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Abstract: Integrated crop–livestock systems (ICLS) are among the main viable strategies for sustain-
able agricultural production. Mapping these systems is crucial for monitoring land use changes in
Brazil, playing a significant role in promoting sustainable agricultural production. Due to the highly
dynamic nature of ICLS management, mapping them is a challenging task. The main objective of
this research was to develop a method for mapping ICLS using deep learning algorithms applied on
Satellite Image Time Series (SITS) data cubes, which consist of Sentinel-2 (S2) and PlanetScope (PS)
satellite images, as well as data fused (DF) from both sensors. This study focused on two Brazilian
states with varying landscapes and field sizes. Targeting ICLS, field data were combined with S2 and
PS data to build land use and land cover classification models for three sequential agricultural years
(2018/2019, 2019/2020, and 2020/2021). We tested three experimental settings to assess the classi-
fication performance using S2, PS, and DF data cubes. The test classification algorithms included
Random Forest (RF), Temporal Convolutional Neural Network (TempCNN), Residual Network
(ResNet), and a Lightweight Temporal Attention Encoder (L-TAE), with the latter incorporating an
attention-based model, fusing S2 and PS within the temporal encoders. Experimental results did
not show statistically significant differences between the three data sources for both study areas.
Nevertheless, the TempCNN outperformed the other classifiers with an overall accuracy above 90%
and an F1-Score of 86.6% for the ICLS class. By selecting the best models, we generated annual
ICLS maps, including their surrounding landscapes. This study demonstrated the potential of deep
learning algorithms and SITS to successfully map dynamic agricultural systems.

Keywords: data fusion; ICLS; multi-sensor; TempCNN; temporal encoder; regenerative agriculture

1. Introduction

Integrated crop–livestock systems (ICLS) are designed in a way that the integration
between crop and animal components results in a synergistic relationship that increases
diversity within an agroecosystem [1]. The main components of an ICLS are arranged in
space and time in a way that they can be managed simultaneously or separately, in rotation
or succession. These systems employ sustainable practices to increase productivity and
diversify land use, thereby contributing to meeting the food demand of a growing global
population. Consequently, they are aligned with the United Nation Sustainable Develop-
ment Goals (SDGs) [2] related to food security [3], climate change mitigation [4,5], and land

Remote Sens. 2024, 16, 1421. https://doi.org/10.3390/rs16081421 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs16081421
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-5219-3551
https://orcid.org/0000-0002-2147-1894
https://orcid.org/0000-0002-6662-3396
https://orcid.org/0000-0002-7115-1485
https://orcid.org/0000-0001-8114-9971
https://orcid.org/0000-0002-9456-1233
https://orcid.org/0000-0003-4344-1263
https://orcid.org/0000-0002-5374-3591
https://orcid.org/0009-0008-9140-0902
https://orcid.org/0000-0001-7190-2931
https://orcid.org/0000-0002-5017-8320
https://doi.org/10.3390/rs16081421
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs16081421?type=check_update&version=2


Remote Sens. 2024, 16, 1421 2 of 24

conservation [6]. ICLS promote several environmental and agricultural benefits, including
efficient nutrient cycling, enhanced soil fertility and structure, recovery of degraded pas-
tures, reduced plant diseases and pest incidents, reduced weeds, accumulation of biomass
and organic matter in the soil, and reduction of marketing risks [3,7]. ICLS worldwide
adopt a diverse array of crops and livestock species. Their selection depends upon regional
factors, such as the animal species, farmers’ goals, available technology, economic and
market aspects, and climatic characteristics of the region [7]. Garrett et al. [8] listed several
countries that adopt commercial integrated systems on a larger scale. Over the last decade,
Brazil has been developing a national policy of incentives to implement integrated produc-
tion systems, driven mainly by the Plan for Low Carbon Emissions in Agriculture [9]. To
assess the successful implementation of these systems, it is essential to develop efficient
methods for mapping and monitoring ICLS. This will enable the generation of detailed and
timely information on the progress and spatial distribution of integrated systems required
by organizations related to the sector or governments.

Dense satellite image time series (SITS) has already been successfully used to map
dynamic agricultural areas [10–12]. Manabe et al. [13] used Moderate Resolution Imaging
Spectroradiometer (MODIS)-based Enhanced Vegetation Index (EVI) time series and Time-
Weighted Dynamic Time Warping (TWDWT) to map ICLS in Mato Grosso, one of the
most important agricultural producers among the Brazilian states. In that study, the
authors encouraged future studies to integrate images with higher spatial resolution to
more accurately match the size of crop fields. Similarly, Kuchler et al. [14] used the
Random Forest (RF) classifier and MODIS products for the same classification purpose
and recommended using images with higher spatial resolution obtained by multi-sensor
fusion. Kuchler et al. [14] also suggested testing new machine learning algorithms that
can better account for the temporal information required for detecting patterns in highly
dynamic targets such as ICLS. In addition, Toro et al. [15] investigated the application of
deep learning algorithms on Sentinel-1 (S1) and Sentinel-2 (S2) time series to map ICLS
early in the season. Despite S2 data generating the best mapping results, Toro et al. [15]
suggested analyses over multiple years and the use of other deep learning networks more
specialized in learning spectro-temporal patterns. All previous works emphasized the
difficulty of mapping ICLS due to their complexity and heterogeneity.

The improved spatial and temporal resolution of SITS, such as the S2 satellites from the
ESA’s Copernicus program or the CubeSats PlanetScope (PS) nanosatellite constellation [16],
allows mapping land use and land cover (LULC) with higher details at a low cost. Important
research efforts have been dedicated to developing methods to fuse data obtained by
several sensors with different characteristics [17]. Sadeh et al. [18] introduced a new
method for fusing time series of cloud-free images from S2 and PS to overcome radiometric
inconsistencies of the PS images. To successfully estimate the leaf area index in wheat
fields, the authors created a consistent series of daily 3 m images (red, green, blue (RGB),
and near-infrared (NIR) bands) through data interpolating, resampling S2 images to 3 m
and fusing the images by averaging each pair of bands coming from S2 and PS. The
reported PS radiometric inconsistencies refer to variations in cross-sensor values of the
PlanetScope constellations and the overlapping of their RGB bands, which may interfere
with the calculation of spectral indices and classification accuracy results [19]. Recently,
Ofori-Ampofo et al. [20] and Garnot et al. [21] demonstrated the advantages of fusing S1
and S2 using deep learning and four fusion strategies.

Motivated by the need to map sustainable agricultural production areas with ICLS and
enhance their monitoring, this research aims to demonstrate an end-to-end workflow for
mapping ICLS using existing state-of-the-art techniques for data fusion and deep learning
algorithms applied to SITS. The RF classifier was used as a baseline for this research
since it was tested in previous works for ICLS mapping [14,15]. In addition, we used
three deep learning architectures designed to work with SITS; namely, 1D convolutional
neural networks, represented in this research by Temporal Convolutional Neural Network
(TempCNN) [22], Residual Network (ResNet) [23], and an attention-based model, called
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Lightweight Temporal Attention Encoder (L-TAE) [24]. We tested two methods for the
fusion of S2 and PS data. The main idea behind fusing S2 and PS data was to leverage
their distinct characteristics and obtain advantages in terms of spectral, temporal, and
spatial resolutions. The first method adapted the fusion methodology developed by Sadeh
et al. [18], and generated a regular time series with a 10-day interval and 3 m of spatial
resolution. The second method involved fusing the same pre-processed images from S2
and PS inside the temporal encoders of the L-TAE architecture.

The main objective of this research was to develop a method for mapping ICLS
fields using deep learning applied to data cubes obtained from the fusion of S2 and PS
time series. The proposed method was tested in two different regions of Brazil in three
agricultural years (2018/2019, 2019/2020, and 2020/2021). To investigate the benefits of
data fusion, we assessed three scenarios considering different sources of data: S2, PS, and
data fusion (DF) from both sources. For each scenario, we generated data cubes designed
to be free of gaps or missing data, and we compared their performance using four different
classification algorithms.

2. Materials and Methods
2.1. Study Area

The study area covers two regions of Brazil that present ICLS and other land uses with
different management practices (Figure 1). Study Area 1 (SA1) is located in the municipality
of Caiuá, west of the São Paulo State, covering approximately 7300 hectares. Study Area
2 (SA2) is located in the municipalities of Santa Carmem and Sinop, in the north-central
region of the Mato Grosso State, covering approximately 49,200 hectares. The study areas
are located in different biomes since SA1 belongs to the Atlantic Forest biome and SA2 to
the Cerrado biome (Brazilian savannah).
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tion [25], SA1 is under a tropical savanna climate with a rainy summer and dry winter 

Figure 1. Location of Study Area 1 (SA1) and Study Area 2 (SA2) in different Brazilian states and the
four tiles from the Planet Scope image grid used in this research.

SA1 has fields with small to medium parcels (mean size of 1.45 hectares), with a
diversity of crops and a predominance of smallholders. According to the Köppen classifi-
cation [25], SA1 is under a tropical savanna climate with a rainy summer and dry winter
(i.e., June–August). Mean annual precipitation varies between 1200 mm and 1400 mm, and
the mean daily temperature is equal to 24.1 ◦C (Figure 2).
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The landscape of SA2 is composed of large-scale parcels (mean size of 11.30 hectares).
SA2 is widely known for its high grain production, composed mainly of soybean and corn,
where there is also an intensification of land use with the adoption of double crops [26] and
improvement in the condition of pastures [27]. SA2 is situated in a tropical wet climate
(short dry season) [25], with an average annual precipitation between 1800 and 2300 mm,
while the mean daily temperature is equal to 26.2 ◦C (Figure 2).
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Figure 2. Monthly precipitation (a) and temperature (b) data obtained from the ECMWF (European
Center for Medium-Range Weather Forecasts)/Copernicus Climate Change Service [28], considering
the years investigated (2018 to 2021) for SA1 and SA2.

2.2. ICLS Ground Reference Data

We conducted field campaigns for the three agricultural years under study (2018/2019,
2019/2020, 2020/2021). The agricultural year for the study areas starts in September and
ends in August of the following year [29]. During the field campaigns, we used a random
sampling strategy to collect ground-level data. Additionally, we interviewed farmers to
gather insights into the implemented agricultural management and crop rotation practices.
These data were fundamental for building our dataset (see Section 2.5), which was later
used for training and validating the classification models.

Two main types of ICLS management strategies were observed, namely annual and
multi-annual systems. Similar management strategies have been reported by Gil et al. [30],
Manabe et al. [13], and Kuchler et al. [14]. The selection of the management strategy
depends mainly on the agricultural practices adopted by the farmers and fluctuations in
input and output prices in the market [30].

Two main crop seasons exist in Brazil: the summer season and the winter season.
The ICLS follow an annual system strategy that is based on crop–pasture succession. All
crop management activities within a field are carried out in the same agricultural year and
reiterated annually. Soybeans are typically grown as the first crop in the summer, followed
by pastures in the winter. Depending on the region’s rainfall pattern, pastures can be
cultivated together with mixed species of grasses, leading to land use and other resources
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optimization throughout the year (e.g., sunlight, biomass production, fertilizers, machinery).
Grasses of the genus Urochloa (Brachiaria) are preferentially sown simultaneously with
other grass species with a faster vegetative development (corn, millet, or sorghum). The
grasses with slower vegetative growth will become established after harvesting or grazing
fast-growing grasses. Multi-annual integrated systems are based on crop and livestock
succession or rotation, where the fields are managed for more than a year. For a single
field, a crop season will be followed by more than two seasons with pastures. The farmers
decide to rotate the fields with crop and livestock within the farm considering the spatial
and temporal distribution of the fields within the management time interval adopted by
the farmer (e.g., 2 years). This type of system is desired mainly for the recovery of pastures
since the introduction of crops will provide fertility to the soil.

Based on data collected in the field campaigns and reports from previous studies [13,14],
our method for mapping ICLS considers the time interval of one agricultural year. Since our
analysis comprises three agricultural years and considering that transitions between crops
and pastures inside a single field always occur within an agricultural year, both the annual
and multi-annual ICLS management strategies could be identified by the annual mappings.

SA1 has a high diversity in the following LULC classes: Cultivated pasture, Eucalyp-
tus, Forest, ICLS (soybean/millet + brachiaria, soybean/sorghum + brachiaria, and soy-
bean/corn + brachiaria), Pasture consortium (mix of corn + brachiaria, millet + brachiaria,
or sorghum + brachiaria), Natural vegetation and wet areas, Perennial crops (annatto,
coconut, mango, citrus, acerola, and papaya), Semi-perennial crops (cassava, sugarcane,
and Napier grass to make silage), and Others (buildings, roads, and bare soil).

SA2 has a rather homogeneous agricultural pattern and LULC classes: Cultivated
pasture, Double crop (soybean/corn, soybean/millet, and soybean/crotalaria), Forest,
ICLS (soybean/brachiaria, soybean/cowpeas + brachiaria, soybean/corn + brachiaria, and
soybean/millet + brachiaria), Water, and Others (buildings, roads, and bare soil).

2.3. Description of Satellite Data

We used multitemporal images from S2 and PS for the same period of three agricultural
years (2018/2019, 2019/2020, 2020/2021) corresponding to the ground reference data
timeline. Since our approach uses SITS, data download and some pre-processing steps of S2
were automated through the sen2r package [31]. Using this package, we first downloaded
all Level-1C (top of atmosphere (TOA) reflectance) products with a cloud cover of up to
60% and applied the Sen2Cor algorithm for atmospheric correction, converting all products
to Level-2A (bottom of atmosphere (BOA) reflectance) resampled to 10 m. Additionally,
we applied a cloud and cloud shadow mask to the images using the Scene Classification
product of the Sen2Cor algorithm. The atmospheric bands were discarded from the analysis.
A total number of 311 S2 images was used for SA1 and 497 for SA2.

Multispectral PS images were acquired from the Planet Labs PBC (Public Benefit
Corporation)’s commercial representative platform in Brazil. We selected cloud-free images
from the Planet Surface Reflectance product [32]. For SA2, we accounted for dense clouds
during the cloudiest months (November to March) and utilized the Usable Data Mask
product to mask out clouds and cloud shadows. For PS images, a total number of 900 images
were used for SA1 and 2324 for SA2.

2.4. Pre-Processing Satellite Images and Data Fusion

Data pre-processing aimed at obtaining Earth Observation (EO) data cubes which
represents multidimensional arrays [33]. The use of EO data cubes, regular in time and
space and without missing values, makes operations involving machine learning algo-
rithms easier since they improve multi-data comparability by following a consistent data
pattern [34].

For data fusion, we adapted the method developed by Sadeh et al. [18], which pro-
cessed S2 and PS images to obtain a consistent time series of fused images with temporal
resolution of 10 days and 3 m of spatial resolution. Thus, we clipped both image sets consid-
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ering the boundaries of each study area. We computed 10-day median compositions for the
entire S2 and PS time series separately, making them consistent in interval and length. This
procedure resulted in 36 images for each agricultural year from the corresponding data. The
number of images used to calculate each composite in the study areas varied depending
on image availability and the temporal resolution of the S2 and PS data (Figure 3). The
median composition has already proven its applicability to form multi-sensor compositions
in consistent time series [35]. In addition, the 10-day interval better corresponds to the
dynamics in highly managed land uses. In the next step, the spectral bands of both data
sources were separated, and then we applied linear interpolation to fill in the gaps in the
SITS caused by cloud cover.
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Subsequently, the data fusion steps described by Sadeh et al. [18] (for additional
information, see Section 2.3 on that study) were performed. These steps involved initially
resampling the S2 data pixels using cubic interpolation from 10 m to 3 m. Later, we
separated the RGB-NIR bands from S2 (resampled) and PS to fuse the data by averaging
the pixel values from each pair of bands. We represented all steps of the fusion process in a
workflow, Figure 4.
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Figure 4. Workflow for obtaining the three data cubes formed by S2, PS, and DF (in bold).

The described data fusion process resulted in three data cubes from different data
sources (Table 1), built from S2, PS, and DF data, with a temporal resolution of 10 days and
a spatial resolution of 3 m. In addition, we calculated five spectral indices related to the
state and vigor of the crops and soil properties, incorporating them into each data cube.
The spectral indices were: Enhanced Vegetation Index (EVI) [36], Normalized Difference
Vegetation Index (NDVI) [37], Green Normalized Difference Vegetation Index (GNDVI) [38],
Modified Soil-Adjusted Vegetation Index (MSAVI) [39], and Soil-Adjusted Vegetation Index
(SAVI) [40]. The time series of all spectral bands and indices were used for developing the
classification models. Specifically, the PS data cube consisted of nine layers, while the S2
and DF data cubes each contained 14 layers, as detailed in Table 1.

Table 1. Spectral bands and spectral indices contained in the data cubes.

PS Data Cube S2 Data Cube DF Data Cube

Blue (455–515 nm) Blue (459–525 nm) Blue (fused product)
Green (500–590 nm) Green (541–577 nm) Green (fused product)
Red (590–670 nm) Red (649–680 nm) Red (fused product)
NIR (780–860 nm) NIR (779–885 nm) NIR (fused product)

- Red-edge 1 (696–711 nm) Red-edge 1 (from S2 data cube)
- Red-edge 2 (733–748 nm) Red-edge 2 (from S2 data cube)
- Red-edge 3 (772–792 nm) Red-edge 3 (from S2 data cube)
- SWIR 1 (1568–1659 nm) SWIR 1 (from S2 data cube)
- SWIR 2 (2114–2289 nm) SWIR 2 (from S2 data cube)

EVI EVI EVI
NDVI NDVI NDVI

GNDVI GNDVI GNDVI
MSAVI MSAVI MSAVI
SAVI SAVI SAVI

2.5. Dataset Partition

Although this research was based on a pixel-based approach, we used a multitemporal
image segmentation method for splitting the training and testing data. This process was
performed to ensure that the samples were spatially disjoint and that samples inserted
in the same polygon were not simultaneously in the training and test set. We applied
the Simple Non-Iterative Clustering (SNIC) algorithm [41], a variation of the superpixel
algorithm available on the Google Earth Engine platform [42]. We provided the time series
of fused NDVI images for each agricultural year (36 images) in both study areas as input to
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the algorithm. The generated polygons considered the spectro-temporal dynamics of areas
with agricultural intensification [43]. We adjusted the following parameters: compactness
(0.5), connectivity (4), neighborhoodSize (256) and seed grid equal to 50 and 140 for SA1
and SA2, respectively. The parameters were fine-tuned based on visual assessment aiming
at the most suitable output.

Using the resulting multitemporal segmentation polygons (Figure 5), we divided the
labeled samples into 70% for training and 30% for testing through a random and stratified
process, considering each agricultural year. Thus, we overlapped the field data with the
polygons to generate the entire dataset (Table 2).

Table 2. The distribution of samples, partitioned into training and testing sets from multitemporal
segmentation polygons, considering each class and agricultural year in both study areas, where CPA:
Cultivated Pasture, DCP: Double Crop, EUC: Eucalyptus, FOR: Forest, NVW: Natural vegetation and
wet areas, OTH: Others, PCS: Pasture consortium, PRC: Perennial crops, SPC: Semi-perennial crops,
WAT: Water.

SA Class

2018/2019
No. of

Samples
(Training/Test)

2019/2020
No. of

Samples
(Training/Test)

2020/2021
No. of

Samples
(Training/Test)

Total Samples
for

Training Set

Total Samples
for

Testing Set

Total Training
Polygons

(70%)

Total Testing
Polygons

(30%)

SA1

CPA 97/43 229/89 251/100 577 232 443 189
EUC 22/10 64/35 60/22 146 67 76 33
FOR 33/15 34/15 35/14 102 44 98 43
ICLS 34/15 26/12 22/9 82 36 82 35
NVW 52/23 53/22 51/24 156 69 110 48
OTH 33/16 43/13 39/19 115 48 60 26
PCS 22/11 42/12 24/23 88 46 64 29
PRC 26/6 71/29 62/34 159 69 58 25
SPC 22/7 111/42 79/38 212 87 84 37

SA2

CPA 259/97 210/106 240/78 709 281 223 112
DCP 468/201 533/230 727/309 1728 740 903 387
FOR 160/65 138/60 137/58 435 183 413 176
ICLS 139/60 149/55 128/62 416 177 186 80
OTH 62/16 65/18 50/36 177 70 58 23
WAT 37/26 36/27 41/22 114 75 38 17

All classifications, result evaluations, and prediction workflows were performed in
“sits: Satellite Image Time Series Analysis on EO Data Cubes”, an R package [34]. To handle
the time series data in this package, we used the ground reference data points to extract the
corresponding values of each composition and its spectral bands and store them within
a tibble data structure, as described in Simoes et al. [34]. The tibble time series contained
spatial and temporal information, as well as the labels assigned to the samples. For each
data cube representing the three scenarios (S2, PS, and DF), we created their respective
training and testing tibbles. These structured data was used to compare scenarios and
evaluate the performance of the classification algorithms.
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2.6. Machine and Deep Learning Algorithms for ICLS Classification

We tested four algorithms for ICLS classification using the three data cubes. RF [44]
is used as a baseline classifier in our study. RF is an ensemble method based on decision
trees, which uses a randomly selected subset of training samples and variables in building
each tree. Thus, to build the trees, the two most important parameters are needed, namely
the number of trees (ntree) and the number of variables used to split the internal nodes of
the decision trees (mtry). When choosing these parameters, we followed the suggestion of
previous works [45], defining ntree as equal to 1000 and mtry as equal to the square root of
the total number of features.

We assessed the performance of the TempCNN [22] and the ResNet [23] due to the
ability of these networks to account for the temporal ordering of samples in SITS [34]. In
addition, the convolution layers play an important role in feature extraction by applying
one-dimensional filters to detect temporal patterns in time series classification [46]. Thus,
we followed Pelletier et al. [22] who proposed the TempCNN architecture (Figure 6a) with
three consecutive 1D convolutional layers (64 units), followed by a dense layer (256 units)
and a softmax layer. The ResNet architecture (Figure 6b) is deeper, being composed of nine
convolutional layers equally distributed in 3 blocks, the first with 64 units and the others
with 128. This structure is followed by a global pooling layer that averages the time series
along the temporal dimension and, finally, a softmax layer. The advantage of ResNet is the
residual shortcut connection between consecutive convolutional layers. Wang et al. [23]
proposed combining the input layer of each block with its output layer through a linear
shortcut, thus allowing the flow of the gradient directly through these connections and
avoiding the so-called vanishing gradient problem.

Lastly, we used the state-of-the-art L-TAE [24]. This architecture (Figure 6c) employs
self-attention and positional encoding mechanisms. The self-attention mechanism can
identify relevant observations and learn contextual information in a time series for classifi-
cation [47]. Positional coding ensures that the sequential ordering of the elements of a time
series is maintained throughout the learning of the neural network [47]. Another advantage
of this architecture comes from the concept of multi-heads, which allows different sets of
parameters to be trained in parallel on the network independently, so-called attention heads.
In this way, each head becomes specialized in detecting different patterns, and its output
is then concatenated with the other heads. Thus, for the application of L-TAE, we tested
the fusion of data cubes coming from S2 and PS within the temporal encoder from the
concatenation of all bands, following the early fusion strategy presented by Ofori-Ampofo
et al. [20] and Garnot et al. [21]. Ofori-Ampofo et al. [20] stated that this type of strategy is
recommended when the target classes are underrepresented as it is the case with ICLS. In
this case, we tested the early fusion strategy in L-TAE architecture as a second method to
fuse data and classify ICLS fields. This step aimed to verify which fusion approach would
be the most suitable for ICLS mapping.

Deep learning networks employ stochastic gradient descent methods to achieve op-
timal performance. These methods accelerate predictions and convergence compared to
exhaustive testing of all parameter combinations. For this purpose, some optimization
algorithms select hyperparameters randomly, resulting in the best combination of them [48].
The main hyperparameters include the learning rate, which controls the numerical step of
the gradient descent function; epsilon (ε), which controls numerical stability; and weight
decay, which controls overfitting. In our research, the three deep learning algorithms were
trained with the AdamW optimizer [49], using standard parameter values obtained from
the sits_tuning function in the sits package [34]. Thus, the coefficients used for computing
running averages of the gradient and its square were β1 = 0.9 and β2 = 0.999, ϵ = 1 × 10−8,
the weight decay was equal to 1 × 10−6, the learning rate was equal to 0.001, and the
validation set was corresponding to 20% of the training set. We set a batch size of 64
(number of samples per gradient update) and the maximum number of epochs to 150 with
a patience of 20.
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2.7. ICLS Classification and Mapping Performance Evaluation

We assessed the performance of RF and the deep learning architectures (TempCNN,
ResNet, and L-TAE) across the three input data source scenarios. From the dataset separated
for training (70%), we evaluated the performance of scenarios and algorithms using the
k-fold cross-validation method (5 folds), repeated five times. Thus, we used the average
accuracies in a t-test (assuming equal variances) to compare the performance of the models
obtained from the three scenarios (S2, PS, and DF). Subsequently, we used the testing set
(30%) to compare the performance of the algorithms and choose the best model considering
an independent data set.

To generate the annual prediction maps for both study areas, we classified the data
cubes using the best model through parallel processing to speed up the performance,
as described by Simoes et al. [34]. As a result of the classification, an output data cube
was generated containing probability layers, one for each output class, which brings
information about the probability of each pixel belonging to the related class. In this case,
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we assigned the pixel to the highest probability class. Furthermore, we applied a smoothing
method based on Bayesian probability that uses information from the pixel neighborhood to
decrease the uncertainty about its label and reduce salt-and-pepper effects [34]. In this case,
we defined the main parameters for performing Bayesian smoothing in the sits package:
window size (9), neighborhood fraction (0.5) and smoothness (20). Figure 7 illustrates the
steps of the method proposed to map ICLS.
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To measure the accuracy of the resulting prediction maps, we applied the area-
weighted accuracy assessment technique, following the best practices proposed by Olofsson
et al. [50] and the practical guide from FAO [51]. For this purpose, we used the polygons
extracted by the multitemporal segmentation for testing (30%) and sampled about 400
samples for each agricultural year through a random and stratified process. The size of the
sample set considers the proportion of mapped area for each class, providing an expected
standard error of global precision of 0.05 [50]. In addition, we applied an error-adjusted
estimator of area along with confidence intervals to eliminate the bias attributable to the
classification of the final maps, as described by Olofsson et al. [52].

Thus, for each annual classification map, we obtained confusion matrices to calculate
the following performance metrics: Overall Accuracy (OA), User (UA) and Producer
accuracy (PA), and F1-Score for the ICLS class.

3. Results
3.1. ICLS Spectro-Temporal Patterns Computation Using Different Data Sources

Figures 8 and 9 show the spectro-temporal patterns for each target class present in SA1
and SA2, respectively. The patterns were produced using a generalized additive model
to estimate a statistical approximation to an idealized pattern per class [53]. We highlight
the similarity of the patterns observed among Cultivated pasture, Perennial crops, and
Semi-perennial crops in SA1, as well as the similar patterns between Double crop and ICLS
in SA2.
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Figure 10 represents the three-year average spectro-temporal NDVI profile obtained
from the data cubes in two fields with ICLS for SA1 (Figure 10a) and SA2 (Figure 10b), with
field sizes of 19 and 63 hectares, respectively. Based on the NDVI temporal patterns, we
observed that the different data sources have similar patterns along the time series and
represent well the land use dynamics in fields of ICLS. However, in general, vegetation
indices based on S2 data were more sensitive to high and low values, which are related to
crop phenological stages and green biomass. PS temporal patterns showed more variation
and less sensitivity to high and low NDVI values than S2 data. On the other hand, the
DF data showed average values between the two sources, as expected. We also identified
distinct patterns indicative of specific management strategies in ICLS, where a combination
of crop and pasture cultivation occurs in succession or rotation. Rotation practices were
represented by the management of soybeans alternated with pastures. In contrast, succes-
sion was represented by managing two agricultural years as annual ICLS followed by a
year of Cultivated pasture (Figure 10a) or Double crop (Figure 10b).
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By defining an annual ICLS classification method, we use information from the first
and second crop seasons within an agricultural year, when the crops are followed by simple
pastures (Figure 10b) or mixed pastures (Figure 10a). On the other hand, when using
information from all years, the multi-annual analysis considers the sequence of crop types
over the years. The importance of the multi-year analysis can be demonstrated when
considering a scenario where the analysis is restricted to one agricultural year, specifically
the most recent year (2020/2021). In this scenario, the land use in the two fields featuring
ICLS would probably be classified as Cultivated pasture (as shown in Figure 10a) and
Double crop (as shown in Figure 10b).

3.2. Assessment of the Classification Results

The results obtained from the five cross-validations showed a slight superiority, no
more than 0.5% of OA, when using DF (92.1%—SA1, 96.1%—SA2) compared to other
scenarios that used S2 (91.7%—SA1, 95.8%—SA2) and PS (91.8%—SA1, 95.9%—SA2), con-
sidering both study areas. However, the t-test results indicate that there are no significant
differences (p-value > 0.05) between the scenarios coming from the different data cubes for
both areas.

When the classification results were assessed based on the testing set, the performance
of the classifiers was maintained (Table 3), which demonstrated the generalization capacity
of the previously trained models. In SA1, TempCNN (OA = 90.0%) was again the best
classifier, while in SA2, TempCNN (OA = 95.6%) and RF (OA = 95.5%) also showed the
best OA results, with DF being the best scenario for LULC classification in both study areas.
PA and UA for the ICLS class were equal to or better than 94.4% and 89.7% in SA1 and
78.5% and 82.2% in SA2, respectively. ResNet had the worst performance for both study
areas (79.7% and 94.4%, respectively) using non-fused data, since this algorithm is more
difficult to parameterize. The highest F1-score values for the ICLS class were obtained by
TempCNN (100.0%) and L-TAE (100.0%) in SA1 and by RF in SA2 (89.3%).

Table 3. Classification results of the test data, in percentages, obtained by the four classifiers using
data cubes from three different scenarios in classifying the study areas.

SA
DF S2 PS

Metric RF Temp-
CNN ResNet L-TAE RF Temp-

CNN ResNet L-TAE RF Temp-
CNN ResNet L-TAE

SA1

OA 85.5 90.0 88.5 88.4 84.7 87.8 79.7 87.1 86.1 86.4 86.0 85.8
F1-Score
(ICLS) 98.6 98.6 95.9 100.0 97.1 98.6 93.3 94.6 98.6 100.0 94.6 100.0

PA
(ICLS) 97.2 97.2 97.2 100.0 94.4 100.0 97.2 97.2 97.2 100.0 97.2 100.0

UA
(ICLS) 100.0 100.0 94.6 100.0 100.0 97.3 89.7 92.1 100.0 100.0 92.1 100.0

SA2

OA 95.4 95.6 94.6 94.7 95.5 95.5 95.3 95.1 95.4 95.4 94.4 95.1
F1-Score
(ICLS) 88.0 86.6 81.3 86.5 88.3 89.1 86.9 88.7 89.3 88.8 83.6 87.4

PA
(ICLS) 91.5 91.5 78.5 85.3 91.5 92.1 89.8 88.7 89.3 91.5 79.1 88.1

UA
(ICLS) 84.8 82.2 84.2 87.8 85.3 86.2 84.1 88.7 89.3 86.2 88.6 86.7

The agreement results of the prediction achieved by the best classifier (TempCNN)
show the confusion between classes in both areas (Figure 11). For instance, for the ICLS, the
confusion occurred only with Cultivated pasture (2.8%) in SA1 (Figure 11a), even with a
low proportion, while in SA2 (Figure 11b), the most significant confusion of ICLS was with
Double crop (6.2%), followed by Cultivated pasture (1.7%). The F1-score results for ICLS
(Table 3) indicate greater difficulty in identifying ICLS in SA2 (86.6%) than SA1 (98.6%).
The highest misclassification rate was found between Pasture consortium (37.0%) and
Semi-perennial crops (23.0%) in SA1 (Figure 11a) to Cultivated pasture due to their inherent
similarity regarding spectral characteristics and management practices.
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Figure 11. Agreement percentage results between the values predicted by the TempCNN model and
the reference values, considering SA1 (a) and SA2 (b), where CPA: Cultivated Pasture, DCP: Double
Crop, EUC: Eucalyptus, FOR: Forest, NVW: Natural vegetation and wet areas, OTH: Others, PCS:
Pasture consortium, PRC: Perennial crops, SPC: Semi-perennial crops, WAT: Water.

3.3. Spatial Representation of the Classification Results

To generate the annual LULC maps for SA1 (Figure 12) and SA2 (Figure 13), Tem-
pCNN models were used to classify the DF data cubes by agricultural year, based on
their superior prediction performance on the testing set and their enhanced generalization
capacity. In both study areas, spatio-temporal changes in the ICLS areas were the result of
their management practices. To address multi-annual ICLS mapping, we overlapped the
information from the annual prediction maps to obtain the final classification for ICLS in
both study areas.

Table 4 presents the results of PA and UA by agricultural year for SA1 and SA2
considering the 95.0% confidence interval. For SA1, the classes Cultivated pasture, Natural
vegetation and Wet areas, and ICLS reached the highest PA and UA values, all higher than
90.0%. In contrast, Semi-perennial crops, Pasture consortium, and Others had lower PA
and UA values, which were close to or greater than 60.0% in SA1. These results can be
explained by the fact that less frequent classes are more prone to errors than other classes
prevalent in an unbalanced dataset. In terms of OA of the prediction maps obtained for
SA1, all annual maps resulted in high OA values (Figure 14), with the agricultural year
2020/2021 having the lowest accuracy (93.4%) and the agricultural year 2018/2019 having
the highest accuracy (96.6%).

Table 4. The unbiased estimate of UA and PA for each class by agricultural year in SA1 and SA2,
considering 95.0% confidence interval, where CPA: Cultivated pasture, DCP: Double crop, EUC:
Eucalyptus, FOR: Forest, NVW: Natural vegetation and wet areas, OTH: Others, PCS: Pasture
consortium, PRC: Perennial crops, SPC: Semi-perennial crops, WAT: Water.

SA Class
2018/2019 2019/2020 2020/2021

PA UA PA UA PA UA

SA1

CPA 99.7 96.1 97.2 96.0 97.4 94.1
EUC 100.0 75.0 100.0 84.6 88.4 80.0
FOR 100.0 100.0 99.1 100.0 99.1 100.0
ICLS 100.0 100.0 100.0 100.0 92.2 100.0
NVW 100.0 100.0 100.0 90.9 100.0 91.7
OTH 100.0 88.9 100.0 75.0 78.2 75.0
PCS 74.1 100.0 58.3 100.0 60.0 88.9
PRC 73.7 100.0 91.3 90.0 80.0 80.0
SPC 58.5 71.4 63.8 60.0 58.7 70.6
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Table 4. Cont.

SA Class
2018/2019 2019/2020 2020/2021

PA UA PA UA PA UA

SA2

CPA 94.2 91.4 100.0 85.7 100.0 81.0
DCP 95.0 100.0 96.4 98.0 98.1 98.8
FOR 99.4 99.4 97.8 99.4 97.4 100.0
ICLS 95.0 69.6 86.9 90.0 88.3 100.0
OTH 100.0 100.0 100.0 88.9 100.0 77.8
WAT 100.0 100.0 100.0 100.0 100.0 100.0
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Figure 13. Prediction maps for each tile in the SA2 by agricultural year and their final map of ICLS
considering the multi-annual approach.

For SA2, Water, Forest, and Double crop classes had the highest PA and UA val-
ues, all greater than 97.0%. However, the Cultivated pasture, Others, and ICLS classes
were predicted less accurately, showing PA and UA values close to or greater than 70.0%
(Figure 14). We highlight the confusion between the target class of ICLS and Double crop
due to the spectro-temporal similarity between these classes. In the 2018/2019 agricultural
year, there were more commission errors for the ICLS class. When considering the two last
agricultural years, the UA values for ICLS were above 90.0%. The OA results of the SA2
prediction maps were superior to those obtained in SA1, with the highest OA value in the
2020/2021 agricultural year (97.3%) and the lowest OA value in the 2018/2019 agricultural
year (96.8%).

We adjusted the areas estimated by the best-performing classifiers using an area
error-adjusted estimator, described by Olofsson et al. [52] (Figure 14).

For SA1, these adjustments for the Forest and ICLS classes were almost null over
the mapped area (Figure 15a), indicating good classification results. However, Cultivated
pasture class returned a greater adjustment in area size, while the Pasture consortium,
Perennial crops, and Semi-perennial crops classes were proportionally more adjusted
concerning their total area.
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Figure 14. Error matrices obtained in the evaluation of prediction maps using the sample set that
considers the proportion of mapped areas for each class, considering SA1 and SA2, where CPA:
Cultivated pasture, DCP: Double crop, EUC: Eucalyptus, FOR: Forest, NVW: Natural vegetation and
wet areas, OTH: Others, PCS: Pasture consortium, PRC: Perennial crops, SPC: Semi-perennial crops,
WAT: Water.
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For SA2, there were no significant differences between the error-adjusted areas
(Figure 15b) and the mapped area for the Other and Water classes because they have
different spectro-temporal patterns compared to other non-vegetated classes. The total
area of annual ICLS over the evaluated agricultural years is lower than the Cultivated
pasture and Double Crop classes.

4. Discussion
4.1. Data Cubes and Their Spectro-Temporal Patterns for ICLS

The three data cubes (S2, PS, and DF) produced in this research have shown high
capability to capture the phenological development of crops and pastures in fields managed
as ICLS. Similar to the findings of Sadeh et al. [18], our spectro-temporal profiles based on
PS data (Figure 10) had more signal variations than those generated by S2 or DF data. This
phenomenon has already been reported and may be related to cross-sensor variations in
surface reflectance values of images from the CubeSat PlanetScope constellations [19]. In
this context, combining data from different sources provided a consistent time series of
fused data. These results align with those obtained by Griffiths et al. [35], who reported
the importance of the applicability of multi-sensor image composition to monitor dynamic
targets on the Earth’s surface.

4.2. ICLS Classification Results Using Different Data Cubes and Deep Learning Algorithms

Although there were no significant statistical differences between the three scenarios,
the classification results using DF data cube were slightly better in all experiments compared
to other data cubes (Table 3). Furthermore, the results derived from the fusion method
employing L-TAE algorithm indicate that early fusion of data cubes within the temporal
encoder offers advantages in terms of classification performance and processing time.
Further research should explore decision-level fusion approaches [20]. The classification
results obtained using only the S2 data cube showed that this dataset was suitable for
identifying ICLS and other dynamic land uses in our study areas, highlighting the potential
of S2 data cubes for large-scale mapping approaches. On the other hand, a greater gain in
using DF and PS data cubes could occur in regions where agricultural fields are smaller.
It is worth mentioning that pre-processing steps required to build the data cubes, such as
computing the 10-day median compositions and filling in gaps, were essential to reduce
the noise caused by clouds, especially in rainy months (November to March in our study
areas). However, in rainy years or regions with very high cloud coverage, we expect a
decrease in the performance of the classification models.

Regarding the performance of the evaluated algorithms (presented in Table 3), the
studies of Pelletier et al. [22] and Zhong et al. [54] also revealed that 1D-CNN models ob-
tained the highest accuracy for crop classification. This high performance may be attributed
to their ability to take into account the temporal information and capture seasonal patterns
of SITS. The performance achieved by RF in SA2 (95.4%) was close to the best-performing
model based on deep learning (TempCNN—95.5%). This result may be related to the
greater homogeneity and larger size of agricultural fields in SA2 than in SA1, which is fur-
ther evident by the representation of SA2 in fewer classes. The slightly lower performance
of the ResNet algorithm (88.5%—SA1, 94.6%—SA2) may potentially be improved through
further experimentation with different filter sizes. Similar to Ofori-Ampofo et al. [20], who
obtained an OA of 92.2% in crop classification, our study also obtained high accuracy
when applying L-TAE to classify target classes in the two areas (88.4%—SA1, 94.7%—SA2),
demonstrating the importance of data fusion by this architecture. The success of deep
learning neural networks in achieving high accuracies may be attributed to the quality
of the training samples [55] and their geographic distribution [56]. In our study, we en-
sured high-quality training samples and an optimal geographic distribution through the
implemented multitemporal segmentation process.
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4.3. ICLS Mapping in the Study Areas

The highest OA for SA2 may be related to a more homogeneous landscape compared
to SA1, mainly represented by a lower number of land use classes and a larger area. In
contrast, we had higher F1-Score results for ICLS in SA1 (0.99) than SA2 (0.87), mainly
due to the misclassification between ICLS and Double crop in SA2. These two classes
have similar spectro-temporal patterns (Figure 9) due to the implemented agricultural
management practices during the agricultural year. Double crop and ICLS encompass
soybean that is primarily cultivated as a summer crop subsequently followed by either
another crop (e.g., corn, millet, or crotalaria) in Double crop or pasture in ICLS. Previous
studies have also emphasized the challenge of discriminating Double crop and ICLS [13–15].
Our results showed an accuracy improvement compared to previous works focused on
mapping ICLS that used data from MODIS sensor [13,14] and very close accuracy obtained
in the study of Toro et al. [15], which used S1 and S2 SITS. The quality of the prediction
maps obtained from the fused time series was high for SA1, where the field size is smaller.
This accuracy gain is explained by using high spatial resolution PS data, which allows
classifying ICLS in small fields compared to previous works that used coarser resolution
images in the same region [15]. The imbalanced sample distribution across the target
classes increased the accuracy of the major classes at the expense of the accuracy of the
minor classes. To address this challenge, balancing methods such as those presented in
Waldner et al. [57] should be considered.

Our study revealed a reduction in the total area occupied by ICLS over the agricultural
years in SA1 (Figure 15a). The multi-annual dynamics of these areas necessarily can be
caused by the price fluctuations in the market and by the farmers’ decision-making on the
management of their lands [30].

While our research focused on only two study areas, it is important to highlight that
they are located in a widespread ICLS region in Brazil. In light of the necessity for more
robust mapping techniques to support sustainable and dynamic agricultural production
systems, the developed method could be tested in other regions with ICLS. Nevertheless,
the trained deep learning models may have limited transferability to areas with different
agricultural management practices and climatic conditions. In this context, including
samples encompassing site-specific ICLS characteristics could increase the transferability
of pre-trained models.

To summarize, this research contributes to generating total area estimates and identi-
fying the spatial distribution of ICLS by proposing an end-to-end workflow using state-of-
the-art techniques. This workflow is useful for sectors interested in monitoring this type of
agricultural production system.

5. Conclusions

Our study proposed a method that combines SITS data cubes and deep learning
to effectively map annual ICLS under different agricultural management practices in
two diverse landscapes in Brazil.

This study showed that the S2 data cubes were suitable for classifying ICLS success-
fully in the investigated study areas, whereas high spatial resolution PS data improved only
slightly the classification accuracy results obtained by the PS and DF data cubes. Among
the classifiers, wTempCNN outperformed the other investigated classifiers, indicating its
superior ability to learn the spectro-temporal patterns associated with the target class. RF
performed similarly to TempCNN in the SA2, where the landscape is more homogeneous
and composed of larger agricultural fields than the SA1. Further, the L-TAE demonstrated
the possibility to fuse data from different sources within temporal encoders, eliminating
the need to generate synthetic images. Finally, ResNet performed was the least effective
among the tested classifiers. The ICLS mapping results presented in this study open up the
possibility of extending the analysis to broader regions within Brazil and other countries
that adopt integrated systems. This expansion holds promise for fostering more sustainable
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agricultural production practices on a larger scale, thereby contributing to the advancement
of environmentally responsible farming methodologies worldwide.
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