized by periodicity
and regularity, unlike clutter, which lacks these features. By flexibly employing attention
mechanisms, the network pays more attention to the characteristics of UAV targets in radar
slow-time signals, thus enhancing the effectiveness of target classification. Therefore, the
use of attention modules can effectively increase the network’s focus on the differentiated
frequency characteristics of various targets, thereby improving model performance. To
emphasize crucial features, this study integrates a transition layer after each deformable
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convolution module, employing an attention mechanism for feature significance filtering.
The structure is depicted in Figure 6. This mechanism adaptively weights multi-scale fea-
tures, enhancing focus on essential attributes while disregarding irrelevant attributes. After
feature extraction, attention modules compute weights in both the channel and the spatial
dimensions, as depicted in the subsequent figure. This approach incorporates channel
attention modules (CAM) and spatial attention modules (SAM), independently assessing
and filtering the multi-scale features from both channel and spatial perspectives.
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(a) Channel Attention Module

As illustrated in Figure 7, the channel attention module takes an input feature vector F
with dimensions 1 × W × C, and performs global max pooling (GMP) and global average
pooling (GAP) based on width and height, resulting in two 1 × 1 × C feature vectors.
These vectors are then passed through a one-dimensional convolution layer to produce two
vectors of the same dimensions. By element-wise addition of these vectors and by applying
a sigmoid activation function, the final channel attention weights MC are generated. Finally,
the input feature F is multiplied by MC to output the channel-weighted feature F1.
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(b) The Spatial Attention Module

As shown in Figure 8, the spatial attention module uses the feature F1 output from
the channel attention module as its input. It performs global max pooling and global
average pooling across channels on the input feature vector, yielding two feature vectors of
dimensions 1 × W × 1. These vectors are concatenated along the channel dimension to form
a 1 × W × 2 dimensional feature vector. This vector is then subjected to a one-dimensional
convolution to reduce it to a single-channel feature vector. A sigmoid activation function
generates the spatial attention weights MS, which are then multiplied with the input F1 to
produce the spatially weighted feature F2.
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(c) The Linear Classification (LC) layer

Traditional CNNs often route extracted feature vectors through two or more fully
connected layers before applying a softmax function to calculate the probability of each
class for a sample, selecting the class with the highest probability as the sample’s category.
However, the extensive parameters required for multiple fully connected layers, such as
those for a feature map of dimensions W × H × C that is fed into a layer with M neurons and
necessitating W × H × C × M parameters, can lead to increased computational complexity,
slower processing speeds, more complicated parameter updates, lower efficiency, and
potentially overfitting.

This study opts for global average pooling instead of fully connected layers for clas-
sification post-convolution. After several convolutions, it produces feature maps equal
in number to the classes (W × H × Label), where “Label” denotes class count. Averaging
each map yields a 1 × 1 × Label matrix, simplifying to a vector for classification. Global
pooling, including both GAP and GMP, enhances training efficiency, parameter tuning,
overfitting prevention, and spatial information aggregation, offering robustness against
spatial transformations.
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4. Experiment and Result Analysis

In this section, we begin by comparing the proposed multi-frequency multi-scale
radar signal weak target detection network, which is constructed based on frequency
periodicity features, to demonstrate its superior performance. Subsequent ablation studies
are conducted to ascertain the efficacy of each component and the various configurations
within our methodology. Finally, we discuss implementation details, offering insights
into the practical application and optimization of the network for enhancing weak target
detection capabilities in radar signal processing.

4.1. Evaluation Dataset

The data collection equipment utilized in this study is an LSS radar detection system,
employing a full-domain phased-array radar operating in the S-band with HH polarization.
The PRT is set at 115 microseconds, and the sampling rate is 20 MHz. The radar conducts
target detection via electronic scanning. The original radar echoes captured at each wave
position are subjected to pulse compression processing. For single-point data, an accumula-
tion over 512 PRT yields the slow-time dimension data presented in this paper. All related
data are verified through optoelectronic devices to confirm target information, ensuring
the authenticity of the data used. The transformation from original echoes to the slow-time
dimension signals described in this paper is visualized in Figure 9.
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Figure 9. Schematic of the conversion from original echoes to slow-time dimension signals. (a) A
partial display of the amplitude-time distribution of the original echoes. (b) A partial display of the
signal amplitude–distance distribution post-pulse compression. (c) The distribution of amplitude
normalization values over the accumulation number of PRT in the slow-time dimension.

Figure 9 illustrates the schematic conversion from original echoes to slow-time di-
mension signals. Panel (a) presents a partial display of the amplitude–time distribution
of the original echoes, where the row coordinate represents time, with the unit being
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milliseconds (ms), the echo collection is conducted at a sampling rate of 20 MHz and the
column coordinate represents amplitude values. Panel (b) shows a partial display of the
signal amplitude–distance distribution post-pulse compression, where the row coordinate
denotes distance in kilometers and the column coordinate represents amplitude values.
Panel (c) displays the distribution of amplitude normalization values over the accumulation
number in the slow-time dimension. Here, the row coordinate represents 512 discrete PRT
points and the vertical axis represents the normalized amplitude corresponding to each
discrete PRT.

Additionally, through the integration of visual observation equipment for radar target
validation, an LSS radar one-dimensional recognition database was established after an
extensive three-month field collection and photoelectric verification process, as illustrated
in Table 1. The data encompasses three categories of target signals: UAVs, birds, and clutter.
Each dataset has been manually verified to ensure the authenticity of the information. The
collection of this data will facilitate the development of specialized radar system application
technologies and provide a fundamental database for radar target identification.

Table 1. The data collected in the field for UAVs and bird targets using a phased-array radar detection
system.

Categories Subcategories Count

UAVs

UAV_10 222
UAV_5 28

UAV_4–6 469
UAV_5–7 359

UAV_1 68
UAV_1–2 95
UAV_2–3 127

birds Bird_1–10 542

Clutter 2272

Total 4182

In Table 1, “UAV_10” indicates signals detected by radar from UAVs at a distance of
10 km(kilometers), “UAV_5” signifies UAV signals detected at 5 km, “UAV_4–6” refers
to UAVs hovering within 4 to 6 km as detected by radar, “UAV_5–7” represents UAVs
flying within 5 to 7 km detected by radar, “UAV_1” marks UAV signals detected at 1 km,
“UAV_1–2” shows UAVs hovering within 1 to 2 km detected by radar, “UAV_2–3” denotes
UAVs flying within 2 to 3 km detected by radar, and “Bird_1–10” accounts for bird target
signals detected by radar within 1 to 10 km.

The process involves preprocessing radar data in order to obtain the initial input data
for the classification network proposed in this paper. Data preprocessing involves several
steps, as follows: initially, collected data undergo cleansing; subsequently, the cleaned
data is subjected to absolute amplitude detection using algorithms like Constant False
Alarm Rate (CFAR), with detected target regions being clipped to a length of L. Then, the
amplitude of the clipped data is calculated and normalized. Finally, the data are annotated
with categories and divided into datasets, primarily into training, validation, and test sets,
to facilitate structured analysis and model training.

(a) Data cleansing for collected data primarily involves removing invalid, duplicate, and
outlier entries from the database to ensure the integrity and reliability of the dataset
for further processing and analysis.

(b) Following data cleansing, absolute amplitude detection is carried out using algorithms
such as CFAR. Based on the detection outcomes, data segments are extracted with a
length of L, where L is determined by specific requirements and typically ranges from
256, 512, etc., with this study selecting 512 for extraction length.
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(c) For the data segments obtained after clipping, amplitude information is calculated.
Assuming a point in the complex signal of length L is a + bi, the amplitude is calculated
as follows:

z =
√

a2 + b2 (3)

After calculating the amplitude, the signal can be represented as Zi, where i = 1, 2, . . . , L
denotes the index. The normalization of the amplitude-calculated signal Xi is then per-
formed according to the following formula:

Xi =
Zi

max(Zi)
(4)

In the formula, i = 1, 2, . . . , L.

4.2. Implementation Details

Our experiments were implemented in Python using PyTorch (2.2.0). All experiments
were conducted on a cluster equipped with 2 NVIDIA 3090 Tensor Core GPUs, facilitating
high-performance computation for deep learning. The organized data were partitioned into
training, validation, and test sets. The dataset comprised three categories, each containing
600 samples, for a total of 1800 samples. We randomly selected 360 samples from each
category, totaling 1080, to form the training set. Additionally, 120 samples from each
category, totaling 360, were allocated for the validation set, and the remaining 120 samples
per category, also totaling 360, constituted the test set. These datasets do not overlap to
ensure the authenticity of the algorithm testing results. To maximize GPU memory usage
and rapidly reach the convergence point, we set the batch size to 128. The learning rate
was set to 0.0005, with the learning rate decay set to 1/20 every 30,000 iterations. The
dataset underwent a total of 150,000 iterations using stochastic gradient descent (SGD) with
momentum optimizers.

4.3. Result Comparisons on Varying Length of Accumulation Time

In this paper, we compare the effects of our method based on features at four different
accumulation time lengths: 128, 256, 512 and 1024. The selection of these lengths is
motivated by several considerations: (1) FFT processing is particularly efficient for lengths
that are powers of 2; (2) too short an accumulation time may result in the loss of target
feature information; and (3) conversely, excessively long accumulation times can introduce
redundant information and unnecessarily increase the number of parameters. Therefore,
choosing an effective sequence length is crucial when accurately distinguishing between
UAVs, birds, and clutter. Utilizing the MFMSDC developed in this study, we conducted
signal recognition using the same target dataset across the four specified accumulation
time lengths. The results of this analysis are presented in Table 2.

Table 2. Experimental evaluation of the proposed method for target signals across four different
accumulation time lengths, based on accuracy (A), precision (P), recall (R), and F1 score. The table
presents the performance evaluation metrics for each accumulation time length. In the table, numbers
in bold indicate the highest values in each column.

Length Accuracy (A) Precision (P) Recall (R) F1-Score

128 0.585 0.252 0.223 0.237
256 0.782 0.496 0.438 0.416
512 0.912 0.68 0.746 0.711

1024 0.913 0.65 0.756 0.704

As illustrated in Table 2, classification experiments were conducted on the datasets
collected for UAVs, birds, and clutter using the one-dimensional network established in
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this study, across four different accumulation times: 128, 256, 512 and 1024. The results
indicate that, compared with 128 and 256, all metrics show significant improvements at
512. While the classification outcomes at 1024 demonstrate a 0.001 increase in accuracy rate,
other metrics experience a decline. Moreover, the data volume at 1024 is doubled compared
with that at 512. Upon comprehensive analysis, an accumulation time of 512 proves
to be the most cost-effective for target classification within this study. Consequently,
subsequent experiments in this paper will be conducted based on 512 slow-time dimension
accumulations for further experimental validation.

4.4. Result Comparisons on Self-Collected Dataset

Due to the scarcity of publicly available radar datasets, this study utilizes a self-
collected dataset, comparing traditional methods (Gaussian NB, Random Forest) and deep
learning-based one-dimensional networks (ARNet, RANet, ResNet18, ResNet34, ResNet50)
as control groups for signal recognition. This comparison aims to validate the superiority
of the proposed one-dimensional convolutional neural network in processing slow-time
dimension signals. Experimental results are presented in Table 3, where “Our” represents
results after network refinement and data balancing.

Table 3. Comparison of results on the self-collected dataset across different one-dimensional signal
processing methods based on accuracy (A), precision (P), recall (R), and F1-score, demonstrating the
performance evaluation metrics for each technique. In the table, numbers in bold indicate the highest
values in each column.

Methods Accuracy (A) Precision (P) Recall (R) F1-Score

Gaussian NB 0.687 0.426 0.417 0.421
Random Forest 0.664 0.408 0.442 0.424

ARNet 0.785 0.452 0.423 0.437
RANet 0.732 0.456 0.418 0.436

Resnet18 0.811 0.488 0.413 0.447
Resnet34 0.833 0.485 0.426 0.454
Resnet50 0.845 0.51 0.582 0.527

Our 0.912 0.68 0.746 0.711

From the experimental results depicted in Table 3, our method exhibits an approximate
23.6% improvement in average accuracy over traditional machine learning approaches,
with moderate precision, and with F1 scores of 31.6% and 28.8%. Compared with methods
employing one-dimensional neural networks (such as ARNet, RANet, ResNet18, ResNet34,
and ResNet50), our approach demonstrates superior feature extraction capabilities by
incorporating the motion characteristics of targets. This leads to the best performance
across all relevant metrics.

4.5. Result Comparisons on Spectrogram

In the field of radar signal processing for LSS target classification and recognition, most
approaches convert one-dimensional signals into spectrograms for subsequent image-based
classification. To generate spectrograms, the radar signal is typically divided into short
segments, and the Fourier transform is applied to each segment to obtain its frequency
components. These frequency components are then plotted over time, resulting in a
spectrogram in which the intensity of the plot corresponds with the magnitude of the
frequency components.

By analyzing spectrograms, researchers can identify distinct patterns and signatures
associated with different types of targets or phenomena. This approach enables efficient
classification and recognition of targets in radar applications, especially for LSS targets
where traditional methods may face challenges.
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In our study, we leverage spectrogram processing techniques to transform one-
dimensional radar signals into visual representations, allowing us to apply image-based
classification methods, such as ResNet34 and ResNet50. This approach enhances our ability
to accurately classify targets like birds, UAVs, and clutter, as depicted in Figure 10. Each
row in the image represents an example of the display of spectrograms after classification
using the method described in this paper.
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The images illustrate examples of the spectrogram displays after classification using the method
described in this paper.

Additionally, a quantitative comparison of the data classification results with the
methods discussed in this manuscript was conducted, with experiments run on servers
under identical configurations for a performance test comparison. Table 4 presents the
classification results of the two-dimensional networks ResNet18, ResNet34, and ResNet50
on spectrograms, comparing them with our method in terms of accuracy (A), precision
(P), and recall (R). The detection effectiveness of our method significantly surpasses that of
current and typical image processing-based classification techniques. Moreover, processing
one-dimensional signal data requires considerably less data volume than two-dimensional
spectrogram analysis, substantially enhancing the timeliness of radar signal processing.
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Table 4. Comparison of results between different two-dimensional ResNet networks on processed
spectrogram results and the method described in this paper based on accuracy (A), precision (P),
recall (R), and F1-score. In the table, numbers in bold indicate the highest values in each column.

Methods Accuracy (A) Precision (P) Recall (R)

ResNet18 0.659 0.43 0.580

ResNet34 0.678 0.48 0.612

ResNet50 0.815 0.61 0.682

Our 0.912 0.68 0.746

4.6. Ablation Study

Ablation studies were conducted on self-collected data in order to assess the effec-
tiveness of the designed MFMSDC network and optimized transition layers in enhancing
method performance. The studies, based on the network depicted in Figure 2, involved
variations like MFMSDC, CAM, SAM and LC layer. The first row corresponds to the
standard one-dimensional convolutional network illustrated in Figure 2. MFMSDC1 de-
notes the network module on the left half of Figure 4 with a stride of 1, while MFMSDC2
represents the network module on the right half of Figure 4 with a stride of 2. MFMSDC3
refers to the multi-frequency network module in Figure 4, which combines both stride 1
and stride 2 configurations. The final row depicts the network structure designed in this
study, which achieved optimal performance on relevant metrics. Through ablation experi-
ments, as shown in Table 5, the impact of each module on the overall network performance
is demonstrated.

Table 5. Ablation study on the self-collected dataset, comparing the results from accuracy (A),
precision (P), recall (R), and F1-score. In the table, numbers in bold indicate the highest values in each
column, ‘
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extraction method of MFMSDC1, results in an in increase in accuracy of 24.9%, precision 
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4.6.1. The Impact of the MFMSDC Module 
The manuscript discusses the construction of a network architecture with MFMSDC 

convolution layers, which utilize convolutions of two different strides in order to analyze 
features across various frequencies of radar slow-time signals. Specifically, the stride-2 
convolution allows for multiple down-sampling of slow-time signals, facilitating the 
extraction of features from signals of diverse frequencies. By simultaneously capitalizing 
on the extraction and utilization of the low-frequency features of bird targets and high-
frequency characteristics of UAVs, the study fully leverages the frequency information 
embedded in the slow-time dimension signals. This approach enhances the network’s 
capability to extract frequency multi-scale features of slow-time signals, significantly 
bolstering the network’s robustness. Table 5 reveals that MFMSDC3, which considers 
multi-frequency feature information,  when compared with the low-frequency feature 
extraction method of MFMSDC1, results in an in increase in accuracy of 24.9%, precision 
of 12.0%, recall of 19.2%, and F1 score of 10.6%. Furthermore, when comparing 
MFMSDC3, which considers multi-frequency feature information, with the high-
frequency feature extraction method of MFMSDC2, accuracy increased by 20.0%, 
precision by 6.0%, recall by 13.1%, and the F1 score by 4.8%. 

4.6.2. The Impact of Optimizing the Transition Layer 

0.602 0.39 0.420 0.450

Remote Sens. 2024, 16, x FOR PEER REVIEW 17 of 22 
 

 

Ablation studies were conducted on self-collected data in order to assess the 
effectiveness of the designed MFMSDC network and optimized transition layers in 
enhancing method performance. The studies, based on the network depicted in Figure 2, 
involved variations like MFMSDC, CAM, SAM and LC layer. The first row corresponds 
to the standard one-dimensional convolutional network illustrated in Figure 2. 
MFMSDC1 denotes the network module on the left half of Figure 4 with a stride of 1, 
while MFMSDC2 represents the network module on the right half of Figure 4 with a stride 
of 2. MFMSDC3 refers to the multi-frequency network module in Figure 4, which 
combines both stride 1 and stride 2 configurations. The final row depicts the network 
structure designed in this study, which achieved optimal performance on relevant 
metrics. Through ablation experiments, as shown in Table 5, the impact of each module 
on the overall network performance is demonstrated. 

Table 5. Ablation study on the self-collected dataset, comparing the results from accuracy (A), 
precision (P), recall (R), and F1-score. In the table, numbers in bold indicate the highest values in 
each column, '' indicates that the processing structure is not included during the network 
processing, while '' indicates that the processing structure is included during the network 
processing. 

MFMSDC1 MFMSDC2 MFMSDC3 CAM SAM LC 
Accuracy 

(A) 
Precision 

(P) Recall (R) F1-Score 

      0.456 0.34 0.385 0.400 
      0.602 0.39 0.420 0.450 
      0.651 0.45 0.481 0.508 
      0.851 0.51 0.612 0.556 
      0.871 0.57 0.672 0.617 
      0.898 0.53 0.712 0.608 
      0.912 0.68 0.746 0.711 

Table 5 demonstrates that incorporating multi-frequency multi-scale deformable 
convolution, channel and spatial attention mechanisms, and an LC layer significantly 
enhances model performance, enabling the prediction of a greater number of positive 
samples. It is also evident that incorporating the motion frequency information of the 
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namely birds and UAVs. 
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convolution layers, which utilize convolutions of two different strides in order to analyze 
features across various frequencies of radar slow-time signals. Specifically, the stride-2 
convolution allows for multiple down-sampling of slow-time signals, facilitating the 
extraction of features from signals of diverse frequencies. By simultaneously capitalizing 
on the extraction and utilization of the low-frequency features of bird targets and high-
frequency characteristics of UAVs, the study fully leverages the frequency information 
embedded in the slow-time dimension signals. This approach enhances the network’s 
capability to extract frequency multi-scale features of slow-time signals, significantly 
bolstering the network’s robustness. Table 5 reveals that MFMSDC3, which considers 
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of 12.0%, recall of 19.2%, and F1 score of 10.6%. Furthermore, when comparing 
MFMSDC3, which considers multi-frequency feature information, with the high-
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samples. It is also evident that incorporating the motion frequency information of the 
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namely birds and UAVs. 

4.6.1. The Impact of the MFMSDC Module 
The manuscript discusses the construction of a network architecture with MFMSDC 

convolution layers, which utilize convolutions of two different strides in order to analyze 
features across various frequencies of radar slow-time signals. Specifically, the stride-2 
convolution allows for multiple down-sampling of slow-time signals, facilitating the 
extraction of features from signals of diverse frequencies. By simultaneously capitalizing 
on the extraction and utilization of the low-frequency features of bird targets and high-
frequency characteristics of UAVs, the study fully leverages the frequency information 
embedded in the slow-time dimension signals. This approach enhances the network’s 
capability to extract frequency multi-scale features of slow-time signals, significantly 
bolstering the network’s robustness. Table 5 reveals that MFMSDC3, which considers 
multi-frequency feature information,  when compared with the low-frequency feature 
extraction method of MFMSDC1, results in an in increase in accuracy of 24.9%, precision 
of 12.0%, recall of 19.2%, and F1 score of 10.6%. Furthermore, when comparing 
MFMSDC3, which considers multi-frequency feature information, with the high-
frequency feature extraction method of MFMSDC2, accuracy increased by 20.0%, 
precision by 6.0%, recall by 13.1%, and the F1 score by 4.8%. 
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Table 5 demonstrates that incorporating multi-frequency multi-scale deformable 
convolution, channel and spatial attention mechanisms, and an LC layer significantly 
enhances model performance, enabling the prediction of a greater number of positive 
samples. It is also evident that incorporating the motion frequency information of the 
targets significantly enhances the classification performance for the subjects of this study, 
namely birds and UAVs. 

4.6.1. The Impact of the MFMSDC Module 
The manuscript discusses the construction of a network architecture with MFMSDC 

convolution layers, which utilize convolutions of two different strides in order to analyze 
features across various frequencies of radar slow-time signals. Specifically, the stride-2 
convolution allows for multiple down-sampling of slow-time signals, facilitating the 
extraction of features from signals of diverse frequencies. By simultaneously capitalizing 
on the extraction and utilization of the low-frequency features of bird targets and high-
frequency characteristics of UAVs, the study fully leverages the frequency information 
embedded in the slow-time dimension signals. This approach enhances the network’s 
capability to extract frequency multi-scale features of slow-time signals, significantly 
bolstering the network’s robustness. Table 5 reveals that MFMSDC3, which considers 
multi-frequency feature information,  when compared with the low-frequency feature 
extraction method of MFMSDC1, results in an in increase in accuracy of 24.9%, precision 
of 12.0%, recall of 19.2%, and F1 score of 10.6%. Furthermore, when comparing 
MFMSDC3, which considers multi-frequency feature information, with the high-
frequency feature extraction method of MFMSDC2, accuracy increased by 20.0%, 
precision by 6.0%, recall by 13.1%, and the F1 score by 4.8%. 
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Table 5 demonstrates that incorporating multi-frequency multi-scale deformable 
convolution, channel and spatial attention mechanisms, and an LC layer significantly 
enhances model performance, enabling the prediction of a greater number of positive 
samples. It is also evident that incorporating the motion frequency information of the 
targets significantly enhances the classification performance for the subjects of this study, 
namely birds and UAVs. 

4.6.1. The Impact of the MFMSDC Module 
The manuscript discusses the construction of a network architecture with MFMSDC 

convolution layers, which utilize convolutions of two different strides in order to analyze 
features across various frequencies of radar slow-time signals. Specifically, the stride-2 
convolution allows for multiple down-sampling of slow-time signals, facilitating the 
extraction of features from signals of diverse frequencies. By simultaneously capitalizing 
on the extraction and utilization of the low-frequency features of bird targets and high-
frequency characteristics of UAVs, the study fully leverages the frequency information 
embedded in the slow-time dimension signals. This approach enhances the network’s 
capability to extract frequency multi-scale features of slow-time signals, significantly 
bolstering the network’s robustness. Table 5 reveals that MFMSDC3, which considers 
multi-frequency feature information,  when compared with the low-frequency feature 
extraction method of MFMSDC1, results in an in increase in accuracy of 24.9%, precision 
of 12.0%, recall of 19.2%, and F1 score of 10.6%. Furthermore, when comparing 
MFMSDC3, which considers multi-frequency feature information, with the high-
frequency feature extraction method of MFMSDC2, accuracy increased by 20.0%, 
precision by 6.0%, recall by 13.1%, and the F1 score by 4.8%. 
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Table 5 demonstrates that incorporating multi-frequency multi-scale deformable 
convolution, channel and spatial attention mechanisms, and an LC layer significantly 
enhances model performance, enabling the prediction of a greater number of positive 
samples. It is also evident that incorporating the motion frequency information of the 
targets significantly enhances the classification performance for the subjects of this study, 
namely birds and UAVs. 

4.6.1. The Impact of the MFMSDC Module 
The manuscript discusses the construction of a network architecture with MFMSDC 

convolution layers, which utilize convolutions of two different strides in order to analyze 
features across various frequencies of radar slow-time signals. Specifically, the stride-2 
convolution allows for multiple down-sampling of slow-time signals, facilitating the 
extraction of features from signals of diverse frequencies. By simultaneously capitalizing 
on the extraction and utilization of the low-frequency features of bird targets and high-
frequency characteristics of UAVs, the study fully leverages the frequency information 
embedded in the slow-time dimension signals. This approach enhances the network’s 
capability to extract frequency multi-scale features of slow-time signals, significantly 
bolstering the network’s robustness. Table 5 reveals that MFMSDC3, which considers 
multi-frequency feature information,  when compared with the low-frequency feature 
extraction method of MFMSDC1, results in an in increase in accuracy of 24.9%, precision 
of 12.0%, recall of 19.2%, and F1 score of 10.6%. Furthermore, when comparing 
MFMSDC3, which considers multi-frequency feature information, with the high-
frequency feature extraction method of MFMSDC2, accuracy increased by 20.0%, 
precision by 6.0%, recall by 13.1%, and the F1 score by 4.8%. 

4.6.2. The Impact of Optimizing the Transition Layer 

0.651 0.45 0.481 0.508

Remote Sens. 2024, 16, x FOR PEER REVIEW 17 of 22 
 

 

Ablation studies were conducted on self-collected data in order to assess the 
effectiveness of the designed MFMSDC network and optimized transition layers in 
enhancing method performance. The studies, based on the network depicted in Figure 2, 
involved variations like MFMSDC, CAM, SAM and LC layer. The first row corresponds 
to the standard one-dimensional convolutional network illustrated in Figure 2. 
MFMSDC1 denotes the network module on the left half of Figure 4 with a stride of 1, 
while MFMSDC2 represents the network module on the right half of Figure 4 with a stride 
of 2. MFMSDC3 refers to the multi-frequency network module in Figure 4, which 
combines both stride 1 and stride 2 configurations. The final row depicts the network 
structure designed in this study, which achieved optimal performance on relevant 
metrics. Through ablation experiments, as shown in Table 5, the impact of each module 
on the overall network performance is demonstrated. 

Table 5. Ablation study on the self-collected dataset, comparing the results from accuracy (A), 
precision (P), recall (R), and F1-score. In the table, numbers in bold indicate the highest values in 
each column, '' indicates that the processing structure is not included during the network 
processing, while '' indicates that the processing structure is included during the network 
processing. 

MFMSDC1 MFMSDC2 MFMSDC3 CAM SAM LC 
Accuracy 

(A) 
Precision 

(P) Recall (R) F1-Score 

      0.456 0.34 0.385 0.400 
      0.602 0.39 0.420 0.450 
      0.651 0.45 0.481 0.508 
      0.851 0.51 0.612 0.556 
      0.871 0.57 0.672 0.617 
      0.898 0.53 0.712 0.608 
      0.912 0.68 0.746 0.711 

Table 5 demonstrates that incorporating multi-frequency multi-scale deformable 
convolution, channel and spatial attention mechanisms, and an LC layer significantly 
enhances model performance, enabling the prediction of a greater number of positive 
samples. It is also evident that incorporating the motion frequency information of the 
targets significantly enhances the classification performance for the subjects of this study, 
namely birds and UAVs. 

4.6.1. The Impact of the MFMSDC Module 
The manuscript discusses the construction of a network architecture with MFMSDC 

convolution layers, which utilize convolutions of two different strides in order to analyze 
features across various frequencies of radar slow-time signals. Specifically, the stride-2 
convolution allows for multiple down-sampling of slow-time signals, facilitating the 
extraction of features from signals of diverse frequencies. By simultaneously capitalizing 
on the extraction and utilization of the low-frequency features of bird targets and high-
frequency characteristics of UAVs, the study fully leverages the frequency information 
embedded in the slow-time dimension signals. This approach enhances the network’s 
capability to extract frequency multi-scale features of slow-time signals, significantly 
bolstering the network’s robustness. Table 5 reveals that MFMSDC3, which considers 
multi-frequency feature information,  when compared with the low-frequency feature 
extraction method of MFMSDC1, results in an in increase in accuracy of 24.9%, precision 
of 12.0%, recall of 19.2%, and F1 score of 10.6%. Furthermore, when comparing 
MFMSDC3, which considers multi-frequency feature information, with the high-
frequency feature extraction method of MFMSDC2, accuracy increased by 20.0%, 
precision by 6.0%, recall by 13.1%, and the F1 score by 4.8%. 
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Table 5 demonstrates that incorporating multi-frequency multi-scale deformable 
convolution, channel and spatial attention mechanisms, and an LC layer significantly 
enhances model performance, enabling the prediction of a greater number of positive 
samples. It is also evident that incorporating the motion frequency information of the 
targets significantly enhances the classification performance for the subjects of this study, 
namely birds and UAVs. 

4.6.1. The Impact of the MFMSDC Module 
The manuscript discusses the construction of a network architecture with MFMSDC 

convolution layers, which utilize convolutions of two different strides in order to analyze 
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Table 5 demonstrates that incorporating multi-frequency multi-scale deformable con-
volution, channel and spatial attention mechanisms, and an LC layer significantly enhances
model performance, enabling the prediction of a greater number of positive samples. It
is also evident that incorporating the motion frequency information of the targets signifi-
cantly enhances the classification performance for the subjects of this study, namely birds
and UAVs.

4.6.1. The Impact of the MFMSDC Module

The manuscript discusses the construction of a network architecture with MFMSDC
convolution layers, which utilize convolutions of two different strides in order to analyze
features across various frequencies of radar slow-time signals. Specifically, the stride-2
convolution allows for multiple down-sampling of slow-time signals, facilitating the extrac-
tion of features from signals of diverse frequencies. By simultaneously capitalizing on the
extraction and utilization of the low-frequency features of bird targets and high-frequency
characteristics of UAVs, the study fully leverages the frequency information embedded
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in the slow-time dimension signals. This approach enhances the network’s capability to
extract frequency multi-scale features of slow-time signals, significantly bolstering the
network’s robustness. Table 5 reveals that MFMSDC3, which considers multi-frequency
feature information, when compared with the low-frequency feature extraction method
of MFMSDC1, results in an in increase in accuracy of 24.9%, precision of 12.0%, recall of
19.2%, and F1 score of 10.6%. Furthermore, when comparing MFMSDC3, which considers
multi-frequency feature information, with the high-frequency feature extraction method of
MFMSDC2, accuracy increased by 20.0%, precision by 6.0%, recall by 13.1%, and the F1
score by 4.8%.

4.6.2. The Impact of Optimizing the Transition Layer

The integration of attention mechanisms following each multi-scale deformable convo-
lution module significantly enhances model performance by focusing on essential features.
This approach enables the adaptive weighting of multi-scale features, improving the neural
network’s attention to critical attributes while disregarding irrelevant ones. Implementing
this attention structure has notably improved various model metrics, boosting the recall
rate in particular, by 10%. This improvement underscores the effectiveness of attention
mechanisms in optimizing feature selection for better classification outcomes.

Opting for GAP instead of fully connected layers for post-convolution classification
brings significant advantages. GAP reduces training time due to the absence of parame-
ters, eliminating the need for adjustments to the optimization algorithm and effectively
preventing overfitting. Additionally, by aggregating spatial information, GAP enhances
the model’s robustness to spatial transformations, providing a streamlined and efficient
method for feature extraction and classification.

Building on the experiments in Section 4.6.1, the network structure was refined by
incorporating attention modules within the transition layers, enhancing feature connectivity
both channel-wise and spatially. This modification allows the model to focus on more
critical features from a vast dataset while employing linear operations in the classification
layer to effectively prevent overfitting. Consequently, there was a noticeable improvement
in all evaluation metrics of the network.

The enhancements made to the one-dimensional convolutional neural network struc-
ture, as detailed in Table 5, resulted in significant performance improvements compared
with a standard one-dimensional convolutional network, accuracy increased by 45.6%,
precision by 34%, recall by 36.1%, and the F1 score by 31.1%. The outcomes of these
improvements are illustrated in Figure 11.
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Figure 11. Display of typical target classification result data. Each image displays the distribution
of amplitude normalization values over the number of accumulations in the slow-time dimension,
following the accumulation of amplitude information. In these images, the row coordinate represents
512 discrete PRT points, and the vertical axis represents the normalized amplitude corresponding to
each discrete PRT.

5. Conclusions

In this paper, we have introduced a novel approach to radar echo recognition that
leverages a 1D-CNN to directly extract features from the slow-time dimension of radar
signals. This methodology marks a departure from conventional techniques that rely
heavily on the transformation of signals into the frequency or wavelet domains for feature
extraction. By directly analyzing the slow-time dimension, our approach simplifies the
processing workflow and enhances the efficiency of feature extraction.

The core of our network architecture is the MFMSDC layers, which facilitate the extrac-
tion of features across a broad spectrum of signal frequencies. Furthermore, the integration
of attention modules within the transition layers of the network significantly improves
feature connectivity, both channel-wise and spatially, thereby bolstering the network’s
capacity to focus on pertinent features while minimizing the influence of irrelevant data.
Crucially, the implementation of linear operations in the classification layer of our network
serves to mitigate the risk of overfitting, thereby ensuring more reliable and generaliz-
able classification outcomes. Ablation studies conducted as part of our research validate
the effectiveness of our network design, demonstrating notable improvements across all
evaluation metrics when compared with existing classification networks.
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The findings of our study underscore the potential of employing 1D-CNNs for the
recognition of radar echoes, specifically in the context of LSS target detection. Our method
not only streamlines the analytic process but also achieves superior classification perfor-
mance, thereby offering a promising avenue for future research and development in radar
signal processing.
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