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Abstract: The Bailong River Basin is one of the most developed regions for debris flow disasters
worldwide, often causing severe secondary disasters by blocking rivers. Therefore, the early identifi-
cation of potential debris flow disasters that may block the river in this region is of great significance
for disaster risk prevention and reduction. However, it is quite challenging to identify potential
debris flow disasters that may block rivers at a regional scale, as conducting numerical simulations
for each debris flow catchment would require significant time and financial resources. The purpose
of this article is to use public resource data and machine learning methods to establish a relationship
model between debris flow-induced river blockage and key influencing factors, thereby economically
predicting potential areas at risk for debris flow-induced river blockage disasters. Based on the field
investigation, data collection, and remote sensing interpretation, this study selected 12 parameters,
including the basin area, basin height difference, relief ratio, circularity ratio, landslide density, fault
density, lithology index, annual average frequency of daily rainfall exceeding 40 mm, river width,
river discharge, river gradient, and confluence angle, as critical factors to determine whether debris
flows will cause river blockages. A relationship model between debris flow-induced river blockage
and influencing factors was constructed based on machine learning algorithms. Several machine
learning algorithms were compared, and the XGB model performed the best, with a prediction
accuracy of 0.881 and an area under the ROC curve of 0.926. This study found that the river width
is the determining factor for debris flow blocking rivers, followed by the annual average frequency
of daily rainfall exceeding 40 mm, basin height difference, circularity ratio, basin area, and river
discharge. The early identification method proposed in this study for river blockage disasters caused
by debris flows can provide a reference for the quantitative assessment and pre-disaster prevention
of debris flow-induced river blockage chain risks in similar high-mountain gorge areas.

Keywords: debris flow; river blockage; remote sensing; machine learning

1. Introduction

Sediment transport is the primary driving force behind the morphological and land-
scape evolution of river channels. It has significant impacts on the chemical and biological
processes of rivers, as well as human activities, with debris flow processes being particu-
larly severe [1]. Debris flows are one of the common geological hazards in mountainous
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areas, attracting extensive attention due to their destructive nature [2–6]. Once debris flows
block rivers, they can cause severe secondary disasters. Therefore, the risk prediction of
debris flow-induced river blockage disasters in the region is of great significance for debris
flow risk prevention and reduction [7,8]. The Bailong River Basin is one of the regions in
the world with the most severe debris flow disasters [9–11]. River blockages caused by
debris flows often occur in this area during heavy rainfall, resulting in serious loss of life
and property.

For example, on 8 August 2010, the Sanyanyu catchment (Figure 1a) and Luojiayu
catchment in Zhouqu County experienced a debris flow that blocked the river. This event,
which occurs once every 200 years, resulted in 1765 deaths and direct economic losses of
about CNY 3.3 billion [12]. On 7 August 2017, Wenxian was hit by an extreme rainstorm.
The Yangtang catchment (Figure 1b) experienced a large-scale debris flow that occurs once
every 80 years. It caused five deaths and destroyed the Liping Village at the mouth of
the catchment. The Longba River was blocked, forming a barrier lake that submerged
roads and a large area of farmland. The direct economic loss exceeded CNY 30 million. On
17 August 2020, the Shuimo catchment in Wenxian County (Figure 1c) experienced a debris
flow that occurs once every hundred years, which blocked the Baishui River, a tributary of
the Bailong River, forming a barrier lake that was 300 m wide and 800 m long. This event
caused significant loss of life and property. The increase in loose materials after the May
12th earthquake in Wenchuan County greatly amplified the scale of debris flows and the
risk of river blockage caused by debris flows [13–15]. Therefore, the early identification of
debris flow-induced river blockage disasters should be given a high level of attention.
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Figure 1. The distribution of debris flow catchments once blocked the river and catchments without
river blocking records in the Bailong River Basin (within Gansu Province, China).

Several studies have been conducted on the risk assessment of debris flow-induced
river blockages. Ref. [16] analyzed the formation, collapse, background, and key factors
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of debris flow dams. They conducted 19 groups of flume experiments to establish critical
indicators of dam formation. Ref. [17] assessed the probability of river blockages caused by
debris flows after the Wenchuan earthquake. They used equations for the total mudslide
volume and maximum flow rate per unit width to obtain damming parameters. Ref. [18]
proposed a backward calculation method and numerical simulation for mitigation planning
for the Xiaojia catchment based on predictions of river blockages. Ref. [19] used the FLO-2D
model to simulate the formation, movement, deposition, and degree of river blockages
caused by debris flows in Guangyuanbao under different rainfall frequencies. Ref. [20]
developed an evaluation method for assessing debris flow dam formation. This method
includes two conditions: the sediment transported by debris flow must reach the opposite
bank of the river, and the thickness of debris flow deposits must be higher than the in
situ river depth. Ref. [21] proposed an early identification method for river blockages
caused by debris flows based on a dimensionless volume index. They considered the
relationship between the volume of sediment deposition from tributary mudslides and the
minimum damming volume and introduced the dimensionless volume index to evaluate
dam formation. Ref. [8] analyzed the impact of climate change on regional river blockages
caused by debris flows, focusing on the Palong Zangbo basin. They established a regional
damming assessment model and system for river blocking disasters. Ref. [22] conducted
experimental research on the use of flow-blocking walls at the confluence of tributaries and
main rivers to mitigate debris flow disasters. Ref. [7] conducted experimental studies on
the blockage of rivers by viscous debris flows and investigated the relationship between
the degree of blockage and key parameters such as the confluence angle, dimensionless
volume, unit flow rate ratio, and dimensionless yield stress.

From the above, it can be seen that the risk assessment of debris flow blockage disasters
mainly includes a critical index/condition method, a numerical back-calculation method,
a numerical simulation method, a quantitative assessment method, etc. There are many
factors that affect river blockages caused by debris flows, including the confluence angle
of the debris flow, the discharge of the main river and the debris flow, the total volume of
debris flow, the width of the main river, the gradient of the main river, and the yield stress
of the debris flow [7,20–22], among which the confluence angle is considered an important
factor [16,21,23].

However, it is quite challenging to identify potential debris flow disasters that may
block rivers at a regional scale, as conducting numerical simulations for each debris flow
catchment would require significant time and financial resources. The purpose of this article
is to use public resource data and scientific modeling methods to establish a relationship
model between debris flow-induced river blockage and key influencing factors, thereby
economically predicting potential risk areas for debris flow-induced river blockage disasters
and providing a reference for the risk prevention and reduction in chain disasters caused
by debris flow-induced river blockages in the region. Specifically, the densely populated
Bailong River Basin, known for its frequent occurrence of debris flows, was selected as
the research area. Historical records of debris flow-induced river blockage disasters in
the region were investigated, and the key influencing factors affecting river blockages
were identified. Based on machine learning algorithms, a probability prediction model for
debris flow-induced river blockages was constructed, enabling the early identification and
spatial prediction of regional debris flow-induced river blockage disasters. This research
provides a reference for the risk prevention and reduction in chain disasters caused by
debris flow-induced river blockages in the region.

2. Data and Methods
2.1. Inventory of River Blocking Disasters

The Bailong River Basin is located in a rapidly deformed zone transitioning from the
Qinghai–Tibet Plateau to the Loess Plateau. It is characterized by large elevation differences,
active neotectonics, widespread weak rock strata, concentrated rainfall, and rainstorm,
making it one of the areas that are the most severely affected by debris flow disasters in
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China [24]. The lowest elevation in the area is 406 m, the highest elevation is 4457 m, and the
maximum elevation difference of the river basin is 4051 m. The annual average precipitation
is 500–900 mm, mainly concentrated from June to September. According to the data from
the Geological Environmental Monitoring Institute of Gansu Province, there are currently
over 800 catchments with significant debris flow activity in the region. The frequency of
debris flow occurrences varies from once every 50 years or more to over 10 times per year.
Through data collection, remote sensing image interpretation, and field investigations, the
basic characteristics of debris flow occurrences in the Bailong River Basin over the past
60 years have been compiled. A total of 28 debris flow catchments with historical river
blockage disasters and 45 debris flow catchments without river blockage disasters have been
identified in the study area (Figure 1). Specifically, we conducted field investigations and
interviews with residents at the mouths of the debris flow channels to determine whether
blockage events have occurred. We also cross-referenced this information with historical
records and historical remote sensing images. These points are mainly distributed along the
main stem of the Bailong River and its secondary tributaries, with the highest concentration
of points occurring in the middle reaches of the main stem of the Bailong River.

2.2. Impact Factors of Debris Flow-Induced River Blockages

The factors influencing debris flow-induced river blockage in this study are divided
into two categories: characteristics of the debris flow catchments and characteristics of
the rivers. A total of 12 factors were selected (Table 1). Specifically, 8 parameters were
chosen as the characteristics of the debris flow catchments, and their selection criteria are
detailed below.

Table 1. Impact factors of debris flow-induced river blockages.

No. Factors Abbr. Unit Data and Methods

1 Basin area A km2 DEM and GIS analysis
2 Basin height difference H m DEM and GIS analysis
3 Channel relief ratio Rr / DEM and GIS analysis
4 Circularity ratio Cr / DEM and GIS analysis

5 Landslide density Ld / Remote sensing interpretation and
GIS analysis

6 Fault density Fd / GIS analysis
7 Lithology index Li / GIS analysis

8 Annual average frequency of daily rainfall
>40 mm F40 times/yr Rainfall data and GIS analysis

9 River width Rw m Remote sensing interpretation and GIS
analysis

10 River discharge Rd m3/s Hydrological observation data

11 River gradient Rg / Remote sensing interpretation and GIS
analysis

12 Confluence angle Ca ◦ Remote sensing interpretation and GIS
analysis

Basin area (A): A larger basin area of a debris flow catchment typically means there
are more soil and rocks available for the debris flow to transport. Therefore, during a
debris flow event, there may be a greater input of sediment into the river channel, thereby
increasing the likelihood of river blockage.

Basin height difference (H) and channel relief ratio (Rr, the ratio of basin relief to
basin length): These reflect the potential energy conditions of debris flows [25–27], thereby
affecting the dynamic conditions of debris flows. A steep terrain and large relief make
debris flows more likely to occur and increase the probability of river blockage. The slope
of the debris flow channel is one of the important factors that determine the flow velocity
and erosive power of the debris flow. This parameter was selected with the aim of assessing
the erosive capacity of debris flows.
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Circularity ratio (Cr): This reflects the roundness of a catchment and its ability to concen-
trate water by analyzing the relationship between the basin area and perimeter [28–31].

Landslide density (Ld, Figure 2a): This reflects the material supply for debris flows,
thereby influencing the scale of debris flows. When a landslide occurs, a large amount of
soil and rocks may collapse [32,33], forming landslide dams that block the channel. If a
debris flow occurs at this time, it can result in dam-break effects, amplifying the scale of the
debris flow and increasing the likelihood of river blockage.
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Fault density (Fd, Figure 2b): Fault zones are often associated with the formation
of mountainous terrain, where the geological strata can become unstable and prone to
landslides and debris flows. When earthquakes or other geological activities trigger fault
movements, a large amount of loose material may collapse into the debris flow channel,
increasing the risk of river blockage. The lithological and fault data are sourced from the
1:100,000 public version geological map.

Lithology index (Li): Lithology affects the sediment supply capacity of debris flows,
which, in turn, influences the scale of debris flows. Certain rocks, such as siltstone and
mudstone, have strong erodibility. These rocks are prone to disintegration and dissolution
during debris flow events, resulting in the formation of a large amount of fine-grained
material. This increases the mobility of the debris flow and the risk of river blockage.
Additionally, some rocks, like shale and sandstone, are susceptible to erosion and frag-
mentation. During a debris flow process, these rocks may rapidly undergo erosion and
collapse, releasing a significant amount of sediment, thereby increasing the sediment yield
of the debris flow and the probability of river blockage. In this study, rock types have
been classified into five categories ranging from hard to soft: extremely hard (including
granite, diorite, granodiorite, quartz diorite, and gabbro), hard (including slate, gneiss,
marble, limestone, quartzite, and schist), medium (including mudstone, sandstone, sandy
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mudstone, muddy sandstone, and clastic occasionally interbedded with siltstone), soft
(including limestone, phyllite, and shale), and extremely soft (including alluvial deposits,
lacustrine sediments, marine sediments, fluvial sediments, and glacial sediments). They
are assigned a value from 1 to 5 to form a 30 m × 30 m grid dataset of rock types. The
average value of all grids within each catchment is calculated as the lithology index (Li) to
represent the rock characteristics of each catchment (Figure 2c).

Annual average frequency of daily rainfall exceeding 40 mm (F40): Intense rainfall
events are one of the main factors leading to river blockage by debris flow. This study
selects the annual average frequency of daily rainfall exceeding 40 mm (F40) (Figure 2d)
to reflect the rainfall erosive conditions in the region. The 40 mm value is selected here
because the larger values of annual precipitation frequency do not vary significantly across
the entire study area, which does not provide sufficient rainfall information for modeling.
Rainfall data are sourced from the rainfall records from 41 meteorological stations in the
study area for the 2003–2013 period.

The river characteristic factors include four parameters: river width (Rw), river dis-
charge (Rd), river gradient (Rg), and confluence angle (Ca). Generally, a wider river valley,
larger river discharge, smaller confluence angle, and steeper channel slope make a river
less susceptible to river blockage disasters [7,21]. The river width, river gradient, and
confluence angle are derived from regional digital elevation models (DEMs) and a visual in-
terpretation of remote sensing images. River discharge data are obtained from hydrological
monitoring points provided by local soil and water conservation departments.

2.3. Modeling Methods
2.3.1. Machine Learning Algorithms

The aim of this study is to construct a binary classification machine learning model to
quantitatively analyze the relationship between influencing factors and the occurrence of
debris flow-induced river blockage disasters. In recent years, numerous machine learning
algorithms have been developed and applied in various research fields. This study selects
five machine learning models, namely Logistic Regression, Random Forest, Extra Tree,
Gradient Boosting, and XGBoost, for a comparative analysis and chooses the optimal model.
The model selection includes popular ensemble learning methods as well as traditional
learning algorithms.

Logistic Regression: Logistic Regression is a supervised learning model used to handle
binary classification problems. It establishes a probabilistic relationship between input
features and output labels using a logistic function, allowing for class labels and their
probabilities to be predicted.

Random Forest: Random Forest is an ensemble learning algorithm that combines
multiple decision trees through model averaging for classification or regression predic-
tions. It improves model stability and generalization by introducing randomness and
feature sampling.

Extra Tree: Extra Tree, or Extremely Randomized Trees, is another ensemble learning
algorithm similar to Random Forest, but with more random splits at each node during
tree construction. By further randomizing the splitting process, Extra Tree aims to reduce
overfitting and achieve higher computational efficiency. It is suitable for large-scale datasets
and high-dimensional feature problems.

Gradient Boosting: Gradient Boosting is an ensemble learning algorithm that trains
weak learners iteratively and combines them into a strong learner for predictions. Through
gradient descent, each weak learner tries to minimize the residuals of the previous learner
on the training set.

XGBoost: XGBoost, short for Extreme Gradient Boosting, is an efficient Gradient Boost-
ing algorithm that is particularly useful for large-scale datasets and high-dimensional feature
problems. It combines Gradient Boosting with regularization techniques and employs strate-
gies like parallel computing and cache optimization, achieving high prediction performance.
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2.3.2. Data Processing

To reveal the degree of correlation between different features and identify the presence
of redundant features, a cross-correlation heatmap of the factors was computed (Figure 3).
It is evident from the heatmap that the parameters exhibit good variability, indicating their
distinctiveness.
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The ratio of debris flow-blocking rivers and non-blocking rivers in the collected sample
data in this study is 28:45, indicating that the number of negative samples is greater than
that of positive samples. This data imbalance can lead to an imbalance in the training
process, where the model tends to learn more about the negative samples, affecting the
stability of the model [34]. In this study, the SMOTE (Synthetic Minority Oversampling
Technique) resampling technique is used to generate synthetic positive samples in order
to increase the number of positive samples. The main idea of SMOTE is to create new
synthetic samples by interpolating between minority class samples [35].

2.3.3. Model Validation and Feature Importance

Using the cross-validation algorithm in Scikit-learn, 70% of the data are randomly
selected as the training set for model training, while the remaining 30% are used as the
validation set to evaluate the model. This process is repeated 10 times. By using different
subsets of training data to build the model and evaluating the model’s performance using
the testing data, this algorithm prevents the overfitting of the model [36].

The feature importance method based on mean impurity reduction is used to calculate
the importance of each factor. The importance of a feature is determined by the total
impurity reduction brought by that feature [37].

3. Results

The 12 influencing factors were used as independent variables, and the occurrence of
blockade in the rivers was used as the dependent variable. These variables were input into
machine learning algorithms for training, resulting in the construction of a multi-factor
model for predicting the risk of debris flow-induced river blockage. After model evaluation,
the prediction accuracy of the validation set samples for each model was determined and
is shown in Figure 4. It can be observed that the XGB model performs the best, with an
average prediction accuracy of 0.881 on the validation set samples. The average area under
the ROC curve (AUC) is 0.926 (Figure 5), indicating the model’s good performance.
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Using the constructed XGB model, the probability values (P) of debris flows causing
river blockage in the study area were predicted. Based on the prediction results, the
probability values of 28 known instances of river blockage caused by debris flows ranged
from 0.918 to 0.995. Therefore, debris flow catchments with probability values greater
than 0.918 were classified as having a higher risk of causing river blockage. Based on this
criterion, a total of 80 potential hazardous points of debris flow-induced river blockage
were identified, as shown in Figure 6.

The distribution characteristics of these identified potential river blockage points
cannot be intuitively inferred from Figure 6. Therefore, a feature importance analysis
is needed to reveal the importance of different influencing factors in predicting river
blockage hazard points. To analyze the importance of different factors in the blockage
caused by debris flows, the importance of different factors in predicting blockage was
quantitatively evaluated through feature importance algorithms (Figure 7). It is revealed
that the river width (Rw) is the most important factor in debris flow-induced river blockage.
The next important factors include the annual average frequency of daily rainfall exceeding
40 mm (F40), basin height difference (H), circularity ratio (Cr), basin area (A), and river
discharge (Rd).
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To better understand the relationship between the key influencing factors and river
blockage hazard points, box plots for six parameters were calculated and are presented in
Figure 8.

The river width ranks first, indicating that it is a determining factor for debris flow-
induced river blockage. Narrow river valleys significantly increase the likelihood of
debris flow blockage. The second key factor is the annual average frequency of daily
rainfall exceeding 40 mm. The frequency of debris flow occurrence is determined by
the coupling of material supply conditions and rainfall conditions [38,39]. The overall
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frequency of daily rainfall exceeding 40 mm for non-blockage debris flow catchments is
higher than that for blockage debris flow catchments. This may be due to the lower rate of
material accumulation in regions with high-frequency rainfall, resulting in a smaller debris
flow scale. Through field investigations, it was found that debris flow catchments with
blockage histories have a lower frequency of occurrence, while those without blockage
history have a higher frequency of occurrence but on a smaller scale. Therefore, high-
intensity precipitation events and sediment accumulation within the watershed significantly
influence the frequency and scale of debris flows [1].
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The third key factor is the basin height difference, which reflects the potential energy
conditions of debris flows. Favorable potential energy conditions allow for greater dynamic
in debris flows, increasing their scale and the possibility of river blockage.

The circularity ratio of non-blockage debris flow catchments is generally larger than
that of blockage debris flow catchments. This can be seen in the three-dimensional water-
shed screenshots of the Sanyanyu, Yangtang, and Shuimo catchments shown in Figure 1.
Blockage debris flow catchments typically have longer main channels. On one hand, this
allows for the accumulation of water from tributaries, resulting in a higher flow rate in the
main channel. On the other hand, it enables the initiation of more loose material through
the main channel, gradually increasing the speed and enhancing the size and momentum
of the debris flow. Such watershed morphology contributes to a relatively low circularity
ratio. Therefore, a higher basin circularity ratio may reduce the potential risk of debris flow-
induced river blockage, as the larger hydraulic conditions required for blockage necessitate
a longer main channel in the basin.

The basin area determines the scale of the debris flow, so a larger basin area increases
the possibility of debris flow-induced river blockage. As for the river discharge parameters,
the overall river discharge of non-blockage debris flow catchments is slightly higher than
that of blockage debris flow catchments. When the river discharge is larger, debris flows
are less likely to accumulate and stabilize, reducing the likelihood of river blockage.

4. Discussion

This study constructed a relationship model between influencing factors and debris
flow-induced blockage disasters using machine learning algorithms. The methods and steps
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strictly followed the analysis methods of data science, and the accuracy and performance
of the model were validated.

The strength of this study lies in its use of machine learning algorithms to construct
a relationship model between the possibility of debris flow-induced river blockage and
the key influencing factors. This allows for the rapid and effective early identification of
debris flow-induced river blockage hazards within a regional scope, providing support for
risk prevention and reduction efforts. However, this approach may not fully consider the
specific dynamic processes of debris flow-induced river blockage. Further investigations
and detailed numerical simulations of the dynamic processes of debris flows are needed
to accurately assess the potential risk areas of river blockage identified through early
identification in this study. Therefore, the regional debris flow-blocking river prediction
method provided in this article can be combined with the physically based single gully
debris flow hazard prediction method so that they can mutually benefit from each other at
different spatial scales [40].

5. Conclusions

This study focuses on the densely populated Bailong River Basin, which is prone to
debris flows, and explores the relationship between debris flow-induced river blockage
and influencing factors using machine learning algorithms. A probability prediction model
for debris flow-induced river blockage was constructed, and the model evaluation revealed
that the XGB model effectively captured the relationship between debris flow-induced river
blockage and influencing factors. A total of 80 potential sites for debris flow-induced river
blockage hazards were identified in the region through early identification.

This study found that the river width is the decisive factor for debris flow-induced
river blockage, followed by the annual average frequency of daily rainfall exceeding 40 mm,
basin height difference, circularity ratio, basin area, and river discharge. Through analyzing
how these factors influence debris flow-induced river blockage, new insights were gained,
providing references for future research. The early identification method for debris flow-
induced river blockage proposed in this study can serve as a reference for a quantitative
assessment and pre-event prevention of chain risks related to debris flow-induced river
blockage in similar high mountain canyon areas.
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