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Abstract: Hyperspectral image (HSI) classification aims to recognize categories of objects based on
spectral–spatial features and has been used in a wide range of real-world application areas. Attention
mechanisms are widely used in HSI classification for their ability to focus on important information in
images automatically. However, due to the approximate spectral–spatial features in HSI, mainstream
attention mechanisms are difficult to accurately distinguish the small difference, which limits the
classification accuracy. To overcome this problem, a spectral–spatial-sensorial attention network
(S3AN) with controllable factors is proposed to efficiently recognize different objects. Specifically, two
controllable factors, dynamic exponential pooling (DE-Pooling) and adaptive convolution (Adapt-
Conv), are designed to enlarge the difference in approximate features and enhance the attention
weight interaction. Then, attention mechanisms with controllable factors are utilized to build the
redundancy reduction module (RRM), feature learning module (FLM), and label prediction module
(LPM) to process HSI spectral–spatial features. The RRM utilizes the spectral attention mechanism to
select representative band combinations, and the FLM introduces the spatial attention mechanism to
highlight important objects. Furthermore, the sensorial attention mechanism extracts location and
category information in a pseudo label to guide the LPM for label prediction and avoid details from
being ignored. Experimental results on three public HSI datasets show that the proposed method is
able to accurately recognize different objects with an overall accuracy (OA) of 98.69%, 98.89%, and
97.56%, respectively.

Keywords: hyperspectral image classification; attention mechanism; spectral-spatial-sensorial
attention network; controllable factors

1. Introduction

A hyperspectral image (HSI) is a three-dimensional cube composed of spectral and
spatial information. Among them, the spectral information consists of hundreds of continu-
ous narrow bands that record the reflectance values of light from visible to infrared [1]. The
spatial information consists of pixels that describe the distribution of land cover [2]. The
abundant spectral and spatial information improves the reliability and stability of object
analysis [3]. Therefore, the interpretation of HSI is widely used in precision agriculture,
land management, and environmental monitoring [4].

HSI classification attempts to assign labels for each pixel and obtains the category
of different objects [5]. In the early stages, some classical machine learning models were
proposed for HSI classification, such as k-means clustering [6], multinomial logistic re-
gression (MLR) [7], random forest (RF) [8], and support vector machine (SVM) [9], et al.,
which extract the representative features and assign the categories with sufficient labeled
samples [10]. However, these models are difficult to capture the correlation of spectral and
spatial information and to distinguish the approximate features.
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Deep learning models apply neural networks to automatically extract local and global
features, and fully consider the contextual semantics to obtain the abstract representa-
tion of spectral–spatial features [11]. As the commonly used model, the convolutional
neural network (CNN), with the characteristics of local connection and weight sharing,
extracts spectral–spatial features simultaneously [12]. 2D-CNN and 3D-CNN are used in
HybridSN to capture the semantic features of the HSI patches [13]. However, adjacent
patch samples contain a large overlapping area, which entails expensive computational
costs [14]. To reduce the overlapping computation, spectral–spatial residual networks
(SSRN) [15], spectral–spatial fully convolutional networks (SSFCN) [16], and fast patch-free
global learning (FPGA) [17] were proposed to take HSI cubes or entire images as training
samples and upgrade pixel-to-pixel classification to image-to-image classification. The
deep learning models utilize convolutional layers to expand the receptive field, andextract
the correlation of long-range features to improve the classification accuracy [18]. However,
these models face the problem of detail loss during feature extraction, i.e., the details within
a few pixels gradually decrease and are likely to disappear after several down-sampling.

To retain detailed features that provide sufficient information for label prediction,
attention mechanisms have attracted widespread interest for their ability to emphasize
important objects, which are like the eye of models, automatically capturing the important
objects and ignoring the background, and the capability of feature extraction is significantly
improved with a small computation sacrifice [19]. In addition, the pooling operation and
multilayer perceptron (MLP) are utilized to quickly evaluate the importance of features
and assign the corresponding weights [20]. Some classical attention mechanisms, such
as “squeeze and excitation” (SE) [21], convolutional block attention module (CBAM) [22],
and efficient channel attention (ECA) [23], measure the importance of spectral and spatial
features with weights, as well as delineate the attention regions. However, the pooling
operation is difficult to distinguish the continuous and approximate features of HSI, and
results in inaccurate attention regions, which is described as “attention escape”.

The inaccurate attention region is mainly caused by the imprecise evaluation of
attention weights, and adjusting the evaluation manner could effectively mitigate this
problem [24]. Therefore, controllable factors are introduced to enlarge the differences
in approximate features and enhance the sensitivity of attention mechanisms [25]. For
example, the deep square pooling operation was proposed to increase the difference in
continuous features by using pixel-wise squares to generate more discriminative weights
[26]. The coordinate attention mechanism (CAM) was proposed to locate important objects
to efficiently capture the long-range dependency of features [27]. The residual attention
mechanism (RAM) introduced residual branches to fuse shallow features and control the
spatial semantics padding of trunk branches [28]. These approaches adjust the evaluation
manner of attention mechanisms and obtain more accurate attention weights to emphasize
the important objects [29]. However, controllable factors lack the dynamic adjustment
ability to adapt to the complex and continuous feature environment of HSI.

In this paper, a spectral-spatial-sensorial attention network (S3AN) with controllable
factors is proposed for HSI classification. In S3AN, attention mechanisms and convolutional
layers are encapsulated in the redundancy reduction module (RRM), feature learning
module (FLM), and label prediction module (LPM). Specifically, dynamic exponential
pooling (DE-Pooling) and adaptive convolution (Adapt-Conv), as controllable factors,
participate in weight sharing and convey information via interfaces to balance the control
effect of modules. In RRM, the spectral attention mechanism converts the spectral features
into band weights, evaluates them by reconstructive convolution (Rec-Conv), and selects
important bands to construct dimension-reduced features. In FLM, the spatial attention
mechanism with double branches is utilized to pad details and emphasize spatial features,
and cross-level feature learning (CFL) is utilized to extract the abstract representation
of deep and shallow features. In LPM, the sensorial attention mechanism is utilized
to search for the coordinates of labeled pixels and guides transition convolution (Trans-
Conv) for pixel-wise classification. Finally, a lateral connection is used to fuse the three
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functional modules, gradually optimizing the representation of features and improving the
classification accuracy. The main contributions of this paper are listed as follows:

• A S3AN with controllable factors is proposed for HSI classification. The S3AN
integrates redundancy reduction, feature learning, and label prediction processes
based on the spectral-spatial-sensorial attention mechanism, which refines the trans-
formation of features and improves the adaptability of attention mechanisms in
HSI classification;

• Two controllable factors, DE-Pooling and Adapt-Conv are developed to balance the
differences in spectral–spatial features. The controllable factors are dynamically ad-
justed through backpropagation to accurately distinguish continuous and approximate
features, and improve the sensitivity of attention mechanisms;

• A new sensorial attention mechanism is designed to enhance the representation of
detailed features. The category information in the pseudo label is transformed into
the sensorial attention map to highlight important objects, and position details and
improve the reliability of label prediction.

2. Related Work and Motivations

HSI classification, as a pixel-wise classification task, relies on the contextual seman-
tic extraction of spectral–spatial features [30]. To improve classification accuracy, CNN
and attention mechanisms have attracted widespread interest for their ability to extract
contextual semantics and emphasize important objects.

2.1. HSI Classification Based on CNN

The CNN-based methods utilize convolutional layers to automatically extract spectral–
spatial features to implement end-to-end HSI classification and achieve satisfactory perfor-
mance [31]. A Conv-Deconv network (CDN) was proposed for HSI classification, which
integrated feature extraction and feature recovery processes based on encoder-decoder
structure for unsupervised spectral–spatial feature learning [32]. To avoid overfitting, SSRN
proposed a spectral–spatial residual network to take 3D cubes as training samples, which
avoids complex feature engineering of HSI [15]. To reduce the complexity of the model,
HybridSN fused 3D-CNN and 2D-CNN to analyze the correlation of spatial and spectral
information and obtain a more abstract level of spatial representation [13]. Dynamic low-
rank and sparse priors constrained deep autoencoders (DLRSPs-DAEs) fully utilized the
low-rank and sparse property of HSI, and combined the low-rank sparse model (LRSM)
with deep auto-encoder (DAE) to capture the important features of HSI [33]. Further, fast
patch-free global learning (FPGA) was proposed for HSI classification, which was based on
a global stochastic stratified (GS2) sampling strategy and FreeNet to achieve an end-to-end
classification of the entire image [17]. However, these methods ignore the dimensional
mutation problem in the prediction layer, i.e., the semantic feature map is suddenly trans-
formed into the classification result that is the same size as the original image. During
up-sampling, the feature map is padded with many irrelevant elements, which corresponds
to increased noise and even suppresses the representation of details [34].

2.2. HSI Classification Based on Attention Mechanism

The attention mechanism-based methods highlight the important spectral–spatial
features and play an active assistance role in HSI classification [35]. Double-branch multi-
attention network (DBMA) constructed a branching framework based on the spectral
attention mechanism and spatial attention mechanism to extract 3D cube features simul-
taneously [36]. To boost the interaction of features, the residual spectral–spatial network
(RSSN) introduced residual blocks in the spatial and spectral network, and combined them
with contextual semantics to optimize the representation of features [37]. Spectral–spatial
attention networks (SSAN) embedded the attention mechanism into RNN and CNN, re-
spectively, thus achieving a sufficient learning of continuous spectral information and the
spatial correlation of adjacent pixels [38]. Deep self-representation learning framework
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(DLSF) adaptively removed anomalous pixels from HSI by an alternating optimization
strategy, and introduced a subspace recovery autoencoder (SRAE) to sense the local anoma-
lous pixels by using spatial detail information [39]. In addition, the band selection methods
that contained spectral attention mechanisms, such as BS-Net [40] and TAttRecNet [41], also
became popular for HSI processing. However, the attention mechanism in these methods
is insensitive to the difference in approximate features, which affects the generation of
attention weights and limits the final classification accuracy.

2.3. Motivations

Since some CNN-based HSI classification methods tend to ignore detail features
during down-sampling, which makes it difficult for details to provide knowledge for la-
bel prediction [42]. To address this problem, a spatial attention mechanism with double
branches is applied to pad shallow features; skip connections are introduced in CFL to in-
teract with deep and shallow features; a sensorial attention mechanism and Trans-Conv are
added to emphasize the important objects and retain sufficient details for label prediction.

The inaccurate evaluation manner decreases the sensitivity of attention mechanisms,
and results in difficulty in generating clear category boundaries for attention mechanism-
based HSI classification methods [43]. To address this problem, controllable factors are
introduced to dynamically adjust the differences in spectral–spatial features. Among them,
DE-Pooling is utilized to enlarge the differences in approximate features to obtain more
distinguishable feature weights. Adapt-Conv is utilized to enhance the interaction efficiency
of feature weights and capture the correlation of adjacent and long-range features. The
main purpose of controllable factors is to improve the sensitivity of attention mechanisms
to generate accurate attention regions.

Hence, S3AN integrates RMM, FLM, and LPM for redundancy reduction, feature
learning, and label prediction, respectively. The controllable factors, DE-Pooling and Adapt-
Conv, are utilized to adjust the delineation of attention regions and update the control
effect by the backpropagation to balance the feature extraction ability. RRM combines
spectral attention mechanism and Rec-Conv to select important bands for the construction
of dimension-reduced features, and reduces the computational cost of feature learning.
FLM fuses spatial attention mechanism and CFL to extract spectral–spatial contextual
semantics and learn the abstract representation of features. In addition, LPM attempts
to introduce the sensorial attention mechanism and Trans-Conv to mitigate dimensional
mutation to improve the final classification accuracy.

3. Materials and Methods

S3AN designs functional modules based on attention mechanisms and convolutional
layers, where the attention mechanism reweights feature maps to generate feature masks,
and combines with convolution layers to extract abstract representation. A lateral connec-
tion is utilized to integrate these modules and interfaces are applied to convey feature maps
and feedback information. As shown in Figure 1, the HSI cube is defined as X ∈ RC×S×S,
where S and C are the input size and the number of bands, respectively. The original
image is transformed by RRM, the spectral feature is converted into a weight vector by
spectral attention mechanism; Rec-Conv is utilized to update the weights; and the top B
bands with the highest weights are selected to construct the dimension-reduced feature that
replaces the original image. Then, the dimension-reduced feature is delivered to FLM via
the interface, and the spatial attention mechanism is applied to pad some shallow details;
the spectral–spatial contextual semantic features are extracted by CFL, and the pseudo
label is created through multi-scale feature fusion. Further, the pseudo label is transformed
into a sensorial attention map by the sensorial attention mechanism, and Trans-Conv is
guided to focus on the labeled pixels to optimize the representation of semantic features.
Finally, the classification result is obtained by LPM.
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Figure 1. The overall architecture of S3AN. S3AN is mainly divided into three modules, i.e., RRM,
FLM, and LPM. RRM selects important bands for redundancy reduction; FLM extracts contextual
semantics for feature learning; LPM positions global objects for label prediction.

3.1. Controllable Factors

To improve the ability of attention mechanisms to distinguish approximate spectral–
spatial features, two controllable factors are proposed; that is, dynamic exponential pooling
(DE-Pooling) and adaptive convolution (Adapt-Conv), and the detailed structure is shown
in Figure 2.
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Figure 2. The details of controllable factors. DE-Pooling balances the differences in approximate
features, Adapt-Conv enhances the interaction efficiency of feature weights.

3.1.1. DE-Pooling

DE-Pooling adds a dynamic exponent computation before the global average pooling
to control the fluctuation of spectral–spatial features [44]. As shown in Figure 2, taking
the DE-Pooling of spectral feature as an example, the HSI cube is split into hundreds of
bands, and then each band Xi is enlarged by an exponential multiple. This enlargement
process highlights the differences in information between adjacent bands, making each
band independently weighted. As seen in the band weights change, the approximate
feature becomes more distinguishable. To adjust the spectral feature within a suitable range,
the dynamic exponent is adjusted based on spectral attention weights, and the adjustment
process is written as
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γ = f (A) =
∑C

i=1 AC
i

C × AC
max

+ rand(0, 2) (1)

where f (A) denotes the mapping of dynamic exponent to spectral attention weights, AC
i

denotes the i-th spectral attention weight, and AC
max denotes the maximum spectral attention

weight. In addition, the original physical properties of HSI spectral–spatial features are
altered as the dynamic exponent γ continues to increase. Therefore, to avoid the infinite
enlargement of the spectral features, expecting the feature value x to change within the
interval (x, x3), rand(0, 2) is added to limit the variation in the dynamic exponent.

3.1.2. Adapt-Conv

To relate local and global features and improve the interaction efficiency of band
weights, Adapt-Conv utilizes 1D-convolution instead of MLP and sets an adaptive con-
volutional kernel to control the information interaction range [45]. Adapt-Conv for band
weight interaction is shown in Figure 2, where the adaptive convolutional kernel size is
set to 3. To achieve adaptive adjustment of the kernel size, the mapping is conducted to
describe the relationship between the number of bands and the kernel size. Considering
that there may also be a positive proportional mapping between the number of bands and
the kernel size, the mapping is written as

C = 2(θ×k+b) (2)

where the kernel size k, θ and b are controllable parameters. Since the number of bands C is
usually close to being a power of 2, the mapping relation is defined as a nonlinear function
2(θ×k+b). Thus, after a given number of bands C, the kernel size k is calculated using the
inverse function, which is written as

k = g(C) =
∣∣∣∣ log2(C)

θ
+

b
θ

∣∣∣∣
odd

(3)

where g(C) denotes the mapping of the kernel size k to the number of bands C. Since the
convolutional kernel slides with the center as an anchor point, whereas odd convolutional
kernel has a natural center point. Therefore, the odd operation |t|odd is set in Adapt-Conv,
and it is taken as an odd number close to t.

3.2. Redundancy Reduction Module (RRM)

RRM converts the reduction in spectral redundancy to a band reconstruction task, i.e.,
recovering the complete image with a few important bands [40]. Therefore, the band impor-
tance is evaluated by the spectral attention mechanism, and the spectral attention weights
are updated by Rec-Conv, selecting the bands that are essential for spectral reconstruction
to construct the dimension-reduced feature.

As shown in Figure 3, the HSI cube X is fed into the spectral attention mechanism,
and DE-Pooling fully considers the difference in spectral features and assigns a unique
band weight wi to each band. Further, the band weights WC are conveyed to Adapt-Conv
for local and global features interaction and obtain the final spectral attention map AC.
Therefore, the generation of the spectral attention map is written as

AC = σ
(

Adaptconv

(
DEpool(X)

))
(4)

where σ is the sigmoid activation function, Adaptconv denotes the adaptive convolution, and
DEpool denotes the dynamic exponential pooling. Furthermore, a band-wise multiplication
operation is applied to create the interaction between the HSI cube and the spectral attention
map to obtain the spectral feature mask MC = X ⊗ AC.
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Rec-Conv aims to improve the weights of important bands and suppress the rep-
resentation of redundant bands. This structure consists of two Conv3 × 3 and a nearest
interpolation function for recovering the spectral feature mask. Then, calculate the loss
between the original and recovered images, and update the band weights. After several
iterations, the important bands will obtain the higher weight. Finally, the top B bands with
the highest weights are selected by sorting, and their indexes are conveyed to FLM.

3.3. Feature Learning Module (FLM)

In FLM, the spatial attention mechanism emphasizes global spatial features by the
trunk branch and pads the details by the residual branch. Then, CFL is applied to extract
the contextual semantics by skip connection and multi-scale feature fusion.

As shown in Figure 4, the dimension-reduced feature X̂ ∈ RB×S×S is received by the
spatial attention mechanism and allocated to two branches for processing. In the trunk
branch, DE-Pooling is utilized to balance the difference in spatial features and assign spatial
attention weights to each pixel. Then, the spatial information interaction is performed by a
Conv1 × 1 + BN + ReLU convolutional combination, and obtain the spatial attention map
AS. In the residual branch, the input feature X̂ is fed into two convolution combinations
of Conv3 × 3 + BN + ReLU to extract a shallow feature map R ∈ R

B
4 ×S×S. Therefore, the

generation of the spatial attention map is written as

AS = σ
(

F1×1
[

DEpool
(
X̂
)])

(5)

where F1×1 denotes a convolution operation with a filter size of 1 × 1. The pixel-wise
multiplication operation is applied to create the interaction of spatial attention map and
dimension-reduced feature to obtain the trunk feature mask T ∈ X̂ ⊗ AS. Further, the trunk
feature mask T and the shallow feature map R are concatenated by weighted fusion to
obtain a spatial feature mask MS = T + λR.
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Figure 4. The details of FLM, where X̂ denotes the dimension-reduced feature, AS denotes the spatial
attention map, MS denotes the spatial feature mask, and Ŷ denotes the semantic feature map.
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CFL following the encoder-decoder structure is mainly applied to extract contextual
semantics. Among them, the encoder utilizes several Conv3 × 3 + BN + ReLU convolu-
tional combinations for down-sampling and feature learning to obtain abundant semantic
information. The decoder utilizes several nearest interpolation functions for up-sampling
and spatial feature recovery to obtain the semantic feature map that is of the same size as
the original image.

Furthermore, the pseudo label is generated by multi-scale feature fusion. The shallow
feature map (feature1) and deep feature maps (feature2, feature3) extracted by the encoder
are selected for feature concatenation. Since the size of the deep feature maps are 1/2
and 1/4 of the input image, respectively, and not directly usable for creating the pseudo
label. Therefore, two nearest neighbor interpolation functions are used to recover the
size of the deep feature maps, when the feature maps are of uniform size, they are then
concatenated by using the concat operation. In this way, the obtained feature maps with
object locations that are similar to the input image. Further, the argmax function value is
computed to obtain the possible category information in each pixel. In general, the pseudo
label is an advanced prediction result that provides the location and category information
of ground objects.

3.4. Label Prediction Module (LPM)

In LPM, the sensorial attention mechanism is applied to search for the labeled pixels in
the semantic feature map, and Trans-Conv is applied to transition the semantic feature map
into the classification result. Therefore, the module improves the stability and reliability of
label prediction by object position and feature transition.

As shown in Figure 5, the sensorial attention mechanism extracts the location and
category information in the pseudo label and guides the model to focus on the location
where objects are likely to be present, so that important details are not ignored by the model.
Specifically, the pseudo label is fed to the sensorial attention mechanism, and its row and
column elements are extracted by using DE-Pooling and Adapt-Conv. Then, the row and
column sensorial attention weights are cross-multiplied to generate the complete sensorial
attention map AL. Thus, the generation of the sensorial attention map is written as

AL = σ
(

Adaptconv

(
DEpool(Row)

)
× Adaptconv

(
DEpool(Column)

))
(6)

where Row and Column indicate the row and column elements of the pseudo label, respec-
tively. Then, a pixel-wise multiplication operation is applied to create the interaction of
the sensorial attention map and the semantic feature map Ŷ to obtain the sensorial feature
mask ML = Ŷ ⊗ AL.
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Trans-Conv is applied to mitigate the dimensional mutation in the prediction layer
and has a flexible design concept. Its depth is determined by the size of the semantic feature
map Ŷ and the dimensional reduction coefficient r. The appropriate Trans-Conv layers both
increase the model depth and retain details for label prediction. Therefore, the mapping of
the Trans-Conv layers l and the semantic feature dimension D is established as

l =
1
2
|logr(D − class)| (7)

where r denotes the dimensional reduction coefficient. Since the number of channels of the
semantic feature map is reduced to class, so the dimensional distance is D − class. Finally,
the output of Trans-Conv is performed for label prediction to obtain the classification
result P.

3.5. S3AN for HSI Classification

To meet the requirements of HSI classification, S3AN designs RRM, FLM, and LPM
based on attention mechanisms with controllable factors to process the original image.
Among them, controllable factors and detail processing approaches are utilized to address
the problems of "attention escape" and detail loss. A lateral connection is applied to
integrate three functional modules, and the interfaces are used to convey feature maps and
feedback information between the modules. Therefore, the original image X is transformed
by these modules to obtain the classification result P. To train the model and adjust the
controllable factors, the cross-entropy is utilized as the loss function, which is written as

loss(Y, P) = − 1
N

N

∑
i=1

M

∑
j=1

yi,jlog
(

pi,j
)

(8)

where Y denotes ground truth and P denotes the classification result. M and N refer to the
number of categories and samples of the training datasets, respectively. yi,j denotes the
sign function with a result of 0 or 1. pi,j denotes the probability of the pixel i belongs to
category j.

4. Experimental Results
4.1. Datasets Description

To comprehensively evaluate the performance of the proposed method, three public
HSI datasets are used for comparative experiments [46]. Details of the number of samples
and dataset division for each category are summarized in Table 1.

• Indian Pines dataset: The Indian Pines dataset was collected by AVIRIS imaging spec-
trometer in a piece of Indian Pine in Indiana, USA, with a spatial resolution of 20 m.
The image has 200 bands and 145 × 145 pixels and contains 16 different categories of
land cover.

• Salinas dataset: The Salinas dataset was collected by the AVIRIS imaging spectrometer
in the Salinas Valley, California, USA, with a spatial resolution of 3.7 m. The image
has 204 bands and 512 × 217 pixels and contains 16 different categories of land cover;

• WHU-Hi-HanChuan dataset: The WHU-Hi-HanChuan dataset was collected by the
Headwall Nano Hyperspec imaging spectrometer aboard the drone platform in
Hanchuan, Hubei Province, China, with a spatial resolution of about 0.0109 m. The
image has 274 bands and 1217 × 303 pixels and contains 16 different categories of
land cover.



Remote Sens. 2024, 16, 1253 10 of 21

Table 1. Number of train samples and test samples for the Indian Pines, Salinas, and HanChuan
datasets.

Class
Indian Pines Salinas HanChuan

Name Train Test Name Train Test Name Train Test

1 Alfalfa 5 41 Brocoli-1 201 1808 Strawberry 4473 40,262
2 Corn-n 143 1285 Brocoli-2 373 3353 Cowpea 2275 20,478
3 Corn-m 83 747 Fallow 198 1778 Soybean 1029 9258
4 Corn 24 213 Fallow-r 139 1255 Sorghum 535 4818
5 Grass-p 48 435 Fallow-s 268 2410 Water-s 120 1080
6 Grass-t 73 657 Stubble 396 3563 Watermelon 453 4080
7 Grass-m 3 25 Celery 358 3221 Greens 590 5313
8 Hay-w 48 430 Graps-u 1127 10,144 Trees 1798 16,180
9 Oats 2 18 Soil-v-d 620 5583 Grass 947 8522

10 Soy-n 97 875 Corn-w 328 2950 Red roof 1052 9464
11 Soy-m 245 2210 Lettuce-4 107 961 Gray roof 1691 15,220
12 Soy-c 59 534 Lettuce-5 193 1734 Plastic 368 3311
13 Wheat 20 185 Lettuce-6 92 824 Bare soil 912 8204
14 Woods 126 1139 Lettuce-7 107 963 Road 1856 16,704
15 Buildings 39 347 Vinyardu 727 6541 Bright-o 114 1022
16 Stone-s 9 84 Vinyardv 181 1626 Water 7540 67,861

Total 924 9325 Total 5415 48,714 Total 25,753 257,530

4.2. Experimental Setup

• Operation environment: All experiments are based on the PyTorch library and run on
Tesla M40 GPUs. The experimental results are the average of 10 independent runs;

• Evaluation metrics: Five metrics are used to evaluate the performance of HSI clas-
sification with respect to classification accuracy and computational efficiency, such
as the per-class accuracy, the overall accuracy (OA), the average accuracy (AA), the
Kappa coefficient (Kappa), and the inference time. Specifically, evaluation metrics are
calculated as follows:

PerclassAccuracy =
TP

TP + FP
(9)

OA =
TP + TN

TP + TN + FP + FN
(10)

AA =
PerAcc1 + PerAcc2 + · · ·+ PerAccN

N
(11)

PE =
(TP + FP)(TP + FN) + (FP + TN)(FN + TN)

(TP + TN + FP + FN)2 (12)

Kappa =
OA − PE

1 − PE
(13)

where TP denotes True Positive, FP denotes False Positive, TN denotes True Negative,
and FN denotes False Negative. Note that PE is an intermediate variable in the cal-
culation of Kappa. PerAcc denotes per-class accuracy. In addition, the inference time
denotes the time required by the model to ergodic the entire HSI. The shorter of the
inference time indicates that the model is closer to the actual application requirements.

• Parameters setting: For the parameters of controllable factors, the dynamic exponent
is initially set to 2; the adaptive convolution kernel size is initially set to 3; and the
number of bands selected is set to 32. In addition, the Adam optimizer trains the
model with a learning rate of 0.001, the loss function is cross-entropy and the training
epoch is set to 200.
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4.3. Classification Results

S3AN is compared with some state-of-the-art methods for HSI classification, which
include HybridSN [13], DBDA [36], SSRN [15], SSFCN [16], CBW [43], CTN [46], and
FPGA [17]. The classification results of different methods on three datasets are detailed
in Tables 2–4, and the classification maps obtained by different methods are illustrated in
Figures 6–8.

Table 2. Classification results by different methods on the Indian Pines dataset.

Class HybridSN DBDA SSRN SSFCN CBW CTN FPGA S3AN

1 90.25 ± 0.86 95.15 ± 0.20 89.07 ± 0.95 56.24 ± 2.60 93.33 ± 1.64 95.23 ± 0.53 92.37 ± 0.15 99.16 ± 0.42
2 87.74 ± 0.29 93.76 ± 1.15 93.59 ± 0.63 89.65 ± 0.75 94.71 ± 0.85 94.28 ± 0.20 96.55 ± 0.12 91.55 ± 0.15
3 89.19 ± 0.92 89.61 ± 0.17 92.25 ± 0.99 95.45 ± 0.44 97.24 ± 0.23 94.61 ± 1.41 92.38 ± 0.37 96.33 ± 0.33
4 85.15 ± 1.94 92.89 ± 0.42 90.53 ± 1.36 92.62 ± 0.68 99.03 ± 0.07 98.14 ± 0.16 96.85 ± 0.25 98.18 ± 0.48
5 91.18 ± 0.08 94.66 ± 1.94 94.31 ± 2.56 95.44 ± 1.25 89.61 ± 1.21 98.62 ± 0.27 94.26 ± 0.31 97.75 ± 0.07
6 93.53 ± 0.25 96.45 ± 0.76 89.75 ± 0.72 74.96 ± 1.92 95.75 ± 2.91 97.60 ± 0.32 95.08 ± 1.25 99.60 ± 0.36
7 89.29 ± 0.88 95.33 ± 1.13 93.09 ± 1.02 85.66 ± 0.96 99.62 ± 0.15 96.15 ± 0.21 98.33 ± 0.88 95.89 ± 0.20
8 84.41 ± 0.64 97.01 ± 0.46 95.66 ± 1.79 93.50 ± 0.45 99.89 ± 0.04 99.30 ± 0.06 98.74 ± 0.65 97.03 ± 0.15
9 90.96 ± 1.12 95.62 ± 0.21 91.15 ± 0.56 91.75 ± 2.21 99.33 ± 0.21 89.99 ± 2.49 99.51 ± 0.42 96.96 ± 0.26
10 95.54 ± 1.28 92.74 ± 0.85 90.69 ± 0.21 84.85 ± 0.95 91.69 ± 1.35 99.18 ± 0.25 90.52 ± 1.13 99.51 ± 0.12
11 91.78 ± 2.21 94.11 ± 1.15 88.26 ± 2.24 89.15 ± 0.41 94.28 ± 0.84 96.83 ± 0.30 93.66 ± 0.16 95.45 ± 1.65
12 92.76 ± 0.86 96.35 ± 0.06 97.75 ± 1.09 93.96 ± 0.50 97.95 ± 0.39 98.50 ± 0.33 91.77 ± 3.71 96.33 ± 3.74
13 95.10 ± 0.42 94.18 ± 0.51 90.33 ± 0.57 89.31 ± 0.61 99.49 ± 0.28 99.45 ± 0.15 96.05 ± 0.85 98.45 ± 0.58
14 69.89 ± 2.98 89.72 ± 0.29 91.51 ± 0.66 91.99 ± 1.15 99.57 ± 0.04 99.21 ± 0.38 93.33 ± 2.59 99.76 ± 0.23
15 95.41 ± 0.68 88.96 ± 1.86 89.36 ± 0.30 92.25 ± 1.18 98.55 ± 0.16 98.86 ± 0.04 95.00 ± 0.23 98.50 ± 0.95
16 90.17 ± 0.11 95.99 ± 0.58 96.95 ± 0.29 90.96 ± 0.86 96.34 ± 0.31 94.99 ± 2.75 96.15 ± 0.58 96.88 ± 2.21

OA (%) 90.85 ± 0.15 95.29 ± 0.27 93.63 ± 0.05 89.75 ± 0.54 95.66 ± 0.24 96.59 ± 0.34 96.74 ± 0.17 98.69 ± 0.13
AA (%) 89.52 ± 0.42 93.91 ± 0.21 92.14 ± 0.73 87.98 ± 0.42 96.64 ± 0.50 96.93 ± 0.20 95.03 ± 0.20 97.33 ± 0.45
Kappa 0.9095 ± 0.004 0.9431 ± 0.002 0.9308 ± 0.003 0.8585 ± 0.002 0.9505 ± 0.002 0.9559 ± 0.004 0.9524 ± 0.004 0.9841 ± 0.002

Time (s) 8.78 ± 2.04 6.51 ± 1.03 7.62 ± 1.85 19.35 ± 2.55 3.58 ± 0.87 12.26 ± 1.46 5.4 ± 1.27 2.36 ± 0.99

Note that the values in bold are the highest.

(a) False-color Image (b) Ground Truth (c) HybridSN(90.85%) (d) DBDA(95.29%) (e) SSRN(93.63%)

(f) SSFCN(89.75%) (g) CBW(95.66%) (h) CTN(96.59%) (i) FPGA(96.74%) (j) S3AN(98.69%)

Figure 6. Classification maps of the different methods on the Indian Pines dataset.

4.3.1. Classification Results on Indian Pines Dataset

Table 2 shows that CNN-based methods obtain reasonable classification results, where
the OA of S3AN and FPGA reaches 98.69% and 96.74%, respectively. It is shown that CNN-
based methods have advantages in capturing the correlation of spectral–spatial features.
As for the attention mechanism-based methods, CBW and CTN, with 95.66% and 96.59% of
OA. In addition, SSFCN is able to directly deal with the entire HSI, and it achieves 89.75%
and 87.98% of OA and AA, respectively. However, for objects with small samples, such as
categories 1 and 6, the classification accuracies of SSFCN are only 56.24% and 74.96%. It
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is illustrated that the Indian Pines dataset has imbalanced training samples, and objects
with a larger number of samples are beneficial for feature learning. In addition, S3AN
introduces the RRM module to transform HSI into dimension-reduced features. Hence, the
inference time of the entire image is reduced to 2.36 s, which is much lower than that of
SSFCN and CTN.

As shown in Figure 6, there are fewer misclassifications in the classification map
of S3AN compared with other methods. For example, in the Soybean-m and Corn-n
regions, S3AN shows a good visualization and obtains better classification results than its
competitors. Meanwhile, attention mechanism-based methods, such as CTN and CBW,
have better visualization performance than SSFCN. However, some misclassification still
occurs in DBDA and SSRN because the approximate features are difficult to distinguish. In
contrast, S3AN introduces controllable factors to balance the differences in spectral–spatial
features and enhance the sensitivity of attention mechanisms. Therefore, it is suitable for
recognizing objects with small samples, such as the Corn and Soybean categories.

(a) False-color Image (b) Ground Truth (c) HybridSN(90.49%) (d) DBDA(93.55%) (e) SSRN(92.68%)

(f) SSFCN(90.92%) (g) CBW(95.08%) (h) CTN(96.08%) (i) FPGA(97.06%) (j) S3AN(98.99%)

Figure 7. Classification maps of the different methods on the Salinas dataset.
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Table 3. Classification results by different methods on the Salinas dataset.

Class HybridSN DBDA SSRN SSFCN CBW CTN FPGA S3AN

1 99.70 ± 0.04 94.89 ± 0.59 99.01 ± 0.16 63.82 ± 2.30 98.66 ± 0.05 99.50 ± 0.21 95.99 ± 0.54 99.32 ± 0.40
2 95.85 ± 0.12 98.22 ± 0.72 71.74 ± 3.56 99.55 ± 0.42 99.85 ± 0.11 94.96 ± 0.85 99.49 ± 0.36 98.75 ± 0.38
3 93.34 ± 0.37 92.85 ± 1.31 99.48 ± 0.12 96.74 ± 0.56 98.80 ± 0.25 99.39 ± 0.14 99.16 ± 0.60 99.93 ± 0.06
4 75.66 ± 2.64 95.89 ± 0.32 99.13 ± 0.14 87.99 ± 1.12 98.58 ± 0.60 97.71 ± 0.60 86.43 ± 1.59 99.51 ± 0.18
5 86.84 ± 1.95 87.26 ± 2.27 85.16 ± 1.57 86.56 ± 2.37 96.89 ± 0.32 97.47 ± 0.59 95.62 ± 0.55 96.65 ± 1.65
6 85.29 ± 0.62 83.79 ± 0.30 84.10 ± 2.92 90.55 ± 0.85 87.28 ± 1.74 99.27 ± 0.33 94.97 ± 0.20 95.74 ± 0.33
7 90.34 ± 0.58 85.75 ± 0.49 98.92 ± 0.53 90.24 ± 0.95 99.64 ± 0.03 87.38 ± 0.89 95.79 ± 0.56 98.41 ± 0.40
8 90.17 ± 0.62 86.11 ± 1.65 89.85 ± 0.36 93.61 ± 0.44 98.80 ± 0.16 99.61 ± 0.17 90.61 ± 1.65 95.22 ± 2.85
9 89.59 ± 0.66 91.18 ± 0.38 99.15 ± 0.39 95.35 ± 0.07 96.23 ± 0.85 98.77 ± 0.05 97.55 ± 0.97 98.79 ± 0.78
10 87.68 ± 3.31 89.99 ± 1.78 91.59 ± 0.51 85.49 ± 0.38 95.35 ± 0.64 90.61 ± 0.61 98.43 ± 0.43 95.46 ± 0.25
11 82.55 ± 0.47 92.35 ± 0.28 87.99 ± 0.83 89.71 ± 0.23 91.32 ± 0.79 96.89 ± 0.55 94.24 ± 0.45 98.22 ± 1.12
12 87.60 ± 2.80 98.96 ± 0.22 94.15 ± 0.95 79.75 ± 0.39 93.38 ± 0.85 94.37 ± 0.34 95.33 ± 1.92 97.75 ± 0.51
13 95.16 ± 1.15 95.19 ± 0.65 97.82 ± 0.55 95.07 ± 1.15 85.92 ± 2.38 99.43 ± 0.19 96.87 ± 0.45 96.36 ± 0.33
14 86.33 ± 0.22 90.55 ± 0.44 97.71 ± 0.60 99.51 ± 0.17 93.91 ± 0.33 98.06 ± 0.22 95.61 ± 0.16 99.73 ± 0.09
15 83.46 ± 0.58 91.76 ± 0.19 92.87 ± 0.71 90.96 ± 1.68 95.57 ± 0.45 85.39 ± 2.38 97.79 ± 0.66 97.55 ± 0.38
16 92.32 ± 0.14 94.33 ± 0.61 96.85 ± 0.28 89.65 ± 0.20 93.55 ± 0.20 97.77 ± 0.25 99.03 ± 0.22 99.85 ± 0.25

OA (%) 90.49 ± 0.55 93.55 ± 0.32 92.68 ± 0.39 90.92 ± 0.14 95.08 ± 0.25 96.08 ± 0.23 97.96 ± 0.65 98.59 ± 0.18
AA (%) 88.87 ± 0.86 91.82 ± 0.35 92.85 ± 0.25 89.66 ± 0.30 95.23 ± 0.34 96.03 ± 0.18 95.84 ± 0.35 97.95 ± 0.32
Kappa 0.9205 ± 0.004 0.933 ± 0.005 0.9033 ± 0.002 0.8993 ± 0.004 0.9413 ± 0.003 0.9468 ± 0.005 0.9774 ± 0.004 0.9792 ± 0.004

Time (s) 40.48 ± 5.45 40.33 ± 7.53 53.88 ± 5.95 102.99 ± 9.88 32.69 ± 4.50 42.68 ± 9.06 37.99 ± 3.37 25.09 ± 2.70

Note that the values in bold are the highest.

(a) False-color Image (b) Ground Truth

(c) HybridSN(94.61%) (d) DBDA(93.40%)

(e) SSRN(92.42%) (f) SSFCN(93.43%)

(g) CBW(95.45%) (h) CTN(96.35%)

(i) FPGA(95.45%) (j) S3AN(97.56%)

Figure 8. Classification maps of the different methods on the HanChuan dataset.
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4.3.2. Classification Results on Salinas Dataset

Table 3 shows that the attention mechanism-based methods achieve better classification
results than the CNN-based methods. Among them, the OA of S3AN obtains about a 10%
improvement, compared to HybridSN and SSFCN. It shows that attention mechanism-
based methods are able to focus on the important objects to improve the classification
accuracy. Moreover, S3AN introduces the sensorial attention mechanism to search for the
labeled pixels, and guides the model to focus on the objects of each category simultaneously.
Therefore, compared to FPGA, S3AN is more stable in the classification of each category
and has a 2.11% improvement in AA. Further, the inference time of S3AN for the entire
image is 25.09 s, which is about 20 s faster than DBDA and SSRN.

As shown in Figure 7, the classification map of S3AN shows the distribution of different
objects is more clear than other methods. This indicates that the attention mechanism with
controllable factors plays an active role in feature learning. Although DBDA and SSRN
utilize attention mechanisms for HSI classification, their classification maps still contain
some regions that are not accurately recognized. For approximate features that are difficult
to distinguish, such as Vineyard and Grape categories, these attention mechanism-based
methods still suffer from some misclassification. It is thought that unsuitable evaluation
manners in attention mechanisms lead to inaccurate attention regions, which influence
classification results. In contrast, CTN and S3AN are able to accurately locate important
objects and obtain classification maps that are close to ground truth.

Table 4. Classification results by different methods on the HanChuan dataset.

Class HybridSN DBDA SSRN SSFCN CBW CTN FPGA S3AN

1 97.14 ± 0.74 95.41 ± 0.51 99.33 ± 0.32 99.50 ± 0.32 99.04 ± 0.37 99.32 ± 0.07 99.18 ± 0.27 99.41 ± 0.25
2 98.26 ± 0.36 99.71 ± 0.20 97.43 ± 0.62 98.17 ± 0.45 93.90 ± 0.88 97.43 ± 0.82 98.60 ± 0.55 96.04 ± 0.77
3 90.58 ± 1.18 84.97 ± 0.95 97.28 ± 0.95 99.75 ± 0.22 96.58 ± 1.78 97.27 ± 1.12 99.39 ± 0.64 99.69 ± 0.12
4 99.90 ± 0.06 86.97 ± 0.48 99.83 ± 0.31 98.39 ± 0.17 96.12 ± 1.10 99.83 ± 0.09 99.15 ± 0.41 99.75 ± 0.17
5 89.29 ± 0.95 98.02 ± 0.26 66.65 ± 3.75 12.03 ± 5.89 86.44 ± 2.40 86.65 ± 3.85 99.62 ± 0.23 99.96 ± 0.02
6 70.72 ± 2.25 81.72 ± 2.27 99.79 ± 0.15 78.83 ± 1.33 93.89 ± 0.56 97.99 ± 0.25 98.41 ± 0.51 98.40 ± 0.28
7 89.65 ± 0.60 99.82 ± 0.03 95.59 ± 0.29 99.06 ± 0.15 96.75 ± 0.49 95.59 ± 0.55 99.45 ± 0.13 99.92 ± 0.05
8 96.87 ± 0.49 93.40 ± 0.65 96.59 ± 0.66 97.16 ± 0.26 99.97 ± 0.02 96.59 ± 0.38 98.13 ± 0.19 97.99 ± 1.12
9 97.12 ± 0.85 94.37 ± 1.21 99.22 ± 0.54 99.68 ± 0.14 94.99 ± 0.38 99.22 ± 0.32 99.58 ± 0.26 98.70 ± 0.55
10 99.57 ± 0.31 98.68 ± 0.33 97.94 ± 0.36 96.51 ± 0.25 96.67 ± 0.65 97.94 ± 0.39 99.33 ± 0.75 99.59 ± 0.13
11 91.34 ± 0.25 89.54 ± 0.50 82.97 ± 0.89 95.26 ± 0.27 71.84 ± 2.78 82.97 ± 0.77 99.06 ± 0.50 99.78 ± 0.18
12 73.88 ± 4.62 86.46 ± 0.95 90.09 ± 1.44 85.57 ± 1.58 93.70 ± 0.49 90.09 ± 0.60 88.03 ± 2.42 83.7 ± 1.42
13 90.31 ± 0.37 88.17 ± 1.69 42.76 ± 5.12 97.92 ± 1.40 96.83 ± 0.71 96.49 ± 0.59 98.09 ± 1.37 97.71 ± 0.65
14 97.58 ± 0.15 98.35 ± 0.78 99.47 ± 0.31 99.77 ± 0.21 95.99 ± 0.67 99.46 ± 0.33 99.57 ± 0.25 99.65 ± 0.16
15 98.68 ± 0.63 99.13 ± 0.51 84.05 ± 0.55 65.87 ± 3.35 75.41 ± 3.81 84.04 ± 1.55 7.96 ± 3.89 68.11 ± 2.85
16 99.85 ± 0.05 99.73 ± 0.07 99.39 ± 0.16 97.56 ± 0.57 95.53 ± 0.55 99.93 ± 0.04 99.32 ± 0.25 99.58 ± 0.07

OA (%) 94.61 ± 0.31 93.4 ± 0.65 92.42 ± 0.75 93.43 ± 0.46 95.45 ± 0.46 96.35 ± 0.29 96.62 ± 0.56 97.56 ± 0.52
AA (%) 92.55 ± 0.28 92.32 ± 0.44 90.52 ± 0.66 88.81 ± 0.60 92.78 ± 0.35 95.05 ± 0.46 92.68 ± 0.60 96.23 ± 0.31
Kappa 0.9447 ± 0.004 0.9204 ± 0.004 0.9191 ± 0.006 0.9288 ± 0.007 0.9429 ± 0.006 0.9668 ± 0.004 0.9505 ± 0.006 0.9769 ± 0.004

Time (s) 209.37 ± 9.96 404.83 ± 20.38 371.49 ± 10.44 508.42 ± 20.51 246.42 ± 16.40 313.26 ± 17.65 169.79 ± 3.15 121.09 ± 6.98

Note that the values in bold are the highest.

4.3.3. Classification Results on HanChuan Dataset

Table 4 shows that the methods with label processing, such as FPGA and S3AN, obtain
better classification results than other methods. Among them, GS2 is introduced into FPGA
for label-stratified sampling, with the OA and Kappa coefficients reaching 96.62% and
0.9505, respectively. S3AN processes the pseudo label by sensorial attention mechanism,
which further improves the OA to 97.56%. It is indicated that the location and category
information of different objects in the pseudo label plays a positive role in HSI classification
and contributes to the results of the S3AN. Since the HanChuan dataset contains a large
number of labeled samples, obtaining classification results requires a long inference time.
S3AN performs redundancy reduction before feature learning, and completes inference in
only 121.09 s, with a much lower time cost than SSRN, SSFCN, and DBDA. In addition,
S3AN introduces Trans-Conv to mitigate the dimensional mutation, which provides a ramp
for channel transition, and it retains some details for label prediction, therefore, a better
consistency is obtained with a Kappa coefficient of 0.9769 compared to other methods.

As shown in Figure 8, HybridSN and CTN show few misclassifications in the Tree
and Roof categories. Since these two categories of objects are in shadow and glare, it
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is difficult to recognize them directly even by human eyes, which brings challenges to
classification. Compared to CTN, S3AN is more concerned with the processing of details
and accurately distinguishing Grass and Watermelon categories. Moreover, in the shadow
areas, the classification result of S3AN is better than other methods and has sharper category
boundaries of details. This indicates that S3AN is efficient in enhancing the representation
of details and is robust enough to recognize objects in shadow areas.

4.3.4. Confusion Matrix

As shown in Figure 9, to show the classification ability of S3AN, the results of confusion
matrices on three datasets are visualized. From Figure 9b, it is seen that on the Indian
Pines dataset, a high classification accuracy is obtained for all categories except for the
Corn category. Notice that the S3AN also accurately recognizes the Grass-p category that
contains a small number of samples. For the Salinas dataset, the proposed method showed
misclassification for Grap objects due to the extreme similarity of the Grap and Vinyard
categories, but it is still able to accurately recognize ground objects in other categories.
From Figure 9c, it is observed that the HanChuan dataset has an imbalance of samples,
where most of the samples are distributed in the categories of Strawberry and Water,
which increases the difficulty of HSI classification, and the S3AN still obtains a satisfactory
classification results. Moreover, the proposed method is able to accurately recognize
objects with a small percentage of samples, such as the categories Sorghum, Watermelon,
and Bright, which suggests that the methods for retaining details in the S3AN play a
positive effect.

(a) Indian Pines (b) Salinas

(c) HanChuan

Figure 9. The confusion matrices visualization of S3AN on the three datasets.
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5. Discussion
5.1. Discussion of Controllable Factors

To analyze the influence of controllable factors, S3AN with no controllable factors is
set as the baseline and gradually adds DE-Pooling and Adapt-Conv to observe the change
in classification result.

As shown in Table 5, the OA of the baseline is lower on three datasets, it is suggested
that the spectral-spatial-sensorial attention mechanism without controllable factors makes
it difficult to distinguish the continuous and approximate features, and results in the
inaccurate delineation of attention regions. Then, DE-Pooling is added into attention
mechanisms, and the OA is increased from 65.03% to 96.18% on the Salinas dataset. It
is shown that DE-Pooling significantly improves the sensitivity of attention mechanisms
and controls the updating of attention weights to balance the differences in spectral–
spatial features. Then, DE-Pooling and Adapt-Conv are added into attention mechanisms
simultaneously, and further improve the classification result. In particular, the OA reaches
98.41% on the Indian Pines dataset, which indicates that boosting the weight interaction
contributes to enhancing the sensitivity of the attention mechanism and improves the
classification result.

Table 5. Classification results by different controllable factors.

Dataset Method DE-Pooling Adapt-Conv OA (%) AA (%) Kappa

Indian Pines
Baseline - - 83.19 ± 1.14 81.32 ± 1.68 0.7816 ± 0.075
DE-Pooling ✓ - 96.57 ± 0.65 96.85 ± 1.60 0.9379 ± 0.097
DE-Pooling + Adapt-Conv ✓ ✓ 98.41 ± 0.44 97.55 ± 0.60 0.9591 ± 0.059

Salinas
Baseline - - 65.03 ± 3.35 63.77 ± 2.70 0.5952 ± 0.031
DE-Pooling ✓ - 95.18 ± 0.65 94.35 ± 0.89 0.9331 ± 0.016
DE-Pooling + Adapt-Conv ✓ ✓ 98.09 ± 0.38 97.42 ± 0.55 0.9799 ± 0.012

HanChuan
Baseline - - 71.83 ± 4.78 69.52 ± 3.96 0.6607 ± 0.036
DE-Pooling ✓ - 95.61 ± 0.55 95.22 ± 0.27 0.9494 ± 0.031
DE-Pooling + Adapt-Conv ✓ ✓ 97.51 ± 0.11 96.89 ± 0.28 0.9673 ± 0.003

5.2. Discussion of Sensorial Attention Mechanism

The sensorial attention mechanism mainly contributes to positioning the labeled pixels
and emphasizing the details in the semantic feature map [47]. To verify its effectiveness,
experiments are conducted based on S3AN with the presence or absence of the sensorial
attention mechanism as the variable.

As shown in Figures 10–12, for the semantic feature map without the sensorial at-
tention mechanism, little pixels are highlighted to turn into the attention regions, and
the difference in adjacent features is insufficient. In contrast, the semantic feature map
with sensorial attention mechanism guidance expresses the important object areas and
emphasizes details within a few pixels. Note the areas of the red box, the sensorial attention
mechanism significantly highlights the labeled pixels and distinguishes the approximate
features with different degrees of attention regions. Specifically, for the HanChuan dataset,
the sensorial attention mechanism also focuses on the Roof and Tree areas in the shadow.
Although the shadow areas affect the representation of spatial features and increase the
difficulty of distinguishing the approximate features, the sensorial attention mechanism
still accurately positions the objects based on the category information of the pseudo label.
In addition, with the emphasis on the sensorial attention mechanism, the delineation of
attention regions in the semantic feature map is close to the real situation. Therefore, the
experimental results demonstrate that the sensorial attention mechanism is efficient to
emphasize the details of semantic feature maps, and adapts to HSI classification.
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(a) (b) (c) (d)

Figure 10. Visualization of attention regions for semantic feature map on Indian Pines dataset:
(a) false-color image, (b) ground truth, (c) visualization of feature map without sensorial attention
mechanism, (d) visualization of feature map with sensorial attention mechanism. Blue indicates
lower attention values and red indicates higher attention values.

(a) (b) (c) (d)

Figure 11. Visualization of attention regions for semantic feature map on Salinas dataset: (a) false-
color image, (b) ground truth, (c) visualization of feature map without sensorial attention mechanism,
(d) visualization of feature map with sensorial attention mechanism.

(a) (b)

(c) (d)

Figure 12. Visualization of attention regions for semantic feature map on HanChuan dataset: (a) false-
color image, (b) ground truth, (c) visualization of feature map without sensorial attention mechanism,
(d) visualization of feature map with sensorial attention mechanism.
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5.3. Discussion of Trans-Conv Layers

Trans-Conv mitigates the dimensional mutation by adding convolutional layers in
the prediction layer to achieve the transition of details. To analyze the effect of depth
for Trans-Conv on the classification result, different numbers of Trans-Conv layers are
added to the state-of-the-art methods, and the OA variations are observed to determine the
appropriate depth of Trans-Conv.

As shown in Figure 13, for the Indian Pines dataset, there is an additional improvement
of about 1% in OA for HybridSN, SSFCN, and S3AN when using only one Trans-Conv layer.
The OA of S3AN reaches about 97% with the addition of two Trans-Conv layers, which
is due to convolutional layers further extracting details while transforming the feature
dimensions. However, when the number of Trans-Conv layers is set to three, the decrease
in OA is rapid. Inappropriate Trans-Conv layers change the abstract semantic information
and result in a decrease in the representation of details. Moreover, for the Salinas and
HanChuan datasets with two Trans-Conv layers set up, the OA of the different methods
reaches about 96%. The appropriate Trans-Conv layers gradually decreasing the dimension
are able to retain details, and contribute to improving the classification accuracy. Therefore,
the dimensional reduction coefficient r is set to two, which means the dimension of the
feature map decays by half.
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Figure 13. The OA of state-of-the-art methods with different Trans-Conv layers on three datasets.

5.4. Discussion of Selected Bands

RRM selects the important bands to construct dimension-reduced features based
on spectral attention weights, to analyze the effect of the number of selected bands on
classification results, experiments are conducted based on different numbers of selected
bands and observe the variation in the classification accuracy.

As shown in Table 6, when the number of selected bands is 8, the OA of S3AN on
3 datasets is limited to about 60% because important bands are not fully selected for feature
learning. Then, the AA is significantly increased from 60% to about 80% when the number
of selected bands is set to 16. Further, the OA reaches about 97% and the classification
result gradually stabilizes when the number of selected bands is increased to 36. Figure 14
illustrates the trend of classification results for the different numbers of selected bands.
The variation in classification results shows that the insufficient number of selected bands
makes it difficult to obtain a satisfactory OA, and the inference time is increased by too
many bands. Therefore, an appropriate number of selected bands is beneficial for model
convergence and improving the speed of inference. Further, some continuous bands are
selected by RRM, since the physical characteristics of the object are saved in these bands and
have better feature representation. S3AN applies redundancy reduction as a pre-processing
to improve the speed of inference without sacrificing OA as much as possible, so that the
inference time on 3 datasets is reduced to 2.95 s, 25.59 s, and 120.55 s, respectively.
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Figure 14. The classification results of different numbers of selected bands on three datasets.

Table 6. Classification results of different numbers of selected bands on three datasets.

Dataset Number Selected Band OA (%) AA (%) Kappa Time (s)

Indian Pines

8 [102,104,. . . ,198] 61.33 ± 5.56 60.51 ± 4.70 0.5933 ± 0.093 1.66 ± 0.30
16 [56,102,. . . ,199] 82.60 ± 2.33 83.95 ± 1.16 0.7827 ± 0.062 1.85 ± 0.31
24 [18,56,. . . ,199] 97.45 ± 0.18 96.37 ± 0.25 0.9615 ± 0.005 2.07 ± 0.29
32 [12,18,. . . ,199] 97.63 ± 0.21 96.59 ± 0.09 0.9689 ± 0.003 2.41 ± 0.29
36 [12,17,. . . ,199] 97.25 ± 0.30 94.35 ± 0.27 0.9500 ± 0.003 2.95 ± 0.30

Salinas

8 [37,38,. . . ,197] 53.77 ± 5.53 59.73 ± 3.95 0.5630 ± 0.052 12.32 ± 1.56
16 [12,19,. . . ,200] 79.09 ± 2.61 82.14 ± 3.35 0.7949 ± 0.079 15.61 ± 2.05
24 [8,9,12,. . . ,200] 97.51 ± 0.22 96.75 ± 0.37 0.9665 ± 0.012 18.44 ± 3.32
32 [4,5,6,. . . ,200] 98.05 ± 0.16 98.00 ± 0.11 0.9811 ± 0.007 25.89 ± 2.98
36 [4,5,6,. . . ,200] 98.16 ± 0.29 95.58 ± 0.36 0.9503 ± 0.015 29.59 ± 3.75

HanChuan

8 [0,3,10,...,254] 65.30 ± 2.49 67.72 ± 3.60 0.6447 ± 0.071 64.35 ± 8.83
16 [0,3,10,. . . ,272] 76.11 ± 3.55 79.55 ± 3.70 0.7605 ± 0.063 89.05 ± 7.99
24 [1,3,10,. . . ,272] 96.89 ± 0.19 95.80 ± 0.23 0.9578 ± 0.015 96.16 ± 10.80
32 [1,3,10,. . . ,273] 97.32 ± 0.25 98.11 ± 0.19 0.9790 ± 0.010 120.55 ± 9.55
36 [1,2,3,. . . ,273] 96.09 ± 0.51 94.65 ± 1.01 0.9532 ± 0.026 164.89 ± 10.66

6. Conclusions

In this paper, an effective S3AN is proposed for HSI classification. Driven by control-
lable factors (DE-Pooling and Adapt-Conv), attention mechanisms are able to distinguish
differences in approximate spectral–spatial features and to generate more reliable regions
of interest. To reduce the computational cost, the controllable spectral attention mechanism
accurately highlights representative bands in the HSI and reduces spectral redundancy.
The controllable spatial attention mechanism cooperates with cross-layer feature learning
to automatically extract local contextual semantics, and enhances the ability of deep and
shallow feature interaction. In addition, the controllable sensorial attention mechanism
explores the location and category information of ground objects, which further enhances
the HSI classification results. The experimental results on three public HSI datasets show
that the proposed method enables fast and accurate HSI classification.

Based on the experimental results, it is known that the proposed controllable attention
mechanisms are adaptable to the complex feature environment of HSI. However, all results
are obtained under the condition of labeled datasets, which require a lot of time for labeling.
In contrast, producing unlabeled datasets reduces the workload, and it is interesting to
explore the self-supervised HSI classification in the future.
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