
Citation: Ma, Z.; Dong, Y.; Xia, Y.;

Xu, D.; Xu, F.; Chen, F. Wildlife

Real-Time Detection in Complex

Forest Scenes Based on YOLOv5s

Deep Learning Network. Remote Sens.

2024, 16, 1350. https://doi.org/

10.3390/rs16081350

Academic Editor: Gong Cheng

Received: 3 February 2024

Revised: 12 March 2024

Accepted: 9 April 2024

Published: 11 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing

Article

Wildlife Real-Time Detection in Complex Forest Scenes Based
on YOLOv5s Deep Learning Network
Zhibin Ma 1, Yanqi Dong 1 , Yi Xia 1, Delong Xu 1, Fu Xu 1,2 and Feixiang Chen 1,2,*

1 School of Information Science and Technology, Beijing Forestry University, Beijing 100083, China;
mmazb@bjfu.edu.cn (Z.M.); yanqidong@bjfu.edu.cn (Y.D.); xiayi@bjfu.edu.cn (Y.X.);
xudelong@bjfu.edu.cn (D.X.); xufu@bjfu.edu.cn (F.X.)

2 Engineering Research Center for Forestry-Oriented Intelligent Information Processing,
National Forestry and Grassland Administration, Beijing 100083, China

* Correspondence: bjfxchen@bjfu.edu.cn

Abstract: With the progressively deteriorating global ecological environment and the gradual escala-
tion of human activities, the survival of wildlife has been severely impacted. Hence, a rapid, precise,
and reliable method for detecting wildlife holds immense significance in safeguarding their existence
and monitoring their status. However, due to the rare and concealed nature of wildlife activities, the
existing wildlife detection methods face limitations in efficiently extracting features during real-time
monitoring in complex forest environments. These models exhibit drawbacks such as slow speed
and low accuracy. Therefore, we propose a novel real-time monitoring model called WL-YOLO,
which is designed for lightweight wildlife detection in complex forest environments. This model is
built upon the deep learning model YOLOv5s. In WL-YOLO, we introduce a novel and lightweight
feature extraction module. This module is comprised of a deeply separable convolutional neural
network integrated with compression and excitation modules in the backbone network. This design
is aimed at reducing the number of model parameters and computational requirements, while si-
multaneously enhancing the feature representation of the network. Additionally, we introduced a
CBAM attention mechanism to enhance the extraction of local key features, resulting in improved
performance of WL-YOLO in the natural environment where wildlife has high concealment and
complexity. This model achieved a mean accuracy (mAP) value of 97.25%, an F1-score value of 95.65%,
and an accuracy value of 95.14%. These results demonstrated that this model outperforms the current
mainstream deep learning models. Additionally, compared to the YOLOv5m base model, WL-YOLO
reduces the number of parameters by 44.73% and shortens the detection time by 58%. This study
offers technical support for detecting and protecting wildlife in intricate environments by introducing
a highly efficient and advanced wildlife detection model.

Keywords: real-time detection; forest wildlife; object detection algorithm

1. Introduction

Wildlife is an essential component of natural ecosystems, playing a crucial role in
regulating and balancing these ecosystems. Furthermore, it actively participates in the
Earth’s carbon cycle, contributing to the stability of ecosystems, species diversity, and the
overall health of the carbon cycle [1]. Unfortunately, due to the exponential growth in the
human population and the excessive pursuit of economic development, natural resources
have been excessively exploited. Additionally, human social activities have expanded
into the natural environment, leading to rapid and significant changes in the Earth’s
ecosystem [2]. Consequently, the diversity of wildlife is declining at an unprecedented rate,
with some species facing extinction [3]. Therefore, it is imperative to enhance the protection
and management of wildlife.

Detecting and identifying wildlife is a crucial aspect of wildlife protection and man-
agement. It not only improves our understanding of the current status of wildlife species

Remote Sens. 2024, 16, 1350. https://doi.org/10.3390/rs16081350 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs16081350
https://doi.org/10.3390/rs16081350
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-3129-0819
https://orcid.org/0000-0003-1000-8455
https://doi.org/10.3390/rs16081350
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs16081350?type=check_update&version=1

Remote Sens. 2024, 16, 1350 2 of 28

and populations but also provides valuable information about changes in the natural
ecological environment, as evident through the survival of wildlife observed during the
detection process [4].

Traditional wildlife detection and identification methods rely on wildlife conservation
rangers collaborating with taxonomic experts [5]. These methods, including direct observa-
tion and capture–recapture, are currently widely used. However, they have drawbacks such
as being time-consuming, costly, and requiring specialized taxonomic experts to ensure
reliable identification results. Additionally, conducting traditional wildlife surveys faces
obstacles like the remoteness of some wildlife habitats and the presence of aggressive and
potentially dangerous animals that make close observation difficult [6]. Comparatively,
wildlife identification using GPS collars and environmental DNA sampling is less expensive
and poses less risk than manual census methods [7]. However, these approaches have
limitations. They cover smaller areas and allow for the surveying of fewer wildlife species.
Moreover, the use of GPS collars can cause harm to the animals themselves.

Advances in machine vision and monitoring equipment have shed new light on
wildlife identification and detection [8]. Monitoring equipment, including visible and
infrared cameras, can collect vast amounts of wildlife image data without requiring a
human presence [9]. Deep learning techniques, as the primary method used in target
recognition, which is the most researched field in machine vision, can be utilized to extract
the features of target wildlife using a large amount of image data, thereby recognizing the
species of wildlife [10]. With the continuous improvement of large-scale image datasets
and device arithmetic power, the superiority of deep learning has been recognized [11].
Deep convolutional neural networks have been more and more widely used in wildlife
detection and identification by virtue of its excellent feature extraction ability [12], which
can be broadly classified into two kinds. The first is a two-stage deep learning model based
on region suggestions, including Fast-RCNN, Mask-RCNN and Faster-RCNN, etc. The
second is a single-stage deep learning model, with the most representative being the You
Only Look Once (YOLO) deep learning model [13]. Each of these two models has its own
strengths and excels in different tasks.

Fast R-CNN is a new rapid target detection model proposed by Ross Girshcik et al.
from Microsoft Research [14]. This model generates a region of interest for potential
targets by processing images through convolution and maximum pooling layers to propose
features. It then compares the extracted feature vectors and ultimately identifies the most
probable target region. This method represents a significant advancement in terms of speed
and accuracy when compared to models like VGG16 and SPPNet. To enhance the accuracy
of Fast R-CNN, Shaoqing Ren and colleagues proposed integrating a fully convolutional
network called the Region Proposal Network into Fast R-CNN [15]. This addition aims
to produce high-quality regions of interest through end-to-end training while sharing
convolutional features with the baseline network to decrease the network’s computational
cost. In experiments, Faster R-CNN demonstrated a considerable enhancement in detection
frame rate and accuracy compared to the backbone network, making it more suitable for
target detection tasks.

Alekss Vecvanags et al. utilized RetinaNet and Faster R-CNN models as the backbone
network in monitoring wildlife activity in hoofed species [16]. The models were compared
with the YOLO model, and experiments showed that Faster R-CNN has a faster detection
speed compared to RetinaNet. However, as a two-stage model, the average detection speed
is still not as efficient as the single-stage YOLO model. Despite this, the YOLO model does
not perform as well as Faster R-CNN in small target detection. Each model has its own set
of advantages.

Mohamad Ziad Altobel and colleagues successfully remotely monitored wild tigers
using the Faster R-CNN model applied to the ATRW dataset for tiger detection [17]. After
comparing the results with the MobileNet and YOLOv3 models, it was found that the Faster
R-CNN model had a significant advantage in terms of accuracy. Jinbang Peng et al. utilized
Faster R-CNN for detecting wildlife targets in UAV images. The purpose was to address

Remote Sens. 2024, 16, 1350 3 of 28

the challenge posed by the smaller and more scattered distribution of wildlife targets in
such images [18]. The experimental findings indicated that Faster R-CNN outperformed
other methods in terms of suppressing image background and detecting targets quickly. It
is evident that Fast R-CNN and Faster R-CNN outperform backbone networks like VGG
in target detection, being both quicker and more precise. However, thorough research
and experiments have revealed that there still exists a noticeable gap in detection speed
between Fast R-CNN and the YOLO model. Despite its complex background suppression
capabilities and unmatched detection accuracy, Fast R-CNN falls short in terms of detection
speed when compared to the YOLO model.

Mask R-CNN is an advanced model that builds upon the strengths of Faster R-CNN,
as proposed by Kaiming He et al. It is a highly adaptable framework for target instance
segmentation, effectively detecting targets within images [19]. In comparison to Faster
R-CNN, the increase in computational cost with Mask R-CNN is minimal. However, it
achieves greater accuracy in the task of instance segmentation, resulting in more precise
target detection. Jiaxi Tang et al. proposed a two-stage model based on the Mask R-CNN
model for detecting wildlife targets captured by trap cameras [20]. In the first stage, few-
shot object detection is used to identify the species and initially describe the target contour.
In the second stage, the feature extraction module of Mask R-CNN is utilized to carry out
contour approximation. An experiment proved that the method achieves good results in
fast contour outlining of wildlife, and it performs better in terms of FPS and mAP50 metrics
compared to the Mask R-CNN and PANet models.

Yasmin M. Kassim et al. have proposed a fast detection algorithm for small targets
in infrared video based on migration learning to solve the problem of small targets being
difficult to recognize in natural M.G. thermal imaging [21]. The algorithm utilizes Mask
R-CNN and DAF processes, and the experimental results show that the method achieves
better accuracy in target detection at higher frame rates.

Timm Haucke and others proposed the D-MASK-R-CNN model for recognizing wild
animal images with added depth information, achieving instance segmentation of wild
animal targets [22]. It is evident that Mask R-CNN outperforms Fast R-CNN in terms
of target detection accuracy and target contour approximation. However, they perform
similarly in terms of detection speed. In the context of wildlife target detection in complex
field environments, high detection accuracy is crucial, but equally important is the need for
fast detection speeds.

The YOLO algorithm, proposed in 2016 by Joseph Redmon et al., is a one-stage target
detection algorithm [23]. This algorithm converts the problem of target localization into a
regression problem. Moreover, the algorithm offers the advantages of speed and flexibility,
creating conditions for enhanced image processing [24]. After undergoing several iterations,
the YOLO model has been further improved. YOLOv5, being the fifth version of the YOLO
series and also the model with the most recent updates, is an efficient and accurate target
monitoring algorithm. Its performance in terms of speed, capacity, and accuracy has
witnessed significant improvements. The YOLOv5 model group consists of five sub-
models. Among these, the YOLOv5s model stands out for having the shallowest network
depth and width, the fewest parameters, and a faster inference speed compared to other
models, except for the edge device-specific variants [25]. The other models expand upon
and enhance the YOLOv5s model by increasing the network depth and width, resulting
in improved accuracy. However, this increased complexity also leads to higher hardware
requirements for computing devices [26]. Compared to two-stage deep learning models
like Fast R-CNN, the YOLO series of models do not require target extraction based on
candidate frames for recognition results. Instead, detection results are obtained directly
through image computation. The emergence of the YOLO model and its variants has
significantly improved the speed of detection and has also shown high accuracy [27].

William Andrew et al. proposed an offline automatic detection model based on the
YOLOv2 model in order to realize an unmanned aircraft platform capable of wildlife
recognition and reasoning, and demonstrated that the YOLO model has some potential

Remote Sens. 2024, 16, 1350 4 of 28

for application in wildlife detection through a small-scale experiment in a farm environ-
ment [28]. Runchen Wei et al. used the YOLOv3 deep learning model as the base model
for Northeast tiger recognition and adopted channel pruning and knowledge distillation
to lighten the model. The experimental results showed that although the model accuracy
decreased, the model size and computation amount were greatly reduced, and the compre-
hensive performance was better than the previous target detection model [29]. Arunabha
M. Roy et al. designed a deep learning model for endangered wildlife identification based
on the YOLOv4 model and introduced a residual module in the backbone network for
enhancing the feature extraction capability, which outperformed the mainstream deep
learning models at a certain detection rate [30]. The YOLOv5 target detection algorithm
is known for its fast detection speed and light weight, making it ideal for improving the
efficiency of image data processing. However, using the YOLOv5 network directly to detect
targets in complex environments can lead to high leakage and false detection rates.

To address this issue, Mingyu Zhang et al. proposed an enhanced animal detection
model based on the YOLOv5s model by introducing the GSConv module, which combines
deep convolution, standard convolution, and hybrid channels, thus realizing the improve-
ment of classification detection accuracy in the presence of improved model detection
speed [31]. Similarly, Ding Ma et al. developed the YOLO-Animal model by incorporating
the YOLOv5s model and integrating the weighted bi-directional feature pyramid network
and attention module. This fusion with the YOLOv5s network significantly enhanced the
detection accuracy for small and fuzzy targets of wild animals [32]. YOLOv5s has achieved
improved results in various tasks due to its light weight.

Kaixuan Liu et al. developed an algorithm specifically for quickly identifying the rice
fertility period. Building upon the lightweight nature of YOLOv5s [33], the backbone net-
work was replaced with MobileNetV3 to enhance the model’s detection speed. Additionally,
the feature extraction network was replaced with GSConv to reduce the computational costs,
and a lightweight Neck network was constructed to decrease the complexity of the model
while preserving accuracy. Xinfa Wang et al. also utilized the YOLOv5 model to enhance it
for detecting small targets in tomatoes in agriculture [34]. MobileNetV3 was introduced
instead of the backbone network to improve efficiency. A small target detection layer was
added during small target detection to enhance accuracy, resulting in significant improve-
ments in both accuracy and detection speed based on experimental results. These advanced
studies highlight that YOLOv5s, as an outstanding lightweight model structure, can effec-
tively accommodate rapid target detection tasks. There is potential for further improvement
in terms of lightweight design, and by refining the feature extraction method, detection
accuracy can be enhanced while maintaining detection speed. This makes YOLOv5s more
suitable for detecting wildlife targets in complex forest environments.

In addition to the more popular single-stage and two-stage models such as YOLO
and Fast R-CNN, there are also other models that have shown excellent performance in
wildlife target detection tasks. For example, Lei Liu et al. addressed the issue of accurately
recognizing wildlife targets by proposing the Temporal-SE-ResNet50 network [35]. This
network not only utilizes ResNet50 to extract image features but also incorporates a residual
multilayer perceptron to capture temporal features. By fusing these features, the model’s
accuracy in recognizing animal categories is significantly improved, as demonstrated
by experiments showing a notable enhancement in accuracy compared to models like
ResNet50 and VGG16. While this approach has achieved impressive results, it is more
suitable for recognizing data collected by trap cameras, due to its large model scale and
challenges in meeting real-time detection demands after two-stage coding.

In summary, the YOLO series model has more evident advantages in detection speed
and model scale compared with a series of two-stage models like Fast R-CNN due to its
concise structure. However, there are still deficiencies in detection accuracy. It can be
observed that by integrating the feature extraction mechanisms of models with higher
detection accuracy, such as the attention mechanism, with the YOLO backbone network,
there is potential to enhance detection accuracy while maintaining fast detection speeds.

Remote Sens. 2024, 16, 1350 5 of 28

Unlike conventional target recognition, wildlife recognition in complex forest environ-
ments is a challenge. This is due to several factors, such as dense tree growth, unpredictable
weather conditions, moving shadows, and distractions like rain and fog [36]. Additionally,
the natural camouflage of wild animals further complicates their identification in these
environments (Figure 1) [37]. As depicted in Figure 1, the targets within the green boxes
are the wildlife targets that must be identified. Each row in Figure 1 represents a differ-
ent situation in which a target is affected, including factors such as light, weather, and
more. Therefore, the primary challenge lies in developing models that can efficiently and
accurately detect and recognize animals against complex backgrounds.

Remote Sens. 2024, 16, x FOR PEER REVIEW 5 of 28

observed that by integrating the feature extraction mechanisms of models with higher de-
tection accuracy, such as the attention mechanism, with the YOLO backbone network,
there is potential to enhance detection accuracy while maintaining fast detection speeds.

Unlike conventional target recognition, wildlife recognition in complex forest envi-
ronments is a challenge. This is due to several factors, such as dense tree growth, unpre-
dictable weather conditions, moving shadows, and distractions like rain and fog [36]. Ad-
ditionally, the natural camouflage of wild animals further complicates their identification
in these environments (Figure 1) [37]. As depicted in Figure 1, the targets within the green
boxes are the wildlife targets that must be identified. Each row in Figure 1 represents a
different situation in which a target is affected, including factors such as light, weather,
and more. Therefore, the primary challenge lies in developing models that can efficiently
and accurately detect and recognize animals against complex backgrounds.

Figure 1. Schematic diagram of target detection in complex environments affected by environmental
conditions, where each row represents a different scenario of changing environmental dynamics,
natural concealment, light changes, and tree occlusion. Where the green box inside each picture
represents the wildlife target to be identified in the picture.

To address the aforementioned challenges, this study utilized public parks and eco-
logical reserves in China as the study area. We focused on gathering data on approxi-
mately 14 species of wildlife as our research objectives. In order to achieve real-time and
accurate detection of wildlife in intricate forest environments, we introduced the WL-
YOLO model, an enhanced version of the YOLOv5s detection model. By deploying the
model on both the server-side and mobile-side, real-time monitoring can be achieved
through surveillance cameras in national parks and by field workers using mobile devices,
respectively. The main contributions of this article are as follows:
(1) In the WL-YOLO model, we have integrated the MobileNetV3 module to reduce the

model parameters and improve the real-time detection speed, achieving a 44.73% re-
duction in the number of parameters compared to the YOLOv5m model.

(2) Additionally, we have introduced the CBAM attention mechanism, which combines
spatial and channel aspects with the feature extraction module to participate in end-

Figure 1. Schematic diagram of target detection in complex environments affected by environmental
conditions, where each row represents a different scenario of changing environmental dynamics,
natural concealment, light changes, and tree occlusion. Where the green box inside each picture
represents the wildlife target to be identified in the picture.

To address the aforementioned challenges, this study utilized public parks and ecolog-
ical reserves in China as the study area. We focused on gathering data on approximately
14 species of wildlife as our research objectives. In order to achieve real-time and accurate
detection of wildlife in intricate forest environments, we introduced the WL-YOLO model,
an enhanced version of the YOLOv5s detection model. By deploying the model on both
the server-side and mobile-side, real-time monitoring can be achieved through surveil-
lance cameras in national parks and by field workers using mobile devices, respectively.
The main contributions of this article are as follows:

(1) In the WL-YOLO model, we have integrated the MobileNetV3 module to reduce the
model parameters and improve the real-time detection speed, achieving a 44.73%
reduction in the number of parameters compared to the YOLOv5m model.

(2) Additionally, we have introduced the CBAM attention mechanism, which combines
spatial and channel aspects with the feature extraction module to participate in end-to-
end training. This attention mechanism has a better target focusing effect compared
to mechanisms that solely focus on the channel.

Remote Sens. 2024, 16, 1350 6 of 28

(3) We have enhanced the scale of the model’s anchor frame, which is used for detect-
ing targets. This improvement enables the model to better concentrate its atten-
tion on elusive wildlife targets. Compared to the unimproved YOLOv5 model, this
model has a superior ability to focus on small targets and detect hidden targets in
complex environments.

In comparison to two-stage models like Fast R-CNN, the WL-YOLO model boasts a
smaller number of parameters, faster detection speed, and, simultaneously, better accuracy.

This article is organized as follows: Section 2 presents the wildlife dataset we collected
and used, as well as the designed wildlife detection and identification model. In Section 3,
the experimental results of the model are evaluated and analyzed. Section 4 provides a
summary and generalization of the wildlife detection and identification model for complex
forest environments, presented in conjunction with the experimental results. This section
also highlights the advantages and limitations of the model.

2. Materials and Methods
2.1. Study Area and Sample Plots

The wildlife image data collected and used in this paper are all from national parks
as well as ecological reserve areas within China, including the Giant Panda National
Park, Northeast Tiger and Leopard National Park, Three-River-Source National Park,
Xishuangbanna National Nature Reserve of Yunnan, Gongga Mountain National Nature
Reserve and other areas. The main focus of this paper is the study area, which primarily
encompasses the Giant Panda National Park and the Northeast Tiger and Leopard National
Park. This region boasts a diverse range of wildlife and a complex ecological environment,
covering an expansive area of 170,840 square kilometers. Notable examples of the key
national wildlife found here include the Amur tiger, the Amur leopard, the giant panda,
the golden monkey, and the red panda. The specific location of the study area is depicted
in Figure 2.

To maximize the collection of wildlife image data, we employed infrared and visible
infrared trap cameras. These cameras enabled us to capture an extensive array of images,
featuring diverse wildlife species set against complex backgrounds. The infrared cam-
eras and visible light cameras we used to collect data were primarily distributed in the
Giant Panda National Park and Northeast Tiger and Leopard National Park. We used
trap cameras to minimize the impact on wildlife and prevent damage to the equipment
by animals. Our staff regularly collected the memory cards from the equipment and
transmitted the data. In areas with good communication, we deployed infrared cameras
with 4G communication capability for real-time data transmission and identification.

The dataset used for the experiments consisted of 14 main categories: badger, black
bear, red panda, otter, red fox, marten, leopard, Amur tiger, leopard cat, Sika deer, weasel,
wild boar, and wolf. Figure 3 displays representative images from the training dataset
used in this paper. The dataset comprises a total of 14,000 image data, with 1000 images
per category. Each category includes 500 visible image data and 500 infrared image data.
Additionally, a small amount of video data has been included to test the model. This
means that the video data is converted frame-by-frame into image data to be input into
the model in order to test its target detection effect at higher frame rates. To ensure the
dataset’s versatility and diversity, we included images that exhibit various characteristics
such as limited or full light, high or low visibility, high levels of occlusion, and complex
backgrounds, among others. Furthermore, the dataset encompasses variations in terms
of image resolution, orientation, and grayscale. The subsequent section provides a more
detailed description of these specific aspects of variation.

Remote Sens. 2024, 16, 1350 7 of 28Remote Sens. 2024, 16, x FOR PEER REVIEW 7 of 28

Figure 2. The two main study areas of this research are presented separately: the Northeast Tiger
and Leopard National Park, and the Giant Panda National Park. The main wildlife species in each
study area are indicated in the upper right corner of the respective pictures. The blue and green dots
in the first and second images represent the exact location of the two study areas, which have been
labelled with “Study Area”.

Figure 2. The two main study areas of this research are presented separately: the Northeast Tiger and
Leopard National Park, and the Giant Panda National Park. The main wildlife species in each study
area are indicated in the upper right corner of the respective pictures. The blue and green dots in the
first and second images represent the exact location of the two study areas, which have been labelled
with “Study Area”.

Remote Sens. 2024, 16, 1350 8 of 28Remote Sens. 2024, 16, x FOR PEER REVIEW 8 of 28

Figure 3. Some of the images in the dataset are presented as samples. The dataset includes a vast
amount of visible image data as well as infrared image data.

2.2. General Methodology
Our proposed method includes the following main steps: first, the collected wildlife

image data is preprocessed. This involves filtering out irrelevant data, converting the data
to a uniform format, and performing other necessary operations. This is performed to create
a strong foundation for accurately annotating the images. As the number of images captured
for each animal species may vary, the dataset was augmented using various methods.

The goal was to ensure that there are at least 1000 images available for each species of
animal and achieve a balanced amount of image data for all animals. Furthermore, we aimed
to improve the quality of the image data by implementing deep learning algorithms specif-
ically designed for low-quality images. To accomplish this, we utilized the YOLOv5s model
as the foundation, retaining the Darknet53 feature extraction structure. Additionally, we re-
designed both the detection head and the feature extraction module of the model’s backbone
network, resulting in the creation of the WL-YOLO wildlife detection model. To train, vali-
date, and compare the performance of the WL-YOLO and other models such as YOLOv5s,
YOLOv5m, and Fast-RCNN, we fed the training dataset, test dataset, and validation dataset
into each model. The overall technical route is illustrated in Figure 4.

Figure 3. Some of the images in the dataset are presented as samples. The dataset includes a vast
amount of visible image data as well as infrared image data.

2.2. General Methodology

Our proposed method includes the following main steps: first, the collected wildlife
image data is preprocessed. This involves filtering out irrelevant data, converting the
data to a uniform format, and performing other necessary operations. This is performed
to create a strong foundation for accurately annotating the images. As the number of
images captured for each animal species may vary, the dataset was augmented using
various methods.

The goal was to ensure that there are at least 1000 images available for each species
of animal and achieve a balanced amount of image data for all animals. Furthermore, we
aimed to improve the quality of the image data by implementing deep learning algorithms
specifically designed for low-quality images. To accomplish this, we utilized the YOLOv5s
model as the foundation, retaining the Darknet53 feature extraction structure. Additionally,
we redesigned both the detection head and the feature extraction module of the model’s
backbone network, resulting in the creation of the WL-YOLO wildlife detection model.
To train, validate, and compare the performance of the WL-YOLO and other models such
as YOLOv5s, YOLOv5m, and Fast-RCNN, we fed the training dataset, test dataset, and
validation dataset into each model. The overall technical route is illustrated in Figure 4.

2.3. Dataset Construction

The process of constructing a wildlife dataset mainly involves acquiring data, prepro-
cessing it, augmenting it, enhancing data quality, converting data formats, and labeling
data. Due to the natural conditions of the complex forest environment and the limitations of
the data acquisition equipment, the collected wildlife data often include a large number of
aerial data and fuzzy images. These factors adversely affect the effectiveness of the model.
Therefore, the first step in constructing the dataset is to clean the dataset by removing
extraneous data and filtering out images that do not have the desired characteristics.

Remote Sens. 2024, 16, 1350 9 of 28Remote Sens. 2024, 16, x FOR PEER REVIEW 9 of 28

Figure 4. The overall research methodology is illustrated in Figure. It primarily comprises dataset
construction, model design, model training, and validation. The model design phase consists of
model structure design, model lightweighting, and the incorporation of an attention mechanism.
All relevant models were trained and compared during the training and validation process.

2.3. Dataset Construction
The process of constructing a wildlife dataset mainly involves acquiring data, prepro-

cessing it, augmenting it, enhancing data quality, converting data formats, and labeling
data. Due to the natural conditions of the complex forest environment and the limitations of
the data acquisition equipment, the collected wildlife data often include a large number of
aerial data and fuzzy images. These factors adversely affect the effectiveness of the model.
Therefore, the first step in constructing the dataset is to clean the dataset by removing extra-
neous data and filtering out images that do not have the desired characteristics.

Limited by the points of wildlife infestation, the frequency of infestation may differ.
Consequently, the number of wildlife images captured by our surveillance equipment for
each category may also differ. However, the balance of data for each category directly
influences the effectiveness of the model. To address this, we have ensured that the
amount of wildlife images for all categories in the model is approximately 1000 pieces of
data. Various methods, including image rotation, panning, cropping, changes in lighting
and darkness, and changes to gray scale, have been employed to generate multiple repre-
sentations of the same image and augment the dataset.

Different kinds of wildlife image data were collected using various acquisition equip-
ment. As a result, the sizes of wildlife image data in the dataset are not uniform. The da-
taset contains images of different resolutions, such as 1920 × 1080, 647 × 657, 474 × 392, and
others. However, our model requires a fixed input size. If the image is too large or too
small, it will impact the model’s ability to read the image features and affect the overall
performance of the model.

Figure 4. The overall research methodology is illustrated in Figure. It primarily comprises dataset
construction, model design, model training, and validation. The model design phase consists of
model structure design, model lightweighting, and the incorporation of an attention mechanism.
All relevant models were trained and compared during the training and validation process.

Limited by the points of wildlife infestation, the frequency of infestation may differ.
Consequently, the number of wildlife images captured by our surveillance equipment for
each category may also differ. However, the balance of data for each category directly influ-
ences the effectiveness of the model. To address this, we have ensured that the amount of
wildlife images for all categories in the model is approximately 1000 pieces of data. Various
methods, including image rotation, panning, cropping, changes in lighting and darkness,
and changes to gray scale, have been employed to generate multiple representations of the
same image and augment the dataset.

Different kinds of wildlife image data were collected using various acquisition equip-
ment. As a result, the sizes of wildlife image data in the dataset are not uniform. The dataset
contains images of different resolutions, such as 1920 × 1080, 647 × 657, 474 × 392, and
others. However, our model requires a fixed input size. If the image is too large or too
small, it will impact the model’s ability to read the image features and affect the overall
performance of the model.

To address this issue, we decided to compress all of the original images to a stan-
dardized size of 224 × 224 pixels before performing image quality enhancement. In this
process, we first rescaled the shorter side of each image to ensure it matches a fixed length.
Then, we utilized the center cropping technique to crop the images to the same length. This
approach helps to maintain the efficiency and accuracy of our work. Furthermore, in order
to ensure uniformity across the dataset, we adjusted the width and height of all image data
to a consistent size.

Due to the sparse survival of certain animal species, it becomes challenging to collect
a large amount of image data. However, deep learning algorithms require a sufficient

Remote Sens. 2024, 16, 1350 10 of 28

number of samples. Using augmented image methods excessively for quantity expansion
can result in the repetition of image features, which leads to overfitting models [38].

Therefore, for this specific part of the image data, we have designed an image quality
enhancement method based on deep learning techniques in order to enhance the fuzzy
images. We utilized the torch vision library provided by the PyTorch deep learning frame-
work for image quality enhancement. This method generates similar but not identical
training samples by enhancing the image quality [39]. This helps in expanding the size of
the training set. Additionally, it reduces the model’s reliance on specific attributes, thus
improving the model’s ability to generalize. A comparison of the number of images for
each type of animal before and after data expansion and enhancement is shown in Figure 5.
It can be observed that the amount of image data for each type of wildlife is well-balanced
after the implementation of data expansion and enhancement techniques, thereby meeting
the dataset quality standards required for model training and validation. To introduce a
certain level of error in the image data and also ensure its experimental value, as well as to
prevent overfitting to some extent, we applied a suitable amount of Gaussian noise to the
obtained image data.

Remote Sens. 2024, 16, x FOR PEER REVIEW 10 of 28

To address this issue, we decided to compress all of the original images to a stand-
ardized size of 224 × 224 pixels before performing image quality enhancement. In this
process, we first rescaled the shorter side of each image to ensure it matches a fixed length.
Then, we utilized the center cropping technique to crop the images to the same length.
This approach helps to maintain the efficiency and accuracy of our work. Furthermore, in
order to ensure uniformity across the dataset, we adjusted the width and height of all
image data to a consistent size.

Due to the sparse survival of certain animal species, it becomes challenging to collect
a large amount of image data. However, deep learning algorithms require a sufficient
number of samples. Using augmented image methods excessively for quantity expansion
can result in the repetition of image features, which leads to overfitting models [38].

Therefore, for this specific part of the image data, we have designed an image quality
enhancement method based on deep learning techniques in order to enhance the fuzzy
images. We utilized the torch vision library provided by the PyTorch deep learning frame-
work for image quality enhancement. This method generates similar but not identical
training samples by enhancing the image quality [39]. This helps in expanding the size of
the training set. Additionally, it reduces the model’s reliance on specific attributes, thus
improving the model’s ability to generalize. A comparison of the number of images for
each type of animal before and after data expansion and enhancement is shown in Figure
5. It can be observed that the amount of image data for each type of wildlife is well-bal-
anced after the implementation of data expansion and enhancement techniques, thereby
meeting the dataset quality standards required for model training and validation. To in-
troduce a certain level of error in the image data and also ensure its experimental value,
as well as to prevent overfitting to some extent, we applied a suitable amount of Gaussian
noise to the obtained image data.

Figure 5. The figure illustrates a comparison of the number of animal images before and after data
augmentation. The blue bars represent the number of image data for each animal in the original
dataset, while the yellow bars represent the number of image data for each animal in the augmented
dataset. Upon comparing the dataset before and after augmentation, it is evident that the number
of images for each category in the enlarged dataset is more evenly distributed, with approximately
1000 images for each category.

By performing a series of operations, such as data cleaning, data expansion, and data
enhancement, on the dataset, we obtained the dataset that was used for model training.
Next, we needed to label the dataset. For the annotation process, we utilized the LabelImg
(v1.8.2) software to annotate the images with the wildlife category name and the relative

Figure 5. The figure illustrates a comparison of the number of animal images before and after data
augmentation. The blue bars represent the number of image data for each animal in the original
dataset, while the yellow bars represent the number of image data for each animal in the augmented
dataset. Upon comparing the dataset before and after augmentation, it is evident that the number
of images for each category in the enlarged dataset is more evenly distributed, with approximately
1000 images for each category.

By performing a series of operations, such as data cleaning, data expansion, and data
enhancement, on the dataset, we obtained the dataset that was used for model training.
Next, we needed to label the dataset. For the annotation process, we utilized the LabelImg
(v1.8.2) software to annotate the images with the wildlife category name and the relative
position of the wildlife target in each image. Traditional manual annotation methods
require significant human and material resources, which is why we adopted active learning
methods to accurately annotate 30% of the dataset manually. Additionally, we employed
the “Human-in-the-loop” interactive framework to automatically annotate the remaining
data [40], effectively reducing the amount of manual data annotation required.

After labeling all of the image data, we divided the dataset into a training set and a
test set with a 7:3 ratio. Additionally, we included a portion of video data that were not
part of the dataset as the model validation data. This allowed us to effectively compare the
performance of different models.

Remote Sens. 2024, 16, 1350 11 of 28

2.4. WL-YOLO

To address the practical challenges associated with detecting wildlife targets in com-
plex field environments, this study suggests leveraging YOLOv5s for rapid target detection.
The focus is on improving accuracy and reducing the likelihood of omission and misdetec-
tion of wildlife targets in challenging environments, ultimately introducing a new method
and structure for enhanced detection capabilities. In this work, we have designed the
WL-YOLO model for detecting and recognizing wildlife in complex forest environments.
The WL-YOLO model has been developed using the YOLOv5s model as a foundation but
with specific modifications to suit our needs.

The architecture of the YOLOv5s model is depicted in Figure 6. The YOLOv5s model
network structure mainly consists of input, neck, backbone, and head modules [41]. The In-
put module primarily utilizes the mosaic method to enhance the input data. The mosaic
method generates new images by randomly cropping, combining, splicing, and scaling the
existing images. This data enhancement technique improves the model’s generalization
ability and overall performance [32]. The backbone is the core structure of the YOLOv5
model. It consists of Focus, Conv, C3, and SPP, and is responsible for extracting features
from multi-scale images. Compared to other models, the C3 module effectively reduces the
repetition of gradient information during network information transmission [42]. By ad-
justing the number and depth of C3 modules, the total number of parameters in the model
can be controlled.

Remote Sens. 2024, 16, x FOR PEER REVIEW 12 of 28

stage model with higher detection accuracy. To address these limitations, we propose the
WL-YOLO model, which enhances the model in three key areas: backbone, neck, and
head:
(1) To minimize redundancy in model parameters and enhance computational speed,

we have opted to utilize the lightweight network MobileNetV3 for the backbone
structure instead of the base network’s combination of Conv and C3 modules.

(2) In order to enhance the model’s ability to focus on small targets in complex environ-
ments and effectively ignore complex backgrounds, we have designed a novel C-C3
module. This module integrates an attention mechanism into the neck component of
the model, replacing the original C3 module.
Based on our enhanced model, we offer a real-time detection algorithm that is specif-

ically designed for wildlife in intricate forest environments. This algorithm aims to greatly
enhance detection accuracy while also ensuring efficiency in detection.

Figure 6. The YOLOv5 model structure diagram mainly consists of three components: the backbone,
neck, and head. These components contain modules such as CBS, CSP, and SPPF. The backbone serves
as the backbone network for feature extraction. The neck is situated between the backbone and the
head, and is used to further utilize the features extracted by the backbone in order to improve the
model’s robustness. The head is responsible for making predictions based on the output of the net-
work. Where different colored squares represent different types of network modules, light yellow for
CBS module, light green for CSP module, orange-red for SPPF module, blue for CBAM module, or-
ange for Concat module, purple for Upsample module and grey for Input and Detection module.

In the backbone structure design of WL-YOLO, we introduced a lightweight network
called MobileNetV3 to address the issues of excessive model parameters in YOLOv5s, which
leads to slow recognition, high complexity, and poor real-time performance. The MobileNet
family of networks is a convolutional network proposed by the Google team for mobile de-
vices [45]. It is designed to address the limitations of both memory and arithmetic power.
MobileNet suggests the utilization of deeply separable convolutional layers instead of tra-
ditional convolutional layers. This approach helps in reducing computational requirements
and the model size. MobileNetV3 combines the deeply separable convolution from Mo-
bileNetV1 with the inverted residual structure featuring linear bottlenecks from Mo-
bileNetV2 [46]. It also incorporates a network search algorithm with a superimposed SE
Attention Mechanism module and a hard-Swish activation function. This combination aims
to decrease computational complexity while maintaining model accuracy intact.

We employed the deeply separable convolutional network in the MobileNetV3
model to minimize redundancy in the feature maps generated by the backbone structure

Figure 6. The YOLOv5 model structure diagram mainly consists of three components: the backbone,
neck, and head. These components contain modules such as CBS, CSP, and SPPF. The backbone
serves as the backbone network for feature extraction. The neck is situated between the backbone
and the head, and is used to further utilize the features extracted by the backbone in order to improve
the model’s robustness. The head is responsible for making predictions based on the output of the
network. Where different colored squares represent different types of network modules, light yellow
for CBS module, light green for CSP module, orange-red for SPPF module, blue for CBAM module,
orange for Concat module, purple for Upsample module and grey for Input and Detection module.

The neck network is primarily structured by SPPF and PANet. It consists of a series
of feature layers that fuse image features. By combining feature maps of various sizes
generated by the backbone network, the neck network obtains more contextual information.
This process increases the sensory field of the model and reduces information loss.

The head serves as the terminal of the model and is responsible for detecting images
with different scales. It corresponds to the three different sizes of feature maps in the
neck network.

Remote Sens. 2024, 16, 1350 12 of 28

The difference between YOLOv5s and several other derived models lies in the fact
that depth_multiple and width_multiple are unique to YOLOv5s and do not include
repetitive modules [43]. These exclusive features contribute to its faster computation and
more efficient models. Additionally, the YOLOv5s model incorporates the innovative SPP
(Spatial Pyramid) Pooling module into its backbone [44]. This module effectively combines
feature maps of various sizes to create a comprehensive global feature description. As a
result, the model becomes highly resilient to challenges such as small objects, occlusion,
and changes in illumination. These characteristics make YOLOv5s an ideal choice for
wildlife identification tasks, particularly in intricate forest environments. In summary, the
YOLOv5s model is highly suitable for rapidly monitoring and identifying wildlife targets
in complex forest environments.

As the number of parameters in YOLOv5’s model decreases, the low-level features are
less mapped and the receptive field is smaller. This leads to a reduction in its deep feature
extraction ability. Additionally, due to the complexity of the wildlife target environment,
the model struggles to suppress invalid information such as background effectively. As a
result, YOLOv5s model faces challenges in achieving better results in recognition accuracy.
Moreover, YOLOv5s is not a top performer in terms of accuracy among the YOLOv5 series
models. The gap becomes even more evident when compared to the two-stage model with
higher detection accuracy. To address these limitations, we propose the WL-YOLO model,
which enhances the model in three key areas: backbone, neck, and head:

(1) To minimize redundancy in model parameters and enhance computational speed, we
have opted to utilize the lightweight network MobileNetV3 for the backbone structure
instead of the base network’s combination of Conv and C3 modules.

(2) In order to enhance the model’s ability to focus on small targets in complex environ-
ments and effectively ignore complex backgrounds, we have designed a novel C-C3
module. This module integrates an attention mechanism into the neck component of
the model, replacing the original C3 module.

Based on our enhanced model, we offer a real-time detection algorithm that is specifi-
cally designed for wildlife in intricate forest environments. This algorithm aims to greatly
enhance detection accuracy while also ensuring efficiency in detection.

In the backbone structure design of WL-YOLO, we introduced a lightweight network
called MobileNetV3 to address the issues of excessive model parameters in YOLOv5s,
which leads to slow recognition, high complexity, and poor real-time performance. The Mo-
bileNet family of networks is a convolutional network proposed by the Google team for
mobile devices [45]. It is designed to address the limitations of both memory and arith-
metic power. MobileNet suggests the utilization of deeply separable convolutional layers
instead of traditional convolutional layers. This approach helps in reducing computational
requirements and the model size. MobileNetV3 combines the deeply separable convolution
from MobileNetV1 with the inverted residual structure featuring linear bottlenecks from
MobileNetV2 [46]. It also incorporates a network search algorithm with a superimposed
SE Attention Mechanism module and a hard-Swish activation function. This combination
aims to decrease computational complexity while maintaining model accuracy intact.

We employed the deeply separable convolutional network in the MobileNetV3 model
to minimize redundancy in the feature maps generated by the backbone structure during
feature extraction. Similar to traditional convolution operations, the Depth Separable Con-
volution breaks down a complete convolution operation into two components: Depthwise
Convolution and Pointwise Convolution [47].

Each convolution kernel of Depthwise Convolution is responsible for one channel
of the input data, which undergoes the first convolution operation. Unlike conventional
convolution, Depthwise Convolution is performed entirely on the two-dimensional plane.
The number of convolution kernels is exactly the same as the number of channels in
the previous layer [48], resulting in N feature maps produced from an N-channel image.
However, this operation method does not effectively utilize the feature information from
different channels at the same spatial location due to the independent convolution operation

Remote Sens. 2024, 16, 1350 13 of 28

of each channel. Therefore, it is necessary to generate new feature maps by combining
the N feature maps using Pointwise Convolution. The operation process is illustrated in
Figure 7. Pointwise Convolution is mainly responsible for the weighted combination of
feature maps generated by Depthwise Convolution in the depth direction [49]. The size
of the convolution kernel is 1 × 1 × N, the number of convolution kernels determines the
number of output feature maps, and its computational process is shown in Figure 7. When
the size of the input feature map is Dk × Dk × M, the size of the convolution kernel is DF
× DF × M, and the number of convolution kernels is N. When a convolution operation
is performed for each point in the corresponding feature map spatial location, a single
convolution requires a total of Dk × Dk × DF × DF × M operations because the feature
map spatial dimension contains a total of Dk × Dk points, and the amount of computation
to perform a convolution operation on each point is the same as the size of the convolution
kernel, i.e., DF × DF × M. Therefore, the total amount of computation, C1, is shown in
Formula (1) for the ordinary convolution of N channels:

C1 = Dk × Dk × DF × DF × M × N (1)

Remote Sens. 2024, 16, x FOR PEER REVIEW 14 of 28

h െ sigmoid = ReLU6(x + 3)6 (7)

h െ swish(x) = x ⋅ h െ sigmoid = x ⋅ ReLU(x + 3)6 (8)

Figure 7. The schematic illustrates the workflow of the channel attention mechanism and the spatial
attention mechanism, with the upper half representing the channel attention mechanism and the
lower half representing the spatial attention mechanism.

The SE module within the module pools information from the channels, generates
weights for each feature channel, and then multiplies these weights with the input feature
mapping elements to obtain the final feature mapping [51].

In the backbone, we utilize one convolutional module and eleven MobileNetV3 mod-
ules, which significantly decrease the parameter count and computational complexity of the
backbone. However, because of the extensive usage of MobileNetV3, although the SE mod-
ule can help suppress irrelevant features to some extent, it remains ineffective. Therefore,
prior to feeding the feature map into the neck part, we have introduced CBAM (Convolution
Block Attention Module) to enhance the feature representation of the target amidst complex
environments. CBAM is an efficient and lightweight attention mechanism feed-forward
convolutional neural network that primarily consists of channel attention and spatial atten-
tion machines [52]. Firstly, the global average and global maximum in spatial dimension are
performed on the feature layer input from MobileNet. This process obtains a rough global
perceptual feature map by utilizing Global Average Pooling and Global Max Pooling [30].
Based on the results of these two Pooling operations, the correlation between multiple chan-
nels is constructed using a shared fully connected layer. Finally, the results processed by the
shared fully connected layer are fused and transmitted to the sigmoid activation function
module [53]. The overall structure of CBAM is shown in Figure 8.

When an intermediate feature mapping map F ϵ RC × H × W exists as an input, CBAM
derives a one-dimensional channel attention map Mc ϵ RC × 1 × 1 and a two-dimensional
spatial attention map Ms ϵ R1 × H × W according to the sequence, as shown in the two feature
maps in the above figure, and the whole process can be summarized as Formula (9): 𝐹ᇱ = 𝑀஼(𝐹)⨂𝐹 𝐹ᇱᇱ = 𝑀ௌ(𝐹ᇱ)⨂𝐹′ (9)

Figure 7. The schematic illustrates the workflow of the channel attention mechanism and the spatial
attention mechanism, with the upper half representing the channel attention mechanism and the
lower half representing the spatial attention mechanism.

And for deeply separable convolution, the total computation C2 is:

CD = Dk × Dk × DF × DF × M
CP = M × N × Dk × Dk

C2 = CD + CP = Dk × Dk × DF × DF ×+M × N × Dk × Dk

(2)

Compared to ordinary convolution, the ratio of depth-separable convolution to or-
dinary convolution is shown in Formula (3). This clearly demonstrates that the com-
putational efficiency of depth-separable convolution is significantly better than that of
ordinary convolution:

C2
C1

=
1
N

+
1

D2
F

(3)

However, the high efficiency of deep separable convolution comes at the expense of
low accuracy. To address this concern, the squeeze and extraction (SE) attention mechanism
module has been introduced into the MobilieNetV3 module. This module comprises a

Remote Sens. 2024, 16, 1350 14 of 28

pooling layer, two fully connected layers, and a hard sigmoid activation function [50].
The original model utilizes sigmoid and swish functions as activation functions:

σ(x) =
1

(1 + e−x)
(4)

swish(x) = x × σ(x) (5)

The sigmoid and swish activation functions have been replaced with the hard-sigmoid
and hard-swish activation functions, as shown in Formula (8). In comparison to h-swish,
h-sigmoid has a lower computational and derivation complexity:

ReLU6(x) = min(max(x, 0), 6) (6)

h − sigmoid =
ReLU6(x + 3)

6
(7)

h − swish(x) = x · h − sigmoid =
x · ReLU(x + 3)

6
(8)

The SE module within the module pools information from the channels, generates
weights for each feature channel, and then multiplies these weights with the input feature
mapping elements to obtain the final feature mapping [51].

In the backbone, we utilize one convolutional module and eleven MobileNetV3 mod-
ules, which significantly decrease the parameter count and computational complexity of
the backbone. However, because of the extensive usage of MobileNetV3, although the
SE module can help suppress irrelevant features to some extent, it remains ineffective.
Therefore, prior to feeding the feature map into the neck part, we have introduced CBAM
(Convolution Block Attention Module) to enhance the feature representation of the target
amidst complex environments. CBAM is an efficient and lightweight attention mechanism
feed-forward convolutional neural network that primarily consists of channel attention and
spatial attention machines [52]. Firstly, the global average and global maximum in spatial
dimension are performed on the feature layer input from MobileNet. This process obtains
a rough global perceptual feature map by utilizing Global Average Pooling and Global Max
Pooling [30]. Based on the results of these two Pooling operations, the correlation between
multiple channels is constructed using a shared fully connected layer. Finally, the results
processed by the shared fully connected layer are fused and transmitted to the sigmoid
activation function module [53]. The overall structure of CBAM is shown in Figure 8.

Remote Sens. 2024, 16, x FOR PEER REVIEW 15 of 28

where ⊗ denotes the product of elements, i.e., the process of multiplying the correspond-
ing elements of two matrices to obtain a new matrix, in which the attention values are
propagated, with the values of the channel attention being propagated along the spatial
dimension, and the values of the spatial attention being propagated along the channel
dimension, with F’’ representing the final input.

Figure 8. Schematic diagram illustrating the structure of the CBAM model, including the spatial
attention mechanism and the channel attention mechanism. The channel attention module operates
on the input features by performing global maximum pooling and global average pooling to gener-
ate a weight matrix based on the channel. Subsequently, the spatial attention module calculates the
weight matrix based on the space.

In the backbone module of WL-YOLO, we utilize the MobileNet module and convolu-
tion module to enhance the backbone module. Additionally, we employ CBAM to signifi-
cantly decrease the number of parameters without compromising accuracy. By incorporating
CBAM at the end of the backbone part, all of the generated feature maps are passed to CBAM,
granting CBAM a global field of view. The structure of the backbone is depicted in Figure 9.

Figure 9. The backbone structure of WL-YOLO primarily comprises MobileNet and CBAM mod-
ules. To improve the extraction of image features, 11 MobileNets are integrated for feature extrac-
tion. Additionally, CBAM attention is incorporated at the end of the network to enhance the model’s
receptive field. The pink squares represent our new MobileNet module, the grey ones represent the
input module, the light yellow ones represent the Focus module, the light green ones represent the
convolution module, and the orange ones represent the CBAM module.

Figure 8. Schematic diagram illustrating the structure of the CBAM model, including the spatial
attention mechanism and the channel attention mechanism. The channel attention module operates
on the input features by performing global maximum pooling and global average pooling to generate
a weight matrix based on the channel. Subsequently, the spatial attention module calculates the
weight matrix based on the space.

When an intermediate feature mapping map F ϵ RC × H × W exists as an input,
CBAM derives a one-dimensional channel attention map Mc ϵ RC × 1 × 1 and a two-
dimensional spatial attention map Ms ϵ R1 × H × W according to the sequence, as shown

Remote Sens. 2024, 16, 1350 15 of 28

in the two feature maps in the above figure, and the whole process can be summarized
as Formula (9):

F′ = MC(F)
⊗

F
F′′ = MS(F′)

⊗
F′ (9)

where ⊗ denotes the product of elements, i.e., the process of multiplying the correspond-
ing elements of two matrices to obtain a new matrix, in which the attention values are
propagated, with the values of the channel attention being propagated along the spatial
dimension, and the values of the spatial attention being propagated along the channel
dimension, with F′ representing the final input.

In the backbone module of WL-YOLO, we utilize the MobileNet module and con-
volution module to enhance the backbone module. Additionally, we employ CBAM to
significantly decrease the number of parameters without compromising accuracy. By in-
corporating CBAM at the end of the backbone part, all of the generated feature maps are
passed to CBAM, granting CBAM a global field of view. The structure of the backbone is
depicted in Figure 9.

Remote Sens. 2024, 16, x FOR PEER REVIEW 15 of 28

where ⊗ denotes the product of elements, i.e., the process of multiplying the correspond-

ing elements of two matrices to obtain a new matrix, in which the attention values are

propagated, with the values of the channel attention being propagated along the spatial

dimension, and the values of the spatial attention being propagated along the channel

dimension, with F’’ representing the final input.

Figure 8. Schematic diagram illustrating the structure of the CBAM model, including the spatial

attention mechanism and the channel attention mechanism. The channel attention module operates

on the input features by performing global maximum pooling and global average pooling to gener-

ate a weight matrix based on the channel. Subsequently, the spatial attention module calculates the

weight matrix based on the space.

In the backbone module of WL-YOLO, we utilize the MobileNet module and convolu-

tion module to enhance the backbone module. Additionally, we employ CBAM to signifi-

cantly decrease the number of parameters without compromising accuracy. By incorporating

CBAM at the end of the backbone part, all of the generated feature maps are passed to CBAM,

granting CBAM a global field of view. The structure of the backbone is depicted in Figure 9.

Figure 9. The backbone structure of WL-YOLO primarily comprises MobileNet and CBAM mod-

ules. To improve the extraction of image features, 11 MobileNets are integrated for feature extrac-

tion. Additionally, CBAM attention is incorporated at the end of the network to enhance the model’s

receptive field. The pink squares represent our new MobileNet module, the grey ones represent the

input module, the light yellow ones represent the Focus module, the light green ones represent the

convolution module, and the orange ones represent the CBAM module.

Figure 9. The backbone structure of WL-YOLO primarily comprises MobileNet and CBAM modules.
To improve the extraction of image features, 11 MobileNets are integrated for feature extraction.
Additionally, CBAM attention is incorporated at the end of the network to enhance the model’s
receptive field. The pink squares represent our new MobileNet module, the grey ones represent the
input module, the light yellow ones represent the Focus module, the light green ones represent the
convolution module, and the orange ones represent the CBAM module.

Similar to the backbone module, we have reconstructed the feature extraction unit in
the neck part of WL-YOLO. We have incorporated the CBAM attention mechanism with
the objective of achieving attentional learning at each layer of the feature map as it passes
through the neck part. This allows the attention mechanism to focus on each local feature.
The overall structure of the neck network is illustrated in Figure 10.

The neck part of the native model utilizes the C3 module to reduce the computa-
tional cost by imposing a bottleneck module after convolution, followed by reorganization.
Although this effectively reduces the computational cost, it also results in feature loss.
Therefore, in the neck part, we suggest replacing the previous bottleneck module with a
C-C3 module based on the attentional mechanism. This modification enhances the atten-

Remote Sens. 2024, 16, 1350 16 of 28

tion capability of the mechanism without incurring additional computational costs. The
structure of the C-C3 module is depicted in Figure 11.

Remote Sens. 2024, 16, x FOR PEER REVIEW 16 of 28

Similar to the backbone module, we have reconstructed the feature extraction unit in

the neck part of WL-YOLO. We have incorporated the CBAM attention mechanism with

the objective of achieving attentional learning at each layer of the feature map as it passes

through the neck part. This allows the attention mechanism to focus on each local feature.

The overall structure of the neck network is illustrated in Figure 10.

The neck part of the native model utilizes the C3 module to reduce the computational

cost by imposing a bottleneck module after convolution, followed by reorganization. Alt-

hough this effectively reduces the computational cost, it also results in feature loss. There-

fore, in the neck part, we suggest replacing the previous bottleneck module with a C-C3

module based on the attentional mechanism. This modification enhances the attention ca-

pability of the mechanism without incurring additional computational costs. The struc-

ture of the C-C3 module is depicted in Figure 11.

The overall structure of the model studied in this paper is shown in Figure 12. First,

we used Mosaic to enhance the input image. Then, the resulting enhanced graph was used

as the input to the model. After modeling the image data, the first layer performed a con-

volution operation using a 6×6 size convolution kernel, which is equivalent to the Focus

module of the original model. The output of this layer is then passed to the backbone

module. In the backbone module, all of the convolution operations are replaced by DP in

the MobileNetV3 module. The neck module is responsible for feature fusion, and it uses

the C-C3 module to extract key features. Before the final prediction output image is pro-

duced, NMS is used to eliminate the redundant prediction anchor frames.

Figure 10. Diagram of the neck structure of the WL-YOLO, which mainly consists of the C-C3 mod-

ule and the CBAM module. To further extract the backbone processed features, multiple C3 modules
Figure 10. Diagram of the neck structure of the WL-YOLO, which mainly consists of the C-C3 module
and the CBAM module. To further extract the backbone processed features, multiple C3 modules
fused with CBAM are added in the middle of the neck network. The light orange color represents
the C3 module, the light green color represents the Conv module, the orange-red color represents
the CBAM module, the blue color represents the Concat module and the purple color represents the
Upsample module.

Remote Sens. 2024, 16, x FOR PEER REVIEW 17 of 28

fused with CBAM are added in the middle of the neck network. The light orange color represents
the C3 module, the light green color represents the Conv module, the orange-red color represents
the CBAM module, the blue color represents the Concat module and the purple color represents the
Upsample module.

Figure 11. Unlike traditional attention mechanisms that are superimposed, WL-YOLO’s C-C3 mod-
ule integrates channel and spatial attention mechanisms structurally. The input features are passed
through a convolutional network layer and then output after the computation of channel and spatial
weight matrices.

Figure 12. Schematic diagram of the overall structure of the WL-YOLO model. The overall network
architecture of the YOLOv5s is maintained, with the same backbone, neck, and head networks. How-
ever, we have replaced these networks with new modules and changed the size of the detection head
in the head network. The pink squares represent our new MobileNet module, the grey ones represent
the input and output modules, the light yellow ones represent the Focus module, the light green one
represents the convolution module, the orange one represents the CBAM module, the purple one rep-
resents the Upsample module, the light orange one represents the C3 module, and the light blue one
represents the Concat module, and the different colors represent different network modules.

2.5. Experimental Environment and Parameters
The experimental session of this study was conducted using the PyTorch framework

on a remote server running Linux. The server was equipped with an Intel(R) Xeon(R) Gold
6330 CPU @ 2.00 GHz, 80 GB of RAM, and an NVIDIA GeForce RTX 3090 (24 GB) graphics
card. Utilizing a GPU instead of a CPU for deep learning model training can significantly
reduce the training time. The experimental environment was configured with a CUDA
11.3 parallel computing framework and CUDNN 8.2 deep neural network acceleration
library. The input image size was set to 640 × 640, the batch size was set to 16, the learning
rate was set to 0.001, and the training step size was set to 80. In order to avoid differences
in the model validation results due to the change of equipment, the training and testing

Figure 11. Unlike traditional attention mechanisms that are superimposed, WL-YOLO’s C-C3 module
integrates channel and spatial attention mechanisms structurally. The input features are passed
through a convolutional network layer and then output after the computation of channel and spatial
weight matrices.

Remote Sens. 2024, 16, 1350 17 of 28

The overall structure of the model studied in this paper is shown in Figure 12. First,
we used Mosaic to enhance the input image. Then, the resulting enhanced graph was
used as the input to the model. After modeling the image data, the first layer performed
a convolution operation using a 6×6 size convolution kernel, which is equivalent to the
Focus module of the original model. The output of this layer is then passed to the backbone
module. In the backbone module, all of the convolution operations are replaced by DP in
the MobileNetV3 module. The neck module is responsible for feature fusion, and it uses the
C-C3 module to extract key features. Before the final prediction output image is produced,
NMS is used to eliminate the redundant prediction anchor frames.

Remote Sens. 2024, 16, x FOR PEER REVIEW 17 of 28

fused with CBAM are added in the middle of the neck network. The light orange color represents

the C3 module, the light green color represents the Conv module, the orange-red color represents

the CBAM module, the blue color represents the Concat module and the purple color represents the

Upsample module.

Figure 11. Unlike traditional attention mechanisms that are superimposed, WL-YOLO’s C-C3 mod-

ule integrates channel and spatial attention mechanisms structurally. The input features are passed

through a convolutional network layer and then output after the computation of channel and spatial

weight matrices.

Figure 12. Schematic diagram of the overall structure of the WL-YOLO model. The overall network

architecture of the YOLOv5s is maintained, with the same backbone, neck, and head networks. How-

ever, we have replaced these networks with new modules and changed the size of the detection head

in the head network. The pink squares represent our new MobileNet module, the grey ones represent

the input and output modules, the light yellow ones represent the Focus module, the light green one

represents the convolution module, the orange one represents the CBAM module, the purple one rep-

resents the Upsample module, the light orange one represents the C3 module, and the light blue one

represents the Concat module, and the different colors represent different network modules.

2.5. Experimental Environment and Parameters

The experimental session of this study was conducted using the PyTorch framework

on a remote server running Linux. The server was equipped with an Intel(R) Xeon(R) Gold

6330 CPU @ 2.00 GHz, 80 GB of RAM, and an NVIDIA GeForce RTX 3090 (24 GB) graphics

card. Utilizing a GPU instead of a CPU for deep learning model training can significantly

reduce the training time. The experimental environment was configured with a CUDA

11.3 parallel computing framework and CUDNN 8.2 deep neural network acceleration

library. The input image size was set to 640 × 640, the batch size was set to 16, the learning

rate was set to 0.001, and the training step size was set to 80. In order to avoid differences

in the model validation results due to the change of equipment, the training and testing

Figure 12. Schematic diagram of the overall structure of the WL-YOLO model. The overall network
architecture of the YOLOv5s is maintained, with the same backbone, neck, and head networks.
However, we have replaced these networks with new modules and changed the size of the detection
head in the head network. The pink squares represent our new MobileNet module, the grey ones
represent the input and output modules, the light yellow ones represent the Focus module, the
light green one represents the convolution module, the orange one represents the CBAM module,
the purple one represents the Upsample module, the light orange one represents the C3 module,
and the light blue one represents the Concat module, and the different colors represent different
network modules.

2.5. Experimental Environment and Parameters

The experimental session of this study was conducted using the PyTorch framework
on a remote server running Linux. The server was equipped with an Intel(R) Xeon(R)
Gold 6330 CPU @ 2.00 GHz, 80 GB of RAM, and an NVIDIA GeForce RTX 3090 (24 GB)
graphics card. Utilizing a GPU instead of a CPU for deep learning model training can
significantly reduce the training time. The experimental environment was configured
with a CUDA 11.3 parallel computing framework and CUDNN 8.2 deep neural network
acceleration library. The input image size was set to 640 × 640, the batch size was set to 16,
the learning rate was set to 0.001, and the training step size was set to 80. In order to avoid
differences in the model validation results due to the change of equipment, the training and
testing of the model as well as the validation were performed on the same remote server
(provided by AutoDL) to save time and avoid discrepancies. The detailed environment
configuration is shown in Table 1 and the training parameter settings are shown in Table 2.

Table 1. Experimental environment setup.

Parameters Value

CPU Intel(R) Xeon(R) Gold 6330 CPU @ 2.00 GHz
GPU NVIDA GeForce RTX 3090 (24 GB)

Remote Sens. 2024, 16, 1350 18 of 28

Table 1. Cont.

Parameters Value

RAM 80
System Ubuntu 20.04
Python 3.8
PyTorch 1.11.0
CUDA 11.3
Cudnn 8.2

Table 2. Experimental model parameter settings.

Parameters Value

Dropout 0.005
Workers 8
Epoch 80

Batch_size 10
Momentum 0.937

Learning_rate 0.001

3. Results
Evaluation Indicators

To assess the effectiveness of the model, we utilized evaluation metrics such as pre-
cision, recall, average precision, and mean average precision. Precision measures the
probability that all positive samples detected by the model are indeed positive, while recall
indicates the probability of the model correctly identifying positive samples out of the total
number of actual positive samples. AP (average precision) is calculated by measuring the
area enclosed by the precision recall curve and the axes using integration to determine
the model’s performance on each category. Once the value of AP is obtained for each
category, the value of mAP (mean average precision) can be calculated by averaging the
AP of all categories. This provides an overall representation of the model’s performance
across all categories. In the experiments, we mainly used mAP (0.5) and mAP (0.5:0.95) as
the evaluation metrics. mAP (0.5) is the mAP when the IoU (intersection over union) is set
to 0.5, and mAP (0.5:0.95) denotes the mAP in the range of IoU critical values from 0.5 to
0.95. The formula for each metric is shown below:

preison =
TP

TP + FP
(10)

recall =
TP

TP + FN
(11)

mAP =
1
N

N

∑
i=1

APi (12)

where TP (true positive) denotes the number of positive samples correctly predicted by the
model. Similarly, FP (false positive) denotes the number of positive samples incorrectly
predicted by the model, and FN (false negative) denotes the number of negative samples
incorrectly predicted by the model.

In order to test the effect of light weighting the model and evaluate its performance
in complex forest scenes, we introduce additional evaluation metrics such as the number
of parameters in the model, frames per second (FPS), and FLOPs(G). FPS represents the
number of frames of image data processed by the model per second, while FLOPs(G)
represents the number of floating point operations performed by the model per second.

Finally, after a series of data processing operations such as data cleaning, enhancement,
and labeling, the rare wildlife dataset specifically used for WL-YOLO model training was
obtained, which contains a total of 14,953 pieces of data, and the details of the data are
shown in the following Table 3.

Remote Sens. 2024, 16, 1350 19 of 28

Table 3. Information about the data contained in the dataset, including the quantity as well as the
type of data.

Wildlife Classes Quantities Typology

Amur Leopard 1089 visible image/infrared image
Amur Tiger 1121 visible image/infrared image

Badger 1199 visible image/infrared image
Black Bear 1071 visible image

Leopard Cat 1237 visible image/infrared image
Musk Deer 963 visible image/infrared image

Red Fox 638 visible image/infrared image
Red Panda 1191 visible image/infrared image

Otter 951 visible image/infrared image
Sika Deer 1365 visible image

Weasel 958 visible image/infrared image
Wild Boar 1150 visible image/infrared image

Wolf 1043 visible image/infrared image
Marten 977 visible image/infrared image

Total 14953

In the backbone network, we have implemented the CBAM attention mechanism.
However, due to the multiple options available for its introduction location, different
placement of the mechanism may result in varied model outcomes. Our goal is to enhance
the model’s focus on essential features. Therefore, selecting the optimal introduction
location for the CBAM attention mechanism module is essential. Prior to conducting large-
scale comparison experiments, we first conducted ablation experiments to test the different
introduction locations of CBAM. We organized four groups of comparison experiments
based on the placement of CBAM within the MobileNet networks. These groups included
placing CBAM at the beginning of all MobileNet networks, after the 3rd, 6th, and 9th
MobileNet networks, and at the end of the backbone network. These groups were labeled
as Group 1, Group 2, Group 3, and Group 4, respectively. The primary focus of the
comparison was on accuracy and detection speed in order to assess the impact of the
CBAM introduction location on the model’s effectiveness. The experimental results are
shown in Table 4.

Table 4. Comparative table of results of ablation experiments, each group representing a scenario
introduced by CBAM.

Evaluation Metrics Group 1 Group 2 Group 3 Group 4

mAP (0.5) 96.36 96.91 97.22 97.25
Precision 94.12 94.73 95.11 95.14

FPS 62 61 58 61

Through multiple comparison experiments, it is evident that placing the CBAM
mechanism at the end of the backbone network outperforms several alternative introduction
schemes in terms of overall performance. While some approaches show slightly faster
detection speeds for individual groups, there remains a noticeable gap in detection accuracy.
After conducting multiple rounds of experiments, it has been concluded that positioning
the CBAM mechanism at the end of the backbone network is the most effective solution
currently available.

We fed the produced dataset into WL-YOLO for training, testing, and validation.
To ensure the objectivity and fairness of the experimental results and avoid episodic results
caused by equipment or other factors, this study conducted ten training batches on the same
server with the same configuration. The results for all metrics were averaged, and they
consistently showed no significant deviation. As can be seen from Table 5, the WL-YOLO
model demonstrated excellent performance in wildlife category recognition across all

Remote Sens. 2024, 16, 1350 20 of 28

categories, achieving recognition accuracies of over 90% in each category. Moreover, there
was minimal variation in performance between categories. A confusion matrix serves
as a vital tool for evaluating deep learning models, providing a more intuitive means
of comparing the classification results against the actual predictions. In this particular
experiment, a confusion matrix was primarily utilized to visually evaluate the performance
of WL-YOLO detection, as depicted in Figure 13.

Table 5. Accuracy of WL-YOLO model for recognition of different species.

Wildlife Classes Precision

Amur Leopard 0.9621
Amur Tiger 0.9931

Badger 0.9622
Black Bear 0.9916

Leopard Cat 0.9826
Musk Deer 0.9932

Red Fox 0.9929
Red Panda 0.9935

Otter 0.9433
Sika Deer 0.9838

Weasel 0.9820
Wild Boar 0.9712

Wolf 0.9107
Marten 0.9910
Total 0.9632

Remote Sens. 2024, 16, x FOR PEER REVIEW 20 of 28

detection speeds for individual groups, there remains a noticeable gap in detection accu-
racy. After conducting multiple rounds of experiments, it has been concluded that posi-
tioning the CBAM mechanism at the end of the backbone network is the most effective
solution currently available.

We fed the produced dataset into WL-YOLO for training, testing, and validation. To
ensure the objectivity and fairness of the experimental results and avoid episodic results
caused by equipment or other factors, this study conducted ten training batches on the
same server with the same configuration. The results for all metrics were averaged, and
they consistently showed no significant deviation. As can be seen from Table 5, the WL-
YOLO model demonstrated excellent performance in wildlife category recognition across
all categories, achieving recognition accuracies of over 90% in each category. Moreover,
there was minimal variation in performance between categories. A confusion matrix
serves as a vital tool for evaluating deep learning models, providing a more intuitive
means of comparing the classification results against the actual predictions. In this partic-
ular experiment, a confusion matrix was primarily utilized to visually evaluate the per-
formance of WL-YOLO detection, as depicted in Figure 13.

Figure 13. Confusion matrix of WL-YOLO training outputs. The accuracy of the predictions for each
category is indicated, and it can be seen that for most of the wildlife categories, the model’s predic-
tive accuracy can be maintained at a high level.

Table 5. Accuracy of WL-YOLO model for recognition of different species.

Wildlife Classes Precision
Amur Leopard 0.9621

Amur Tiger 0.9931
Badger 0.9622

Black Bear 0.9916
Leopard Cat 0.9826
Musk Deer 0.9932

Red Fox 0.9929
Red Panda 0.9935

Figure 13. Confusion matrix of WL-YOLO training outputs. The accuracy of the predictions for each
category is indicated, and it can be seen that for most of the wildlife categories, the model’s predictive
accuracy can be maintained at a high level.

In this experiment, the WL-YOLO model was trained to detect and classify rare wild
animals, and the R_Curve, P_Curve, F1_Curve, and PR_Curve graphs during the training

Remote Sens. 2024, 16, 1350 21 of 28

process are shown in Figure 14, and these curves demonstrate the ability of the WL-YOLO
model to learn the features of various types of animals. P_Curve and R_Curve represent the
accuracy and recall of the model in different categories of animal recognition, respectively,
F1_Curve represents the accuracy of the model in recognizing different types of animals,
and PR_Curve represents the value of mAP (0.5).

Remote Sens. 2024, 16, x FOR PEER REVIEW 21 of 28

Otter 0.9433
Sika Deer 0.9838

Weasel 0.9820
Wild Boar 0.9712

Wolf 0.9107
Marten 0.9910
Total 0.9632

In this experiment, the WL-YOLO model was trained to detect and classify rare wild
animals, and the R_Curve, P_Curve, F1_Curve, and PR_Curve graphs during the training
process are shown in Figure 14, and these curves demonstrate the ability of the WL-YOLO
model to learn the features of various types of animals. P_Curve and R_Curve represent
the accuracy and recall of the model in different categories of animal recognition, respec-
tively, F1_Curve represents the accuracy of the model in recognizing different types of
animals, and PR_Curve represents the value of mAP (0.5).

Figure 14. Changes in P_Curve, R_Curve, F1_Curve, and PR_Curve during the WL-YOLO training
process.

As shown in the figure above, the different colored curves represent various wildlife
species. It can be observed from these curves that the model exhibits high values for pre-
cision, F1, and recall when the confidence is around the equilibrium point. This provides
evidence that the model’s training has yielded improved results.

Deep learning-based target detection algorithms are mainly categorized into two
types: one-stage and two-stage. The two-stage algorithm first generates candidate regions
and then utilizes a convolutional neural network for classification and detection. This ap-
proach is primarily represented by the Faster R-CNN model. On the other hand, the one-
stage algorithm is represented by the YOLOv5m model. To demonstrate the superior com-
putational efficiency and improved wildlife detection performance of the WL-YOLO
model, we compared it to various models. These models included the original YOLOv5
series model, a well-known one-stage algorithm, along with its variants—YOLOv5m-Mo-
bileNetV3 and YOLOv5m-CBAM. Additionally, for a two-stage algorithm perspective, we
also considered the Faster R-CNN model as a representative example. We inputted the
same dataset into the comparison model for training. We then adjusted each model’s pa-
rameters to optimize them. In order to provide a more objective and comprehensive

Figure 14. Changes in P_Curve, R_Curve, F1_Curve, and PR_Curve during the WL-YOLO
training process.

As shown in the figure above, the different colored curves represent various wildlife
species. It can be observed from these curves that the model exhibits high values for
precision, F1, and recall when the confidence is around the equilibrium point. This provides
evidence that the model’s training has yielded improved results.

Deep learning-based target detection algorithms are mainly categorized into two
types: one-stage and two-stage. The two-stage algorithm first generates candidate regions
and then utilizes a convolutional neural network for classification and detection. This
approach is primarily represented by the Faster R-CNN model. On the other hand, the
one-stage algorithm is represented by the YOLOv5m model. To demonstrate the superior
computational efficiency and improved wildlife detection performance of the WL-YOLO
model, we compared it to various models. These models included the original YOLOv5
series model, a well-known one-stage algorithm, along with its variants—YOLOv5m-
MobileNetV3 and YOLOv5m-CBAM. Additionally, for a two-stage algorithm perspective,
we also considered the Faster R-CNN model as a representative example. We inputted
the same dataset into the comparison model for training. We then adjusted each model’s
parameters to optimize them. In order to provide a more objective and comprehensive
comparison, we evaluated the models based on the following facets: mAP (mean average
precision), precision, parameters, FLOPs (floating operations per second—in billions), and
FPS (frames per second). The results of the comparison are presented in Table 6.

By analyzing the table, we can see that Faster R-CNN, as a representative model
of the two-stage algorithm, does have certain advantages in terms of detection accuracy,
thanks to its excellent feature extraction capability. However, it is limited by the fact that it
consumes a significant amount of computation power and time in generating the region
of interest. Consequently, its performance in speed indexes such as FPS is poor, leading

Remote Sens. 2024, 16, 1350 22 of 28

to the conclusion that it is not well-suited for real-time detection of wildlife in a complex
forest environment.

Table 6. Comparison of the performance of YOLOv5 series models as well as improved models and
Faster R-CNN models under different evaluation metrics.

Method Parameters Precision mAP (0.5) FLOPs (G) FPS Model Size (MB)

YOLOv5m 20923851 94.76 96.76 48.2 41 44.1
YOLOv5l 46563709 94.81 95.11 109.3 49 98.14
YOLOv5s 7025023 82.2 88.13 15.9 24.9 14.99
YOLOv5x 8620033 91.23 92.72 8.2 40 32.22
YOLOv5n 4872157 82.51 88.52 4.6 34 17.1

YOLOv5m-MobileNetV3 9843512 91.77 94.77 37.1 52 35.8
YOLOv5m-CBAM 20933752 95.16 95.73 54.1 47 44.17
YOLOv5s-CBAM 7623411 84.14 87.12 14.1 23 27.17

YOLO-animal 7611245 83.17 85.52 7.5 41 26.91
WD-YOLO 7027423 92.60 88.40 4.4 40 27.14

Mask R-CNN 24673210 94.73 95.71 52.1 34 55.01
Fast R-CNN 230000000 95.61 96.42 44.7 35 542.75

Faster R-CNN 230689024 95.92 97.74 97.2 34 584.37
WL-YOLO 3882873 95.14 97.25 3.7 61 8.5

And when compared to the YOLOv5 series models, WL-YOLO not only achieves a
new breakthrough in rapid detection but also enhances accuracy while reducing the rates
of misses and false detections.

Figure 15 illustrates the fluctuation of the loss function throughout the training of
both the wildlife detection model, WL-YOLO, and the main comparison model. It is
evident that the WL-YOLO model stabilizes after 80 epochs. Additionally, in comparison to
several other models, the loss function of WL-YOLO exhibits minimal fluctuations during
training, indicating a faster convergence speed in the pre-training process. While several
other models have larger final loss values or more drastic fluctuations, it is clear that
our proposed WL-YOLO model is easier to train, converges faster, and demonstrates its
effectiveness from a computational standpoint.

Remote Sens. 2024, 16, x FOR PEER REVIEW 22 of 28

comparison, we evaluated the models based on the following facets: mAP (mean average
precision), precision, parameters, FLOPs (floating operations per second—in billions), and
FPS (frames per second). The results of the comparison are presented in Table 6.

Table 6. Comparison of the performance of YOLOv5 series models as well as improved models and
Faster R-CNN models under different evaluation metrics.

Method Parameters Precision mAP (0.5) FLOPs (G) FPS Model Size (MB)
YOLOv5m 20923851 94.76 96.76 48.2 41 44.1
YOLOv5l 46563709 94.81 95.11 109.3 49 98.14
YOLOv5s 7025023 82.2 88.13 15.9 24.9 14.99
YOLOv5x 8620033 91.23 92.72 8.2 40 32.22
YOLOv5n 4872157 82.51 88.52 4.6 34 17.1

YOLOv5m-MobileNetV3 9843512 91.77 94.77 37.1 52 35.8
YOLOv5m-CBAM 20933752 95.16 95.73 54.1 47 44.17
YOLOv5s-CBAM 7623411 84.14 87.12 14.1 23 27.17

YOLO-animal 7611245 83.17 85.52 7.5 41 26.91
WD-YOLO 7027423 92.60 88.40 4.4 40 27.14

Mask R-CNN 24673210 94.73 95.71 52.1 34 55.01
Fast R-CNN 230000000 95.61 96.42 44.7 35 542.75

Faster R-CNN 230689024 95.92 97.74 97.2 34 584.37
WL-YOLO 3882873 95.14 97.25 3.7 61 8.5

By analyzing the table, we can see that Faster R-CNN, as a representative model of the
two-stage algorithm, does have certain advantages in terms of detection accuracy, thanks to
its excellent feature extraction capability. However, it is limited by the fact that it consumes a
significant amount of computation power and time in generating the region of interest. Con-
sequently, its performance in speed indexes such as FPS is poor, leading to the conclusion that
it is not well-suited for real-time detection of wildlife in a complex forest environment.

And when compared to the YOLOv5 series models, WL-YOLO not only achieves a
new breakthrough in rapid detection but also enhances accuracy while reducing the rates
of misses and false detections.

Figure 15 illustrates the fluctuation of the loss function throughout the training of
both the wildlife detection model, WL-YOLO, and the main comparison model. It is evi-
dent that the WL-YOLO model stabilizes after 80 epochs. Additionally, in comparison to
several other models, the loss function of WL-YOLO exhibits minimal fluctuations during
training, indicating a faster convergence speed in the pre-training process. While several
other models have larger final loss values or more drastic fluctuations, it is clear that our
proposed WL-YOLO model is easier to train, converges faster, and demonstrates its effec-
tiveness from a computational standpoint.

Figure 15. Upon comparing the changes in loss function among WL-YOLO, Faster R-CNN, and
YOLOv5m variants of the model, it is evident that the WL-YOLO model converges faster when
compared to the other models (The light pink line in the figure represents the variation of the loss

Figure 15. Upon comparing the changes in loss function among WL-YOLO, Faster R-CNN, and
YOLOv5m variants of the model, it is evident that the WL-YOLO model converges faster when
compared to the other models (The light pink line in the figure represents the variation of the loss
function during the actual training of the WL-YOLO model, and in order to make it look more
intuitive, we have increased the smoothing, which is shown by the orange line on the way).

To better showcase the ability of WL-YOLO in detecting wildlife targets, categorizing
wildlife target categories, and detecting concealed wildlife targets in complex backgrounds,
we created a dedicated test dataset. This dataset consists exclusively of wildlife image

Remote Sens. 2024, 16, 1350 23 of 28

data captured in complex forest environment backgrounds. The specific detection results
can be observed in Figure 16. As seen in the figure, WL-YOLO successfully detects the
wildlife targets present in the image data. This includes instances where the background
environment is cluttered, the target’s pattern is concealed, and the lighting conditions are
poor. WL-YOLO exhibits superior performance in handling these challenges. Furthermore,
when there are multiple wildlife targets in the image, the model can accurately identify and
select all targets by automatically determining the suitable anchor frame based on the size
of the targets.

Remote Sens. 2024, 16, x FOR PEER REVIEW 23 of 28

function during the actual training of the WL-YOLO model, and in order to make it look more intu-
itive, we have increased the smoothing, which is shown by the orange line on the way).

To better showcase the ability of WL-YOLO in detecting wildlife targets, categorizing
wildlife target categories, and detecting concealed wildlife targets in complex back-
grounds, we created a dedicated test dataset. This dataset consists exclusively of wildlife
image data captured in complex forest environment backgrounds. The specific detection
results can be observed in Figure 16. As seen in the figure, WL-YOLO successfully detects
the wildlife targets present in the image data. This includes instances where the back-
ground environment is cluttered, the target’s pattern is concealed, and the lighting condi-
tions are poor. WL-YOLO exhibits superior performance in handling these challenges.
Furthermore, when there are multiple wildlife targets in the image, the model can accu-
rately identify and select all targets by automatically determining the suitable anchor
frame based on the size of the targets.

Figure 16. The WL-YOLO model was tested for its practical applications. In this experiment, we
deliberately selected wildlife detection scenarios under various conditions, such as low light,

Figure 16. The WL-YOLO model was tested for its practical applications. In this experiment,
we deliberately selected wildlife detection scenarios under various conditions, such as low light,
incomplete targets, multiple targets in the scene, and blurred targets. It is evident that WL-YOLO can
achieve superior results in wildlife target detection tasks across a range of conditions.

Remote Sens. 2024, 16, 1350 24 of 28

4. Discussion
4.1. The Advantages of Our Approach

The development of deep learning has introduced new methods and opportunities for
wildlife conservation [54]. A key challenge in achieving effective wildlife conservation is
the rapid and accurate detection of wildlife in complex forest environments [4]. To address
this issue, we propose a fast wildlife detection model called WL-YOLO, which is specifically
designed for such intricate forest environments. The WL-YOLO model is based on the
widely used one-stage algorithm, the YOLO model. It can be observed from the experiments
that in the task of wildlife target detection in complex forest environments, the search and
detection of targets is somewhat hindered by factors such as ambient light and obstacles.
However, due to our redesigned feature extraction module, our WL-YOLO model shows
certain advantages in detection speed compared to two-stage models like Fast R-CNN,
and it exhibits no obvious defects in accuracy. With its lightweight model setup, our
model can be seamlessly deployed on mobile devices for wildlife conservationists to utilize
in the field.

The current mainstream target detection and recognition models have demonstrated
excellent performance [16]. However, the requirements of the wildlife detection task differ
from regular target recognition tasks. Most real-time monitoring of wildlife takes place in
complex forest environments. To protect wildlife effectively, the target size, completeness,
and clarity of wildlife image data can vary significantly [55]. Therefore, the model needs
to have a strong ability for fast detection and be capable of detecting targets in complex
environments. Our WL-YOLO model not only inherits the advantages of the lightweight
structure found in the YOLO series but also significantly reduces the model’s parameters
by utilizing the outstanding low-cost computational performance of MobileNetV3. As a
result, the training cost is greatly reduced [56]. Although we have reduced numerous
parameters and eliminated unnecessary structures, incorporating the redesigned C-C3
module and constructing the feature extraction network enhances the model’s recognition
accuracy. It also improves its ability to detect and identify small or hidden wildlife in
complex backgrounds. Overall, our model demonstrates better performance and is better
suited for the task of detecting wildlife in complex forest environments.

4.2. Limitations and Potential Improvements

Compared to traditional machine learning methods, deep learning-based recognition
methods have certain limitations. They rely on a large number of datasets and their accuracy
is not as high as traditional machine learning methods. However, the deep learning method
eliminates the need for manual screening of features and reduces the need for staff and
resources to analyze the features. Additionally, with the continuous development of wildlife
monitoring equipment such as trap cameras and long-range drones, there will be a greater
amount of more comprehensive image data available. As a result, the recognition effect of
the deep learning model will improve along with the quality of the data.

At this stage, our wildlife detection task still relies solely on wildlife image data
features. However, there is a lot of additional expert knowledge that can be leveraged in
enhancing the wildlife detection and classification task. This includes information such as
animal body size, habitat details, DNA barcoding, and more. In comparison to improving
the model structure alone, incorporating expert knowledge can significantly boost the
model’s performance. However, the current model lacks scalability and does not allow
for the utilization of expert knowledge from other modalities as additional features to
aid recognition.

Currently, we have achieved some results in model light weighting by reducing the
number of parameters and computation required by the model. However, there are still
more effective ways to improve computational efficiency and achieve better performance in
terms of accuracy. These methods include, but are not limited to, model distillation, pruning,
and other techniques that may yield superior performance. Additionally, according to the
experimental results, it is evident that the current model can only achieve better results in

Remote Sens. 2024, 16, 1350 25 of 28

the case of small targets or partially occluded objects. It shows better convergence speed
and accuracy in these scenarios. However, when the target is only visible in a small part
or is highly occluded, the performance may not be as good as high-precision models like
the two-stage Fast R-CNN. Therefore, further improvements need to be implemented in
subsequent iterations.

5. Conclusions

In this paper, we propose a lightweight deep learning method for real-time detec-
tion of wildlife in complex forest environments. Our approach involved constructing a
large-scale image dataset of rare wildlife, which included both visible and infrared image
data. The goal was to enable fast and accurate detection of wildlife in these challeng-
ing environments. In this study, we have innovatively improved the YOLOv5s model
by utilizing the lightweight structure of MobileNetV3 as a replacement for the backbone
feature extraction module in the YOLO model. Additionally, we have redesigned the
feature extraction module C_C3 in the neck, combining the attention mechanism with the
convolutional neural network. This improvement enables the model to effectively focus
on wildlife targets, including smaller and incomplete ones, which aligns with the actual
work requirements of frontline field workers involved in wildlife detection. Compared to
the YOLOv5s model, which has the smallest number of parameters among the YOLOv5
series models, the WL-YOLO model has 44.73% fewer parameters, 145.81% faster detection
speed, and 16.4% higher accuracy. After a series of tests and validations, it has been proven
that WL-YOLO outperforms other models in terms of accuracy, lightweight design, and
detection speed. The findings of this paper offer technical support for the prompt detection
of wildlife by frontline field workers and also serve as a theoretical reference for optimizing
the relevant model. In our future work, we will further explore the optimization techniques
for the model and conduct research on the dynamic expansion method of the extensive
wildlife dataset. This will enable us to achieve real-time updates on the wildlife species
that can be identified by the model.

Author Contributions: Conceptualization, Z.M.; Data curation, F.C.; Investigation, D.X.; Methodol-
ogy, Z.M.; Project administration, F.C.; Supervision, F.X.; Validation, Y.D. and Y.X.; Writing—original
draft, Z.M.; Writing—review and editing, Y.D., F.X. and F.C. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the Outstanding Youth Team Project of Central Universities,
grant number QNTD202308; National Key R&D Program of China, grant number 2022YFF1302700;
The Emergency Open Competition Project of National Forestry and Grassland Administration, grant
number 202303.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

YOLO You Only Look Once
WL-YOLO Wild Life—You Only Look Once
CBAM Convolutional Block Attention Module
YOLOv5s You Only Look Once v5—small
SPP Spatial Pyramid Pooling
SE Squeeze and Extraction
RCNN Regional convolutional neural network
FLOPS Floating-point operations
CNN Convolutional neural network
CUDA Computer unified device architecture
cuDNN CUDA Deep Neural Network library

Remote Sens. 2024, 16, 1350 26 of 28

References
1. Linchant, J.; Lisein, J.; Semeki, J.; Lejeune, P.; Vermeulen, C. Are unmanned aircraft systems (UAS s) the future of wildlife

monitoring? A review of accomplishments and challenges. Mammal Rev. 2015, 45, 239–252. [CrossRef]
2. Vogeler, J.C.; Cohen, W.B. A review of the role of active remote sensing and data fusion for characterizing forest in wildlife habitat

models. Rev. De Teledetección 2016, 1, 1–14. [CrossRef]
3. Wang, D.; Shao, Q.; Yue, H. Surveying wild animals from satellites, manned aircraft and unmanned aerial systems (UASs):

A review. Remote Sens. 2019, 11, 1308. [CrossRef]
4. Verma, G.K.; Gupta, P. Wild animal detection using deep convolutional neural network. In Proceedings of the 2nd International

Conference on Computer Vision & Image Processing: CVIP 2017; Springer: Singapore, 2018; Volume 2.
5. Nguyen, H.; Maclagan, S.J.; Nguyen, T.D.; Nguyen, T.; Flemons, P.; Andrews, K.; Ritchie, E.G.; Phung, D. Animal recognition

and identification with deep convolutional neural networks for automated wildlife monitoring. In Proceedings of the 2017 IEEE
International Conference on Data Science and Advanced Analytics (DSAA), Tokyo, Japan, 19–21 October 2017.

6. Roopashree, Y.A.; Bhoomika, M.; Priyanka, R.; Nisarga, K.; Behera, S. Monitoring the Movements of Wild Animals and Alert
System using Deep Learning Algorithm. In Proceedings of the 2021 International Conference on Recent Trends on Electronics,
Information, Communication & Technology (RTEICT), Bangalore, India, 27–28 August 2021.

7. Ojo, M.O.; Adami, D.; Giordano, S. Experimental evaluation of a LoRa wildlife monitoring network in a forest vegetation area.
Future Internet 2021, 13, 115. [CrossRef]

8. Gastón, A.; Blázquez-Cabrera, S.; Ciudad, C.; Mateo-Sanchez, M.C.; Simon, M.A.; Saura, S. The role of forest canopy cover in
habitat selection: Insights from the Iberian lynx. Eur. J. Wildl. Res. 2019, 65, 1–10. [CrossRef]

9. Norouzzadeh, M.S.; Morris, D.; Beery, S.; Joshi, N.; Jojic, N.; Clune, J. A deep active learning system for species identification and
counting in camera trap images. Methods Ecol. Evol. 2021, 12, 150–161. [CrossRef]

10. Lee, S.; Song, Y.; Kil, S.-H. Feasibility analyses of real-time detection of wildlife using UAV-derived thermal and RGB images.
Remote Sens. 2021, 13, 2169. [CrossRef]

11. Norouzzadeh, M.S.; Nguyen, A.; Kosmala, M.; Swanson, A.; Palmer, M.S.; Packer, C.; Clune, J. Automatically identifying, counting,
and describing wild animals in camera-trap images with deep learning. Proc. Natl. Acad. Sci. USA 2018, 115, E5716–E5725.
[CrossRef] [PubMed]

12. Hou, J.; He, Y.; Yang, H.; Connor, T.; Gao, J.; Wang, Y.; Zeng, Y.; Zhang, J.; Huang, J.; Zheng, B.; et al. Identification of animal
individuals using deep learning: A case study of giant panda. Biol. Conserv. 2020, 242, 108414. [CrossRef]

13. Li, Y.; Li, S.; Du, H.; Chen, L.; Zhang, D.; Li, Y. YOLO-ACN: Focusing on small target and occluded object detection. IEEE Access
2020, 8, 227288–227303. [CrossRef]

14. Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile,
7–13 December 2015.

15. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. In Proceedings
of the Advances in Neural Information Processing Systems 28, Montreal, QC, Canada, 7–12 December 2015; Volume 28.

16. Vecvanags, A.; Aktas, K.; Pavlovs, I.; Avots, E.; Filipovs, J.; Brauns, A.; Done, G.; Jakovels, D.; Anbarjafari, G. Ungulate detection
and species classification from camera trap images using RetinaNet and faster R-CNN. Entropy 2022, 24, 353. [CrossRef]

17. Altobel, M.Z.; Sah, M. Tiger detection using faster r-cnn for wildlife conservation. In Proceedings of the 14th International Confer-
ence on Theory and Application of Fuzzy Systems and Soft Computing–ICAFS-2020 14, Budva, Montenegro, 27–28 August 2021;
Springer International Publishing: Berlin/Heidelberg, Germany, 2021.

18. Peng, J.; Wang, D.; Liao, X.; Shao, Q.; Sun, Z.; Yue, H.; Ye, H. Wild animal survey using UAS imagery and deep learning: Modified
Faster R-CNN for kiang detection in Tibetan Plateau. ISPRS J. Photogramm. Remote Sens. 2020, 169, 364–376. [CrossRef]

19. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision,
Venice, Italy, 22–29 October 2017.

20. Tang, J.; Zhao, Y.; Feng, L.; Zhao, W. Contour-Based Wild Animal Instance Segmentation Using a Few-Shot Detector. Animals
2022, 12, 1980. [CrossRef]

21. Kassim, Y.M.; Byrne, M.E.; Burch, C.; Mote, K.; Hardin, J.; Larsen, D.R.; Palaniappan, K. Small object bird detection in infrared
drone videos using mask R-CNN deep learning. Electron. Imaging 2020, 32, 1–8. [CrossRef]

22. Haucke, T.; Steinhage, V. Exploiting depth information for wildlife monitoring. arXiv 2021, arXiv:2102.05607.
23. Wong, A.; Famuori, M.; Shafiee, M.J.; Li, F.; Chwyl, B.; Chung, J. YOLO nano: A highly compact you only look once convolutional

neural network for object detection. In Proceedings of the 2019 Fifth Workshop on Energy Efficient Machine Learning and
Cognitive Computing-NeurIPS Edition (EMC2-NIPS), Vancouver, BC, Canada, 13 December 2019.

24. Yu, K.; Tang, G.; Chen, W.; Hu, S.; Li, Y.; Gong, H. MobileNet-YOLO v5s: An improved lightweight method for real-time detection
of sugarcane stem nodes in complex natural environments. IEEE Access 2023, 11, 104070–104083. [CrossRef]

25. Zeng, T.; Li, S.; Song, Q.; Zhong, F.; Wei, X. Lightweight tomato real-time detection method based on improved YOLO and mobile
deployment. Comput. Electron. Agric. 2023, 205, 107625. [CrossRef]

26. Jin, R.; Xu, Y.; Xue, W.; Li, B.; Yang, Y.; Chen, W. An Improved Mobilenetv3-Yolov5 Infrared Target Detection Algorithm Based on
Attention Distillation. In International Conference on Advanced Hybrid Information Processing; Springer International Publishing:
Cham, Switzerland, 2021; pp. 266–279.

https://doi.org/10.1111/mam.12046
https://doi.org/10.4995/raet.2016.3981
https://doi.org/10.3390/rs11111308
https://doi.org/10.3390/fi13050115
https://doi.org/10.1007/s10344-019-1266-6
https://doi.org/10.1111/2041-210X.13504
https://doi.org/10.3390/rs13112169
https://doi.org/10.1073/pnas.1719367115
https://www.ncbi.nlm.nih.gov/pubmed/29871948
https://doi.org/10.1016/j.biocon.2020.108414
https://doi.org/10.1109/ACCESS.2020.3046515
https://doi.org/10.3390/e24030353
https://doi.org/10.1016/j.isprsjprs.2020.08.026
https://doi.org/10.3390/ani12151980
https://doi.org/10.2352/ISSN.2470-1173.2020.8.IMAWM-085
https://doi.org/10.1109/ACCESS.2023.3317951
https://doi.org/10.1016/j.compag.2023.107625

Remote Sens. 2024, 16, 1350 27 of 28

27. Mun, J.; Kim, J.; Do, Y.; Kim, H.; Lee, C.; Jeong, J. Design and Implementation of Defect Detection System Based on YOLOv5-CBAM
for Lead Tabs in Secondary Battery Manufacturing. Processes 2023, 11, 2751. [CrossRef]

28. Andrew, W.; Greatwood, C.; Burghardt, T. Visual localisation and individual identification of holstein friesian cattle via deep
learning. In Proceedings of the IEEE International Conference on Computer Vision Workshops, Venice, Italy, 22–29 October 2017.

29. Wei, R.; He, N.; Lu, K. YOLO-Mini-Tiger: Amur Tiger Detection. In Proceedings of the 2020 International Conference on
Multimedia Retrieval, Dublin, Ireland, 8–11 June 2020.

30. Roy, A.M.; Bhaduri, J.; Kumar, T.; Raj, K. WilDect-YOLO: An efficient and robust computer vision-based accurate object
localization model for automated endangered wildlife detection. Ecol. Inform. 2023, 75, 101919. [CrossRef]

31. Zhang, M.; Gao, F.; Yang, W.; Zhang, H. Wildlife Object Detection Method Applying Segmentation Gradient Flow and Feature
Dimensionality Reduction. Electronics 2023, 12, 377. [CrossRef]

32. Ma, D.; Yang, J. Yolo-animal: An efficient wildlife detection network based on improved yolov5. In Proceedings of the 2022 Inter-
national Conference on Image Processing, Computer Vision and Machine Learning (ICICML), Xi’an, China, 28–30 October 2022;
pp. 464–468.

33. Liu, K.; Wang, J.; Zhang, K.; Chen, M.; Zhao, H.; Liao, J. A lightweight recognition method for rice growth period based on
improved YOLOv5s. Sensors 2023, 23, 6738. [CrossRef]

34. Wang, X.; Wu, Z.; Jia, M.; Xu, T.; Pan, C.; Qi, X.; Zhao, M. Lightweight SM-YOLOv5 tomato fruit detection algorithm for plant
factory. Sensors 2023, 23, 3336. [CrossRef] [PubMed]

35. Liu, L.; Mou, C.; Xu, F. Improved Wildlife Recognition through Fusing Camera Trap Images and Temporal Metadata. Diversity
2024, 16, 139. [CrossRef]

36. Wang, G.; Gan, X.; Cao, Q.; Zhai, Q. MFANet: Multi-scale feature fusion network with attention mechanism. Vis. Comput. 2023,
39, 2969–2980. [CrossRef]

37. Ji, Y.; Zhang, H.; Wu, Q.J. Salient object detection via multi-scale attention CNN. Neurocomputing 2018, 322, 130–140. [CrossRef]
38. Wang, G.; Gan, X.; Cao, Q.; Zhai, Q. MAPoseNet: Animal pose estimation network via multi-scale convolutional attention. J. Vis.

Commun. Image Represent. 2023, 97, 103989.
39. Wang, L.; Cao, Y.; Wang, S.; Song, X.; Zhang, S.; Zhang, J.; Niu, J. Investigation into recognition algorithm of helmet violation

based on YOLOv5-CBAM-DCN. IEEE Access 2022, 10, 60622–60632. [CrossRef]
40. Cao, L.; Song, P.; Wang, Y.; Yang, Y.; Peng, B. An Improved Lightweight Real-Time Detection Algorithm Based on the Edge

Computing Platform for UAV Images. Electronics 2023, 12, 2274. [CrossRef]
41. Jia, L.; Wang, T.; Chen, Y.; Zang, Y.; Li, X.; Shi, H.; Gao, L. MobileNet-CA-YOLO: An Improved YOLOv7 Based on the MobileNetV3

and Attention Mechanism for Rice Pests and Diseases Detection. Agriculture 2023, 13, 1285. [CrossRef]
42. Yang, W.; Liu, T.; Jiang, P.; Qi, A.; Deng, L.; Liu, Z.; He, Y. A Forest Wildlife Detection Algorithm Based on Improved YOLOv5s.

Animals 2023, 13, 3134. [CrossRef]
43. Zheng, Y.; Zhang, Y.; Qian, L.; Zhang, X.; Diao, S.; Liu, X.; Cao, J.; Huang, H. A lightweight ship target detection model based on

improved YOLOv5s algorithm. PLoS ONE 2023, 18, e0283932. [CrossRef]
44. Jiang, T.; Li, C.; Yang, M.; Wang, Z. An improved YOLOv5s algorithm for object detection with an attention mechanism. Electronics

2022, 11, 2494. [CrossRef]
45. Jiang, T.; Li, C.; Yang, M.; Wang, Z. YOLOv5s FMG: An improved small target detection algorithm based on YOLOv5 in low

visibility. IEEE Access 2023, 11, 75782–75793.
46. Zhang, C.; Ding, H.; Shi, Q.; Wang, Y. Grape cluster real-time detection in complex natural scenes based on YOLOv5s deep

learning network. Agriculture 2022, 12, 1242. [CrossRef]
47. Chen, G.; Zhou, H.; Li, Z.; Gao, Y.; Bai, D.; Xu, R.; Lin, H. Multi-Scale Forest Fire Recognition Model Based on Improved YOLOv5s.

Forests 2023, 14, 315. [CrossRef]
48. Luo, X.; Wu, Y.; Wang, F. Target detection method of UAV aerial imagery based on improved YOLOv5. Remote Sens. 2022, 14, 5063.

[CrossRef]
49. Lu, X.; Lu, X. An efficient network for multi-scale and overlapped wildlife detection. Signal Image Video Process. 2023, 17, 343–351.

[CrossRef]
50. Petso, T.; Jamisola, R.S., Jr.; Mpoeleng, D. Review on methods used for wildlife species and individual identification. Eur. J. Wildl.

Res. 2022, 68, 3. [CrossRef]
51. Ukwuoma, C.C.; Qin, Z.; Yussif, S.B.; Happy, M.N.; Nneji, G.U.; Urama, G.C.; Ukwuoma, C.D.; Darkwa, N.B.; Agobah, H. Animal

species detection and classification framework based on modified multi-scale attention mechanism and feature pyramid network.
Sci. Afr. 2022, 16, e01151. [CrossRef]

52. Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European Conference
on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018.

53. Liu, B.; Qu, Z. AF-TigerNet: A lightweight anchor-free network for real-time Amur tiger (Panthera tigris altaica) detection. Wildl.
Lett. 2023, 1, 32–41. [CrossRef]

54. Zualkernan, I.; Dhou, S.; Judas, J.; Sajun, A.R.; Gomez, B.R.; Hussain, L.A. An IoT system using deep learning to classify camera
trap images on the edge. Computers 2022, 11, 13. [CrossRef]

https://doi.org/10.3390/pr11092751
https://doi.org/10.1016/j.ecoinf.2022.101919
https://doi.org/10.3390/electronics12020377
https://doi.org/10.3390/s23156738
https://doi.org/10.3390/s23063336
https://www.ncbi.nlm.nih.gov/pubmed/36992047
https://doi.org/10.3390/d16030139
https://doi.org/10.1007/s00371-022-02503-4
https://doi.org/10.1016/j.neucom.2018.09.061
https://doi.org/10.1109/ACCESS.2022.3180796
https://doi.org/10.3390/electronics12102274
https://doi.org/10.3390/agriculture13071285
https://doi.org/10.3390/ani13193134
https://doi.org/10.1371/journal.pone.0283932
https://doi.org/10.3390/electronics11162494
https://doi.org/10.3390/agriculture12081242
https://doi.org/10.3390/f14020315
https://doi.org/10.3390/rs14195063
https://doi.org/10.1007/s11760-022-02237-9
https://doi.org/10.1007/s10344-021-01549-4
https://doi.org/10.1016/j.sciaf.2022.e01151
https://doi.org/10.1002/wll2.12008
https://doi.org/10.3390/computers11010013

Remote Sens. 2024, 16, 1350 28 of 28

55. Khatri, K.; Asha, C.S.; D’Souza, J.M. Detection of animals in thermal imagery for surveillance using GAN and object detection
framework. In Proceedings of the 2022 International Conference for Advancement in Technology (ICONAT), Goa, India,
21–22 January 2022; pp. 1–6.

56. Geethanjali, P.; Rajeshwari, M. Advances in Ecological Surveillance: Real-Time Wildlife Detection Using MobileNet-SSD V2
CNN. 2023. Available online: https://www.researchgate.net/profile/Geethanjali-P-2/publication/377077516_Advances_in_
Ecological_Surveillance_Real-Time_Wildlife_Detection_using_MobileNet-SSD_V2_CNN_Machine_Learning/links/659441
4e0bb2c7472b2bc699/Advances-in-Ecological-Surveillance-Real-Time-Wildlife-Detection-using-MobileNet-SSD-V2-CNN-
Machine-Learning.pdf (accessed on 20 December 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.researchgate.net/profile/Geethanjali-P-2/publication/377077516_Advances_in_Ecological_Surveillance_Real-Time_Wildlife_Detection_using_MobileNet-SSD_V2_CNN_Machine_Learning/links/6594414e0bb2c7472b2bc699/Advances-in-Ecological-Surveillance-Real-Time-Wildlife-Detection-using-MobileNet-SSD-V2-CNN-Machine-Learning.pdf
https://www.researchgate.net/profile/Geethanjali-P-2/publication/377077516_Advances_in_Ecological_Surveillance_Real-Time_Wildlife_Detection_using_MobileNet-SSD_V2_CNN_Machine_Learning/links/6594414e0bb2c7472b2bc699/Advances-in-Ecological-Surveillance-Real-Time-Wildlife-Detection-using-MobileNet-SSD-V2-CNN-Machine-Learning.pdf
https://www.researchgate.net/profile/Geethanjali-P-2/publication/377077516_Advances_in_Ecological_Surveillance_Real-Time_Wildlife_Detection_using_MobileNet-SSD_V2_CNN_Machine_Learning/links/6594414e0bb2c7472b2bc699/Advances-in-Ecological-Surveillance-Real-Time-Wildlife-Detection-using-MobileNet-SSD-V2-CNN-Machine-Learning.pdf
https://www.researchgate.net/profile/Geethanjali-P-2/publication/377077516_Advances_in_Ecological_Surveillance_Real-Time_Wildlife_Detection_using_MobileNet-SSD_V2_CNN_Machine_Learning/links/6594414e0bb2c7472b2bc699/Advances-in-Ecological-Surveillance-Real-Time-Wildlife-Detection-using-MobileNet-SSD-V2-CNN-Machine-Learning.pdf

	Introduction
	Materials and Methods
	Study Area and Sample Plots
	General Methodology
	Dataset Construction
	WL-YOLO
	Experimental Environment and Parameters

	Results
	Discussion
	The Advantages of Our Approach
	Limitations and Potential Improvements

	Conclusions
	References

