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Abstract: Nowadays, with the rapid development of consumer Unmanned Aerial Vehicles (UAVs),
utilizing UAV platforms for visual surveillance has become very attractive, and a key part of this
is remote vision-based pedestrian attribute recognition. Pedestrian Attribute Recognition (PAR)
is dedicated to predicting multiple attribute labels of a single pedestrian image extracted from
surveillance videos and aerial imagery, which presents significant challenges in the computer vision
community due to factors such as poor imaging quality and substantial pose variations. Despite
recent studies demonstrating impressive advancements in utilizing complicated architectures and
exploring relations, most of them may fail to fully and systematically consider the inter-region,
inter-attribute, and region-attribute mapping relations simultaneously and be stuck in the dilemma
of information redundancy, leading to the degradation of recognition accuracy. To address the issues,
we construct a novel Mask-Relation-Guided Transformer (MRG-T) framework that consists of three
relation modeling modules to fully exploit spatial and semantic relations in the model learning
process. Specifically, we first propose a Masked Region Relation Module (MRRM) to focus on precise
spatial attention regions to extract more robust features with masked random patch training. To
explore the semantic association of attributes, we further present a Masked Attribute Relation Module
(MARM) to extract intrinsic and semantic inter-attribute relations with an attribute label masking
strategy. Based on the cross-attention mechanism, we finally design a Region and Attribute Mapping
Module (RAMM) to learn the cross-modal alignment between spatial regions and semantic attributes.
We conduct comprehensive experiments on three public benchmarks such as PETA, PA-100K, and
RAPv1, and conduct inference on a large-scale airborne person dataset named PRAI-1581. The
extensive experimental results demonstrate the superior performance of our method compared to
state-of-the-art approaches and validate the effectiveness of mask-relation-guided modeling in the
remote vision-based PAR task.

Keywords: pedestrian attribute recognition; aerial imagery; relation modeling; masked attention
mechanism

1. Introduction

The Pedestrian Attribute Recognition (PAR) task [1] is dedicated to predicting multiple
pedestrian attributes, such as gender, age, and body shape, as semantic descriptions for a
single pedestrian image extracted from surveillance videos and aerial imagery. Nowadays,
with the rapid development of consumer Unmanned Aerial Vehicles (UAVs), the use of
UAV platforms for visual surveillance has become a necessary supplementary strategy to
traditional fixed-camera position surveillance. UAV-based remote visual surveillance has
received widespread attention from industry and academia due to its significant advan-
tages such as flexibility and mobility, emergency response capabilities, cost effectiveness,
remote operation, and automation. Different from the normal images captured by the
traditional fixed cameras, aerial images have the following characteristics: (1) Viewing
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angle and scale: UAV aerial images usually have a higher viewing angle and a wider
scale range, while normal images may have a closer-to-the-ground viewing angle and a
more localized scale. (2) Background environment: Aerial images may capture a broader
background environment, such as city streets and suburban areas, while normal images
may focus on specific scenes such as indoors or streets. (3) Image quality and clarity: Aerial
images have higher image resolution and clarity because UAVs usually carry advanced
camera equipment. Since the high-level semantic attributes are more robust to changes in
viewpoint and diverse viewing conditions, remote vision-based pedestrian attributes in
aerial imagery can be widely applied in person re-identification [2,3], pedestrian detection
and tracking [4,5], and person retrieval [6,7].

Although it may seem straightforward to state, recognizing pedestrian attributes
in real-world surveillance scenarios is still an extremely challenging task owing to three
relation factors: (1) Inter-region relations: The spatial data redundancy and cross-region
correlation in pedestrian images make it significantly difficult to extract distinct patterns
and learn reliable image representations under background distraction. (2) Inter-attribute
relations: A pedestrian image usually contains multiple attributes and some attributes are
closely related to each other. (3) Cross-modal Region-attribute mapping relations: Pedestrian
attributes may correspond to different parts of the image based on their semantic character-
istics and some certain attributes may only be relevant to local regions. All these complex
relations pose significant challenges in training an effective attribute recognition model.

To alleviate the above-mentioned issues, it is desirable to fully explore the inter-region,
inter-attribute, and region-attribute mapping relations in the PAR task. For the inter-region
relation modeling as shown in Figure 1a, the regions of the human body are related to each
other; for example, short sleeves and shorts are mutually pushed from the background of
the image. We need to eliminate the spatial data redundancy under background distraction
and analyze long-range dependencies between regions. For example, in the process of
identifying specific attributes (like age and gender), our attention may concentrate on
multiple local regions, including those around the head, arm, leg, upper body, and lower
body, and associate long-distance relations among these regions. Since Convolutional
Neural Networks (CNNs) are struggling with learning long-distance dependencies, some
existing methods adopt atrous convolutions [8], Feature Pyramid Networks (FPN) [9], Long
Short-Term Memory (LSTM) [10,11], and Graph Convolutional Networks (GCN) [12–14]
to alleviate the aforementioned limitation. Recently, some recent works [15] apply Vision
Transformer (ViT) [16] as a feature extractor due to its capacity to capture long-distance
relations between regions. In contrast, we construct a Masked Region Relation Module
(MRRM) to focus on precise spatial attention regions to extract more robust features with
masked random patch training.
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Figure 1. Pedestrian attribute recognition and relation modeling. (a) Inter-region relation modeling;
(b) Inter-attribute relation modeling; and (c) Region-attribute mapping relation modeling.

For the inter-attribute relation modeling, as shown in Figure 1b, the ideal method will
pull closer the relation between attributes “Female” and “Skirt&Dress” while simultane-
ously pushing farther the relation between attributes “Male” and “Skirt&Dress”. It is
clear that some specific attributes exhibit a strong semantic correlation. For example, the
“Skirt” and “Dress” attributes are more likely to be associated with the attribute “Female”



Remote Sens. 2024, 16, 1216 3 of 23

than “Male”. Inspired by this phenomenon, many methods have introduced this idea to
learn the correlations among semantic attributes to improve pedestrian attribute recog-
nition performance. The current mainstream methods use structured inference models,
such as LSTM [17], GCN [13,14,18], and Vector-neuron capsule [19], to exploit the latent
inter-attribute relation modeling. However, these methods do not consider the following
two aspects: (1) There is a strong correlation between the existing attributes shown in
the image, but the relationship between existing and non-existing attributes is weaker;
(2) During the recognition process, many attributes are interfered with by attributes of
the same category, resulting in inaccurate identification. In this paper, we construct a
Masked Attribute Relation Module (MARM) which introduces self-attention to model
attribute relations and explores its potential in semantic relation modeling. Meanwhile,
MARM leverages masked attention to obtain more robust attribute relationships so that the
interference of similar attributes can be alleviated and more accurate results and robust
attribute relationships can be obtained.

For the cross-modal region-attribute mapping relation modeling, as shown in Figure 1c,
there are mapping relations between regions and attributes. And some attributes may
only be located in a small part of regions. For example, when we observe whether a
person has “Glasses” or “Hats”, we directly focus on the head region to make the mapping
alignment between regions and attributes. Some existing methods attempt to address
the problem with human pose estimations [20], leverage region proposal results [21,22]
to identify related regions, or employ weekly supervised localization with an attention
mechanism [23,24]. In this paper, we design a Region and Attribute Mapping Module
(RAMM) based on the improved self-attention and cross-attention mechanism for modeling
the relations between spatial features and semantic attributes and achieving more accurate
mapping through mutual learning.

Although some existing methods mentioned some of the above three relations in
their papers implicitly, it is desirable to jointly explore the inter-region, inter-attribute, and
region-attribute mapping relations in one unified framework through a more competi-
tive algorithm. In this paper, we explicitly exploit the inter-region, inter-attribute, and
region-attribute mapping relations simultaneously with a novel Mask-Relation-Guided
Transformer (MRG-T) framework that consists of three relation modules to fully exploit
spatial and semantic relations in the model learning process. We construct a Masked Region
Relation Module (MRRM) to extract more robust features using the ability of Transformer
encoder layers and the masked random patch training strategy to establish correlations
among regions through global attention to all regions. To delve into the connections be-
tween attributes, we present a Masked Attribute Relation Module (MARM) accompanied
by an attribute label masking technique enabling the semantic capture of attribute rela-
tions. To learn the cross-modal alignment between spatial regions and semantic attributes,
we finally design a Region and Attribute Mapping Module (RAMM) based on the self-
attention and cross-attention mechanism. We analyze the contribution of each component
in the proposed algorithm and demonstrate the effectiveness of relation modeling on three
popular datasets. The experimental results show competitive performance on pedestrian
attribute recognition.

Our work is distinctive from existing relation-based PAR works that consider only one
relation factor, such as GRL [10], RC and RA [11] for inter-region relations; IAA-Caps [19]
for inter-attribute relations; and LGNet [21], ALM [22]; and VTB [24] for cross-modal
region-attribute mapping relations. Moreover, unlike some other approaches [13,14,18]
that attempt to fuse these relation factors implicitly, our work explicitly and systematically
presents to model and integrate the three types of relationships into one unified framework
with the proposed mask-relation-guided Transformer. SCRL [25] is the most similar work
which also considers intra-attentions in images and attributes and inter-attentions of spatial–
semantic relations. However, it utilized RNN and the traditional attention units and
considered borrowing person identity information to improve PAR performance.

Consequently, we summarize the main contributions of this paper as follows:
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• We propose a novel Mask-Relation-Guided Transformer (MRG-T) framework to mit-
igate the information redundancy dilemma and model the three inter-region, inter-
attribute, and region-attribute mapping relations simultaneously in a unified frame-
work for remote vision-based PAR.

• We construct three modules, MRRM, MARM, and RAMM, to fully explore spatial
relations of regions, semantic relations of attributes, and mapping of regions and
attributes, respectively. The modules take advantage of the Transformer encoder
architecture for its ability to capture long-distance dependencies from the global view.

• We present masked random patch training and attribute label masking strategies for
MRRM and MARM, respectively, to conduct long-range dependency modeling of
inter-region relations and inter-attribute relations efficiently. The beneficial effect of
mask attention in the relational modeling method is proven through experiments.

• Our method performs favorably against state-of-the-art methods on three PAR datasets
(PETA, PA-100K, and RAP) using the same backbone architecture. Moreover, we
conduct model inference on a large aerial person imagery dataset PRAI-1581. Ablation
experiments and visualization results are presented to demonstrate the capability of
the proposed method in mask-relation-guided modeling.

2. Related Works

In this section, we provide a brief overview of recent studies on pedestrian attribute
recognition, Transformer model and mask-attention modeling, and pedestrian attribute
recognition based on Transformer.

2.1. Pedestrian Attribute Recognition

In recent years, a growing interest has been devoted to studying intelligent aerial
surveillance [26]. Although most researchers have achieved successful developments on
the tasks of object detection [27], tracking [28], and person ReID [29,30], there is limited
attention paid to the task of PAR, probably because there does not exist a large-scale
publicly available PAR dataset facing real UAV surveillance scenarios [31]. Therefore, in
this subsection, our focus is primarily on reviewing the relevant PAR works within the
surveillance domain.

In earlier studies on pedestrian attribute recognition, attributes were predominantly mod-
eled using manually designed features like color histograms and texture histograms [32,33].
Recently, pedestrian attribute recognition methods based on deep learning have experienced
significant breakthroughs, and most works employ either CNN architectures or attention
mechanisms to extract distinctive representations [34,35]. The work in [36] considered the PAR
task as a multi-label classification problem and devised a weighted sigmoid cross-entropy
loss to simultaneously recognize multiple attributes. HydraPlus-Net [34] was developed by
incorporating multi-directional attention (MDA) modules, allowing for encoding multi-scale
features from multiple levels.

With the progress of research, some works are increasingly concentrating on investigat-
ing the correlation between regions and attributes. The main techniques contain multi-task
learning [37], recurrent learning [10,18], LSTM [11], part-based localization [21,22], graph
convolutional network (GCN) [13,14] and so on. (1) Multi-task learning. Sarfraz et al. [37]
presented a multi-task learning model to jointly predict the coarse view and learn special-
ized view-dependent multi-label attribute inference. (2) RNN and LSTM. Wang et al. [18]
proposed an end-to-end encoder–decoder recurrent network, called the Joint Recurrent
Learning (JRL), to jointly learn image-level context and attribute-level relations using an
LSTM model. In [10], an end-to-end Grouping Recurrent Learning (GRL) model is pre-
sented to make use of the intra-group mutual exclusion and inter-group relation to enhance
PAR performance. Zhao et al. [11] presented the end-to-end Recurrent Convolutional (RC)
and Recurrent Attention (RA) models. The RC model explored correlations among differ-
ent attribute groups with a convolutional LSTM unit, while RA mined both intra-group
attention locality and inter-group attention correlations. Wu et al. [25] proposed a sequence
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contextual relation learning (SCRL) method to capture relations using RNN and attention.
Person identity information was also leveraged to improve PAR performance. (3) Part-based
localization. Localization Guided Network (LGNet) [21] exploited the attribute-specific local
features based on the spatial similarity between region proposals and attribute locations.
The attribute localization module (ALM) in [22] performed attribute-specific localization
to learn the regional features for each attribute at multiple scales in a weakly supervised
manner. (4) GCN. The visual–semantic graph reasoning framework [13] exploited spatial
relations between regions with a spatial graph and learned potential semantic relations
between attributes with a semantic graph. The framework performed reasoning with the
Graph Convolutional Network (GCN). The work in [14] proposed a Joint Learning of
Attribute and Contextual relations (JLAC) model, which constructed an attribute graph
learned by GCN and designed a contextual relation graph to explore the contextual relations
among those regions. (5) Vector-neuron capsule. Wu et al. [19] proposed an inter-attribute
aware network via a vector-neuron capsule, called IAA-Caps, for PAR to be aware of
relations between attributes.

Although these previous methods proposed to exploit relation modeling, few of them
systematically integrate and model all types of relations in one unified framework. To
address this issue, we propose a Mask-Relation-Guided Transformer framework with the
self-attention and mask-attention mechanism to explicitly model relations of inter-regions,
relations of inter-attributes, and mapping relations of regions and attributes, respectively,
to jointly explore spatial and semantic relations in an end-to-end framework.

2.2. Transformer Model and Mask-Attention Modeling

Transformer-based models [38] were originally widely used in the field of natural
language processing (NLP) [39,40] and have recently demonstrated excellent performance
on computer vision (CV) tasks [16,41,42]. Vision Transformers (ViT) [16] were presented to
split the images into sequences of image patches and then a standard Transformer encoder
was applied to handle the image classification problem. To tackle the object detection task,
DETR [41] regarded object detection as a direct set prediction task and assigned direct set
prediction via transformers and bipartite matching. For the object re-identification task,
TransReID [42] proposed a pure transformer-based object ReID framework in which a
jigsaw patch module (JPM) is designed to learn more robust features, and side information
embeddings (SIEs) are introduced to incorporate non-visual clues. At the same time, in
other CV tasks, such as image captioning [43], cross-view gait recognition [44], video object
detection [45], and image fusion [46], Transformer has shown its outstanding potential.
The achievements of Transformers are primarily due to their success in the self-supervision
and self-attention mechanisms [47]. Self-supervision enables the training of intricate net-
works without the expense of manual labeling while also encoding valuable relationships
between presented entities. On the other hand, self-attention considers the correlation of
the input sequence (like patches or words) by learning the correlations between the tokens.
Some approaches [48–51] showcase the Transformer architecture’s capability in capturing
relations within sequences. In this paper, we also leverage the Transformer encoder to
explore relations of regions, relations of attributes, and mapping relations between regions
and attributes, with its ability to capture long-distance dependencies from the global view.

Mask-attention modeling can be divided into masked language modeling and masked
image encoding in the fields of NLP and CV, respectively. Masked language modeling
methods, e.g., BERT [52] and GPT [53–55], have proven to be remarkably effective for
pre-training in the field of NLP. In these approaches, a portion of the input sequence is
masked and then the models are trained to predict the omitted content. Extensive evidence
shows that these methods generalize well to a variety of downstream tasks. Motivated
by the success of similar techniques in NLP, some recent approaches in computer vision
have adopted Transformer-based methodologies [38]. ViT [16] leverages the masked patch
prediction objective for preliminary self-supervision learning, while BEiT [56] proposes to
predict discrete tokens. Most recently, MAE [57] has adopted a strategy of masking random
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patches in the input image; it then proceeds to reconstruct the missing pixels. Motivated by
these results, we present an MRRM to extract more robust and distinct patterns with masked
random patch training and an MARM to predict unknown attributes with parts of attributes
known during training. Tao et al. [58] presented a pixel-level supervision neural network
(PSNet) and designed an attention-based feature separation module (AFSM) to guide the
interaction and separation process of background information and smoke information. In
this paper, we design an MRRM using masked attention based on a Transformer to separate
background information and pedestrian information. Lin et al. [59] proposed a masked
attention mechanism to pay more attention to the feature information of the global text by
reordering the weights corresponding to positions. In contrast, the mask module MARM in
our proposed MRG-T is used mainly to learn more robust relationships between attributes
by masking attributes and predicting output during training.

2.3. Pedestrian Attribute Recognition Based on Transformer

Inspired by the success of the Transformer in NLP and CV, some existing methods
attempt to apply the Transformer in the pedestrian attribute recognition task. For DR-
Former [15], it was first attempted to adopt ViT as the feature extractor on the pedestrian
attribute recognition task. The Transformer encoder is leveraged to extract vector em-
bedding features from spatial and semantic information. In STDP [60], the self-attention
is extracted by the Swin Transformer to learn the relationships between spatial regions,
and a transformer decoder is added to understand the semantic relationships among the
attributes. However, neither DRFormer nor STDP explicitly exploit the cross-modal cor-
respondence modeling between semantic attributes and image regions. For VTB [24], an
additional textual modality is introduced and the PAR task is formulated as a multi-modal
problem. The image and text modalities are aimed at modeling cross-modal relations,
but the uni-modal relation modeling in images and attributes is not extensively explored.
For PARFormer [61], a transformer-based multi-task model is built to focus on the global
perspective. A multi-attribute center loss is designed to aggregate different attributes to
their respective centers, as well as a multi-view contrastive loss for exploiting the viewpoint
information. However, PARFormer mainly takes the Transformer as the feature extrac-
tor and does not use its superior self-attention power for relation modeling to improve
model robustness.

Different from these methods that explore the relation modeling implicitly and indi-
vidually, we explicitly and systemically model inter-regions, inter-attributes, and region-
attribute mapping relations with two uni-modal Transformer encoders and one cross-
modal Transformer encoder. Moreover, we present the masked random patch training
strategy and the attribute label masking strategy for MRRM and MARM to efficiently
conduct long-range dependency modeling of inter-region relations and inter-attribute
relations, respectively.

3. Proposed Method

In this section, we first describe the overall architecture of the Mask-Relation-Guided
Transformer. After that, we discuss three relational modeling modules, including the
Masked Region Relation Module, the Masked Attribute Relation Module, and the Region
and Attribute Mapping Module. Finally, we present the details of the inference classifier
and the employed loss function for MRG-T.

3.1. Overall Architecture

Figure 2 shows the architecture of our proposed Mask-Relation-Guided Transformer
framework for pedestrian attribute recognition. Solid lines denote high correlation proba-
bility, and dashed lines mean low correlation probability in MARM. We introduce MRG-T
in three main parts.
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Figure 2. The overall architecture of our MRG-T is constructed with three modules: Masked Region
Relation Module (MRRM), Masked Attribute Relation Module (MARM), and Region and Attribute
Mapping Module (RAMM).

Feature and Label Embeddings. We leverage a CNN backbone (e.g., Resnet50 [62]) to
extract visual feature embeddings F from input images. For attribute label embedding, we
use an embedding layer to retrieve a set of label embeddings L from each attribute label.

Relational Modeling Modules. We mainly construct relational modeling with three
modules: Masked Region Relation Module (MRRM) for inter-region relation modeling,
Masked Attribute Relation Module (MARM) for inter-attribute relation modeling, and
Region and Attribute Mapping Module (RAMM) for region-attribute mapping relation
modeling. All three modules adopt the Transformer encoder architecture but differ in
inputs and learning strategies. MRRM inputs the image feature embeddings F extracted
by the backbone, a subset of features is randomly sampled, and the remaining features
are masked with a masked random patch training strategy. MARM inputs the attribute
label embeddings L and adopts the attribute label masking strategy to randomly eliminate
a specific number of attribute labels. During training, it utilizes the ground truth of the
remaining labels to predict the masked ones. MRRM and MARM output newly generated
visual features F′ and attribute label embeddings L′, respectively. With F′ and L′ as inputs,
RAMM learns the cross-modal alignment between spatial regions and semantic attributes
and outputs the final visual features F̂ and attribute label embeddings L̂.

Inference Classifier and Loss Function. After feature and attribute label dependencies
are modeled via the three relational modeling modules, we apply classifiers to make the
final prediction. For visual feature embedding F̂, we use the average pooling layer, the
fully connected layer, and the activation function to obtain the final prediction Y f . For
attribute label embedding L̂, we use an independent feedforward network (FFN) for final
prediction Yl . During training, we obtain the final loss with two binary cross-entropy loss
functions, L f and L f , by weighting the loss of the visual feature vector and the loss of the
attribute label vector, respectively. During inference, we obtain the final prediction using
the element-wise maximum.

3.2. Masked Region Relation Module (MRRM)

MRRM is built for inter-region relation modeling which aims to eliminate spatial data
redundancy under background distraction and analyze long-range dependencies between
regions so as to focus on precise spatial attention regions to extract more robust features.
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The discriminative visual features fed into MRRM are obtained by extracting from
each pedestrian image using a CNN backbone pretrained on ImageNet [63]. For a given
pedestrian image, x ∈ RH×W×3, the visual feature extraction can be formulated as

F = B{x; |θ}, (1)

where B denotes the CNN backbone and θ encompasses all the trainable parameters
associated with the CNN backbone. The output visual feature embeddings are F ∈ Rh×w×d,
in which h, w, and d represent the height, width, and channels, respectively.

We unfold the visual feature embeddings F ∈ Rh×w×d on each channel and then obtain
F = { f1, f2, . . . , fN}, fi ∈ Rd and N = h × w. Subsequently, we proceed by randomly
sampling a subset from N feature vectors and masking (i.e., removing) the remaining ones,
following a uniform distribution. We denote the masking ratio as τ, which indicates the
proportion of removed vectors. After masking random patches, we take masked tensor
F̄ = { f1, f2,..., fn} as regional feature embeddings to represent a local region mapped in the
input image, where n = (1− τ)× N. The random patch training strategy aims to effectively
remove redundant information in the image space.

The self-attention mechanism of the Transformer encoder [16] (shown in Figure 3)
is leveraged to capture the long-distance correlations between regional features, i.e., the
weights of each regional feature relative to other regional features. With masked regional
features F̄ as inputs, we calculate the normalized attention coefficient αij between the ith and
jth regional features, fi and f j, and then update each feature vector fi to f ′i by computing
the weighted sum and then passing through a nonlinear ReLU layer:

αij = softmax
((

WQ
r fi

)T(
WK

r f j

)
/
√

d
)

, (2)

f ′i = ReLU

((
n

∑
j=1

αijWV
r f j

)
+ b1

)
+ b2, (3)

where WQ
r , WK

r , and WV
r denote the query weight matrix, the key weight matrix, and the

value weight matrix, respectively, and b1 and b2 represent bias vectors. We concatenate Nr
Transformer encoder layers to capture long-range dependencies of iter-region relations, and
each updated embedding is used as input for subsequent Transformer encoder layers. Note
that the learned weight matrices {WQ

r , WK
r , WV

r } ∈ Rd×d are not shared between layers.
With the implementation of multi-head attention, the modeling of the above-mentioned
regional relationships can be represented as

F′ = MHAR→R

(
( fi, { f1, ..., fn})|(WQ

r , WK
r , WV

r )
)

, (4)

where MHAR→R represents the calculated multi-head attentions between region features.
The output feature embeddings of the Transformer encoder are denoted as F′ = { f ′1, f ′2,. . . , f ′n},
f ′i ∈ Rd.

3.3. Masked Attribute Relation Module (MARM)

To address the issue of many attributes being interfered with by similar attributes, we
construct the MARM using the self-attention mechanism and the attribute label masking
strategy. The self-attention mechanism is introduced to model attribute relations and
explores its potential in semantic relation modeling, and the attribute label masking strat-
egy is used to obtain more robust attribute relationships to alleviate the interference of
similar attributes.

Given one pedestrian image with µ annotated attribute labels (µ denotes the number
of attributes), we extract the corresponding attribute label embeddings L = {l1,l2,. . . ,lµ},
li ∈ Rd and i ∈ {1, 2, . . . , µ} with an embedded layer of dimensions d × µ. Considering
the fact that the existing attributes shown in the image have strong correlations and the
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relationship between existing and non-existing attributes is low, our proposed MARM
incorporates such prior information by randomly masking a number of attribute labels
and then utilizing the relations of the remaining attribute labels to predict the masked
ones. As we randomly mask certain attribute labels, attribute labels may have three states
(si ∈ {−1, 0,+1}): if labels are previously known to exist in the image, si is set to positive
value +1; if labels are previously known not to exist, si is set to negative value −1; and
if labels are unknown (or masked), si = 0. Similar to the work in [64], we incorporate
the masked information by transferring it into state embeddings mi = Φ(si), mi ∈ Rd.
Transferred function Φ(·) is implemented with a learned embedding layer of size d × 3 in
our MARM.

Given label embedding li and its corresponding state embedding mi, we add the
masked knowledge to the label embedding as follows:

l̃i = li + mi. (5)

Thus, we obtain the final masked attribute label embeddings L̃ = {l̃1,l̃2,. . . ,l̃µ}, l̃i ∈ Rd.
The masked attribute label embeddings L̃ are fed into the Transformer encoder to capture
inter-attribute relations and learn the output L′,

L′ = MHAA→A

(
(l̃i, {l̃1, . . . , l̃µ})|(WQ

a , WK
a , WV

a )
)

, (6)

where MHAA→A represents the self-attention between attributes, and WQ
a , WK

a and WV
a

represent the learned weight matrices of query, key, and value about attributes, respectively.
In our experiments, the number of “unknown” labels for a pedestrian image is ran-

domly set from 0.25µ to µ. By randomly masking various quantities of undisclosed labels
during training, the model learns numerous potential label combinations and attribute
relationships so as to predict the unknown labels.

3.4. The Region and Attribute Mapping Module (RAMM)

To learn the mapping of semantic attributes and spatial features, we propose the
RAMM model with two separate Transformer encoders with the cross-attention mechanism
(Shown in Figure 3). MRRM and MARM leverage the Transformer encoder based on the
self-attention (SA) mechanism to capture correlations of sequences (like patches and words),
while RAMM adopts the Transformer encoder based on the cross-attention (CA) mechanism
to learn the cross-modal alignment between patches and attribute labels. Given the inputted
feature embeddings F′ and attribute embeddings L′, we have

F̂ = MHAR→A

(
( f ′i , {l1′, ..., lµ ′})|(WQ

f , WK
f , WV

f )
)

, (7)

L̂ = MHAA→R

(
(l′i , { f1

′, ..., fn
′})|(WQ

l , WK
l , WV

l )
)

, (8)

where MHAR→A and MHAA→R represent the cross-attention from regional features to
attribute features and the cross-attention from attribute features to regional features, respec-
tively. Wight matrices WQ

f , WK
f and WV

f denote the parameters of MHAR→A, while WQ
l ,

WK
l , WV

l represent the parameters of MHAA→R. Although the two Transformer encoders
have the same architecture, the input query, keys, and values are different.
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Figure 3. The proposed relational modeling modules are based on masking strategies and trans-
former encoders.

3.5. Final Classification and Loss Function

After the dependencies of regional features and attribute labels are modeled, we
apply two classifiers to make the final predictions. We let F̂ = { f̂1, f̂2, ..., f̂n} represent the
output of the image feature embeddings and L̂ = {l̂1, l̂2, ..., l̂n} be the output of the attribute
embeddings. The image feature embeddings are transformed as F̂ ∈ Rh×w×d and then fed
into an average pooling layer and a fully connected layer. The prediction result can be
obtained after the final activation. For the attribute label embeddings, the prediction results
are obtained through an independent feed-forward network (FFN) that includes a simple
linear layer. We have the prediction results of both embeddings:

Y f = σ(FC(avgpool(F̂))), (9)

Yl = FFN(L̂) = σ((w · L̂) + b), (10)

where avgpool(·) represents the average pooling layer, FC(·) represents the fully connected
layer, σ(·) is a sigmoid function, w is a learned 1 × d weight vector, and b is a bias vector.

Formally, each input image is coupled with its corresponding ground-truth attribute
label Ỹ = {Ỹ1, Ỹ2, . . . , ỸM}, where M denotes the total number of attributes and Ỹm is a
binary label indicating the presence of the mth attribute if Ỹm = 1, and Ỹm = 0 otherwise.
In our experiments, a weighted binary cross-entropy loss function is applied to train
our model:

L(Y , Ỹ) =− 1
M

M

∑
m=1

γm(Ỹm log(σ(Yi
m))

+ (1 − Ỹm) log(1 − σ(Yi
m))), (11)

where γm = e−am represents the loss weight for the mth attribute to mitigate the imbalanced
data issue in PAR datasets, am denotes the prior class distribution of the mth attribute, and
σ(.) represents the sigmoid activation function.



Remote Sens. 2024, 16, 1216 11 of 23

For prediction results Y f and Yl , we use two weighted binary cross-entropy losses,
L f = L(Y f , Ỹ) and Ll = L(Yl , Ỹ). Therefore, the total loss of training MRG-T is formu-
lated as

L = λL f + Ll , (12)

where λ represents the trade-off weight parameter. During inference, the final predic-
tion is obtained by aggregating the predicted results Y f and Yl with the element-wise
maximum operation.

4. Experiments

In this section, we first introduce the datasets, evaluation metrics, and implementation
details in our experiments. Then, we present the experimental results and conduct a data
analysis regarding the contribution of each component in the proposed method.

4.1. Datasets and Evaluation Metrics

We construct experiments to validate our proposed method on three public PAR
datasets (including PETA [33], PA100K [34] and RAPv1 [65]) and an aerial person imagery
dataset PRAI-1581 [29].

PETA is a small-scale dataset for pedestrian attribute recognition, as shown in Figure 4a.
It contains 8705 persons and consists of 19,000 images of individuals. Each image in the
dataset is manually labeled with 65 attributes (61 binary and 4 multi-class). The dataset
undergoes a random split into three subsets: 9500 images for the training set, 1900 images
for the validation set, and 7600 images for the testing set. As per the evaluation in [33],
35 attributes that are chosen based on their positive ratios with a threshold set at 5% or higher
are selected from the dataset. These chosen attributes are then employed for subsequent
analysis and evaluation.

PA-100K is a recently introduced extensive dataset for pedestrian attribute recognition,
as shown in Figure 4b. It consists of 100,000 pedestrian images gathered from 598 real out-
door surveillance cameras. These images have varying resolutions ranging from 50 × 100 to
758 × 454 pixels. As per the official setting [34], the dataset is partitioned into 80,000 images
for the training set, 10,000 for the validation set, and the remaining 10,000 for the test set.
Each image in the dataset is annotated with 26 commonly used attributes.

RAPv1 is a pedestrian attribute dataset captured from 26 indoor multi-camera surveil-
lance scenarios, as shown in Figure 4c. It consists of 41,585 pedestrian images in total and
their resolutions span from 36 × 92 to 344 × 554 pixels. Among these images, 33,268 images
are selected for the training set, and 8317 are allocated for the testing set. Each image in
the dataset is labeled with 72 fine-grained attributes, consisting of 69 binary attributes
and 3 attributes with multiple classes. Similar to the work in [65], we also select 51 binary
attributes that have a positive ratio exceeding 1% for fair comparison.

PRAI-1581 is a large-scale airborne person ReID dataset named Person ReID in Aerial
Imagery, which consists of 39,461 images of 1581 person identities. As shown in Figure 4d,
the images of the dataset are shot by two DJI consumer UAVs flying at an altitude ranging
from 20 to 60 m above the ground, which covers most of the real UAV surveillance scenarios.
It is worth noting that, due to variable altitude of flight, adjustable camera tilt angle, and
free rotation of the fuselage, human images have different resolutions, perspectives, and
postures in a single UAV. And since there are two independently controlled UAVs, the entire
scene is more complex. Due to the difficulty of annotating attribute recognition datasets, it
does not contain attribute labels, so we only explore inference and applications on it.
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Figure 4. Some samples on various datasets, including three common datasets (i.e., PETA, PA100K,
and RAPv1) and one airborne person dataset (i.e., PRAI-1581).

To assess the performance of the method, we employ five commonly used metrics
in the PAR task to evaluate the pedestrian attribute recognition performance consisting
of four instance-based evaluation metrics as well as a label-based evaluation metric. For
the instance-based evaluation metrics, Acc (accuracy), Prec (precision), Rec (recall), and
F1 (F1-score) are used to evaluate the recognition performance of PAR methods at the
instance level. In terms of the label-based evaluation metric, mA (mean accuracy) computes
the classification accuracy for each attribute individually and then takes the average as
the evaluation score. In contrast to the instance-based evaluation metrics, the label-based
evaluation metric provides a more comprehensive assessment, taking into account all
evaluation criteria, namely the average classification accuracy of both positive and negative
samples. As a result, prior studies [14,19] have placed greater emphasis on mA, which
offers a more robust and effective means of validating the proposed method.

4.2. Implementation Details

Experimental settings. The proposed MRG-T is implemented in the Pytorch frame-
work [66] on two NVIDIA GTX 2080Ti GPUs and trained end-to-end. Each input image is
resized to 224 × 224 for training. We employ the common data augmentation techniques
including random horizontal mirroring, random rotation, and color jittering. The Adam
optimizer [67] is leveraged as a stochastic gradient descent algorithm for training deep
learning models, where β1 = 0.9, β2 = 0.999 and weight decay ε = 0.0005. The initial
learning rate is set to 1e-4 and is reduced by a factor of 0.1 at the 20th, 30th, and 40th epochs.
The total number of epochs for training is determined as 60, with the exception of the
PA100K dataset, which requires a longer training period of 90 epochs due to its large-scale
images [68]. For inference, all test images are also resized to 224 × 224 and then augmented
only by normalization.

Backbone and Transformer encoder. ResNet50 [62] pre-trained on ImageNet [63] is
leveraged as the CNN backbone to extract visual feature embeddings from input images.
To improve the spatial resolution of the output feature maps, we omit the final down-
sampling operation in the original ResNet50 architecture. Multiple attention heads are used
to enhance the model’s ability. To enhance the flexibility and capacity of the Transformer in
capturing a wide range of patterns and dependencies in the input data, our model uses
four attention heads [38]. We use Nr = 3 sequential connected Transformer encoder layers,
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each of which applies the residual architecture with an embedding update and a layer norm.
The effect of the number of these layers on model performance is discussed in ablation
studies of Section 4.4.5.

4.3. Comparison with State-of-the-Art Methods

In Table 1, we present a performance comparison between our proposed MRG-T and
existing state-of-the-art methods on the public datasets: PETA, PA-100K, and RAPv1. As
depicted in Table 1, the compared methods are categorized into three groups:

• Holistic and localization methods, which localize the global body or local part of
regions with the techniques of human pose estimation, region proposal extracting, or
attention mechanisms, including DeepMAR [36], HPNet [34], PGDM [20], MsVAA [23],
ALM [22], Baseline [69];

• Relation-based methods, which learn to model inter-region and inter-attribute relations
by RNN, LSTM, GCN, or vector-neuron capsule, including JRL [18], RCRA [11],
SCRL [25], SSChard [70], IAA-Caps [19];

• Transformer-based methods including VTB [24] and PARFormer [61].

Table 1. Performance comparison with state-of-the-art methods on the PETA, PA100K, and RAPv1
datasets. The first and second highest scores are represented by red font and cyan font, respectively.
Best viewed in color.

PETA PA100K RAPv1
Method Backbone mA Acc Prec Rec F1 mA Acc Prec Rec F1 mA Acc Prec Rec F1

DeepMAR(ACPR15) [36] CaffeNet 82.89 75.07 83.68 83.14 83.41 72.70 70.39 82.24 80.42 81.32 73.79 62.02 74.92 76.21 75.56
HPNet(ICCV17) [34] InceptionNet 81.77 76.13 84.92 83.24 84.07 74.21 72.19 82.97 82.09 82.53 76.12 65.39 77.33 78.79 78.05
PGDM(ICME18) [20] CaffeNet 82.97 78.08 86.86 84.68 85.76 74.95 73.08 84.36 82.24 83.29 74.31 64.57 78.86 75.90 77.35

MsVAA(ECCV18) [23] ResNet50 84.35 78.69 87.27 85.51 86.09 80.10 76.98 86.26 85.62 85.50 79.75 65.74 77.69 78.99 77.93
ALM(ICCV19) [22] ResNet50 85.50 78.37 83.76 89.13 86.04 79.26 78.64 87.33 86.73 86.64 81.16 67.35 74.97 85.36 79.39

Baseline(Arxiv21) [69] ResNet50 84.42 78.13 86.88 85.08 85.97 80.38 78.58 87.09 87.01 87.05 80.32 67.28 79.04 79.89 79.46

JRL(ICCV17) [18] AlexNet 85.67 – 86.03 85.34 85.42 - - - - - 77.81 - 78.11 78.98 78.58
RC(AAAI19) [11] Inception_v3 85.78 – 85.42 88.02 86.70 - - - - - 78.47 - 82.67 76.65 79.54
RA(AAAI19) [11] Inception_v3 86.11 – 84.69 88.51 86.56 - - - - - 81.16 - 79.45 79.23 79.34

SCRL(CSVT20) [25] ResNet50 - – - - - 80.6 - 88.7 84.9 86.8 81.9 - 82.4 81.9 82.1
SSChard(ICCV21) [70] ResNet50 85.92 78.53 86.31 86.23 85.96 81.02 78.42 86.39 87.55 86.55 82.14 68.16 77.87 82.88 79.87
IAA-Caps(PR22) [19] OSNet 85.27 78.04 86.08 85.80 85.64 81.94 80.31 88.36 88.01 87.80 81.72 68.47 79.56 82.06 80.37

VTB(CSVT22) [24] ResNet50 - - - - - 81.02 80.89 87.88 89.30 88.21 81.43 69.21 78.22 83.99 80.63
PARFormer(CSVT23) [61] ResNet50 - - - - - 79.41 78.05 86.84 86.75 86.59 - - - - -

MRG-T w/o mask (Ours) ResNet50 85.42 79.69 87.47 87.46 86.93 80.35 79.02 86.75 88.31 86.12 80.02 67.41 75.54 85.36 79.94
MRG-T(Ours) ResNet50 86.22 79.86 86.53 89.51 87.09 81.24 79.92 87.91 89.61 86.66 82.10 69.16 77.67 86.48 80.41

MRG-T is our complete method, while MRG-T without the mask adopts our MRG-T
but without mask attention. Recent advancements in PAR methods [24,61] have harnessed
the capabilities of more powerful backbone architectures, including Vision Transformer (ViT-
B) and Swin Transformer (Swin-B), often accompanied by self-attention or shift-window
attention mechanisms. To ensure fair comparisons in this paper, we mainly list the experi-
mental results of the methods with the ResNet50 backbone.

Comparison with holistic and localization methods. Overall, our method performs
favorably against the state-of-the-art approaches. DeepMar makes the first attempt to
incorporate CNN into the PAR task and it learns a multi-label classifier to simultaneously
identify multiple attributes. However, the CNN model lacks the ability to capture global
information and most of these methods have not considered it. On the contrary, MRG-T
builds inter-region, inter-attribute, and region-attribute relations simultaneously. Moreover,
compared to Baseline [69], the MRG-T achieves 1.80%, 0.86%, and 1.78% improvements in
terms of the mA metric on the three public datasets.

Comparison with relation-based methods. It can be seen that our proposed MRG-
T method achieves relatively better performance compared with other relation-based
methods in terms of most metrics. Despite IAA-Caps obtaining higher performance in
some criteria on PA100K, our method, MRG-T, still outperforms IAA-Caps on the other
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datasets. For example, our proposed method outperforms IAA-Caps in mA by 0.95% and
0.38% on PETA and RAPv1, respectively. In addition, the IAA-Caps method is limited in
the relatively higher GPU memory usage during the training phase [19].

Comparison with Transformer-based methods. In comparison to Transformer-based
approaches, our method demonstrates commendable performance with the same back-
bone. Specifically, our method outperforms the recent Transformer-based approach, PAR-
Former [61], in terms of all metrics on the PA100K dataset. Compared to VTB on PA100K
and RAPv1, our MRG-T achieves 0.22% and 0.67% improvement in mA, and 0.31% and
2.49% improvement in recall.

Comparison of applications on aerial imagery dataset. Since PRAI-1581 lacks at-
tribute label-level annotations, we manually annotate the attributes of the sub-dataset and
then perform model inference to evaluate the recognition performance. Figure 5 shows the
recognition results of our method and the compared method ALM on several pedestrian im-
ages from PRAI-1581. For each example image, the correct and wrong predicted attributes
are marked in green and red colors, respectively. The true, false, and missed numbers of
predicted attributes are also given. The results show that our proposed MRG-T performs
better than ALM, especially when some attributes are related. For example, the semantic
association between “Shorts” and “ShortSleeve” in the first image and the association
between “Longhair” and “Skirt” in the second image.

GT: Age16-30, Casual lower, Casual upper, 
Male, Stripes, Shorts, ShortSleeve 
ALM: Age16-30, Casual lower, Casual 
upper, Male, Stripes, ShortSleeve (True: 6, 
False: 0, Miss: 1) 
MRG-T(Ours): Age16-30, Casual lower, 
Casual upper, Male, Stripes, Shorts, 
ShortSleeve (True: 7, False: 0, Miss: 0)

GT: Age16-30, Longhair, Casual upper, 
Skirt, ShortSleeve
ALM: Age16-30, Longhair, Casual upper, 
Shorts (True: 3, False: 1, Miss: 1)
MRG-T(Ours): Age16-30, Longhair, Casual 
upper, Skirt, ShortSleeve (True: 5, False: 0, 
Miss: 0)

GT: Age31-45, Backpack, Formal upper, 
Male, Trousers, No accessory
ALM: Age31-45, MessengerBag, Casual 
upper, Male, Trousers, No accessory (True: 
4, False: 2, Miss: 0)
MRG-T(Ours): Age31-45, Backpack, Male, 
Trousers, No accessory (True: 5, False: 0, 
Miss: 1)

Figure 5. Qualitative evaluation of some pedestrian images from aerial imagery dataset PRAI-1581.
The correct and wrong predictions are marked in green and red, respectively.

4.4. Ablation Studies

In this section, we conduct ablation studies to validate the effectiveness of each
component proposed in our MRG-T method. These experiments are mainly conducted on
the PETA, PA100K, and PRAI-1581 datasets.

4.4.1. Effectiveness of MRG-T

For quantitative analysis, we first compare the attribute-wise mA between ResNet50
(Backbone) and MRG-T (Ours) for all attributes on the PA100K dataset. Here, ResNet50
(Backbone) just employs the ResNet50 to extract visual feature embeddings and then trains
a multi-label classifier to tackle the pedestrian attribute recognition issue. Figure 6 illustrates
that MRG-T leads to a substantial performance improvement on almost all attributes. For
some attributes, such as “Female”, “Age”, and “Upperstride”, which require focusing on
multiple regions of the image from the global view, our MRG-T achieves improvement
on mA because the proposed relation modeling modules are able to capture long-range
dependencies of multiple local regions. For some attributes related to specific spatial
regions, such as “Hat” and “boots”, our method undergoes more significant improvement
because of our region-attribute mapping relation modeling with RAMM.

Figure 7 illustrates the qualitative attribute prediction results of two examples on the
PETA dataset. The left column shows the raw input images, while the red, green, and blue
tapes on the right illustrate the ground truth attribute labels, the attribute predictions by
ResNet50, and the attribute recognition results by our proposed MRG-T, respectively. We
can observe that MRG-T demonstrates a higher accuracy in identifying global attributes
like “Age” and has a more accurate understanding of the relations between attributes, such
as “Jeans” and “LeatherShoes”, due to the exploration of correlations.
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Figure 6. The mA comparison between ResNet50 (Backbone) and MRG-T (Ours) for all attributes on
the PA100K dataset.
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Figure 7. Attribute prediction results of ResNet50 (Backbone) and MRG-T (Ours) on the PETA dataset.

4.4.2. Benefit of Spatial Relations of Regions

In MRG-T, our MRRM uses a self-attention mechanism to acquire a wide range of
inter-region relations by masking unnecessary and redundant information in the input
image. With MRRM, the MRG-T model can improve by 0.39% in mA, by 0.41% in Acc,
by 0.32% in Prec, by 0.79% in Rec, and by 0.45% in F1, as shown in Table 2. Meanwhile,
we show the relations between regions learned by MRG-T through the cosine similarity of
feature embeddings as shown in Figure 8. The numbers represent the remaining area of the
image after masking, and the patch is 1–36 from left to right and top to bottom. It can be
observed that the image regions representing unnecessary information (e.g., numbers 1, 5,
35, and 36) have no obvious relations with the body regions. Our MRRM mainly extracts
the relations of regions representing the human body.

Table 2. Performance with or without the proposed MRRM in MRG-T on the PETA dataset. Bold text
indicates the best performance.

Component mA Acc Prec Rec F1

w/o MRRM 85.83 79.45 86.21 88.72 86.64
w MRRM 86.22 79.86 86.53 89.51 87.09
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11 22 33 44 55

36363131 ...

Figure 8. Illustration of the cosine similarity of feature embeddings before classifier layer in MRG-
T. On the left is the masked image with patches counting from 1 to 36, and on the right is the
visualization of inter-region relations. Best viewed in color.

4.4.3. Benefit of Semantic Relations of Attributes

In MRG-T, our MARM uses masked attention to obtain more robust attribute relation-
ships. With MARM, the MRG-T model can improve by 0.63% in mA, by 0.25% in Acc, by
0.30% in Prec, by 1.19% in Rec, and by 0.18% in F1, as shown in Table 3. Table 4 shows
the experimental results with different ratios of masking ratios in four simulation settings.
When the masked ratio is 0.75, we achieve the best improvement in mA.

Table 3. Performance with or without the proposed MARM in MRG-T on the PETA dataset. Bold
text indicates the best performance.

Component mA Acc Prec Rec F1

w/o MARM 85.59 79.61 86.23 88.32 86.91
w MARM 86.22 79.86 86.53 89.51 87.09

Table 4. The mA of different masked attribute ratios in the MARM module. The Bold text indicates
the best performance.

Masked Attribute Ratio
PETA

25% 50% 75% 100%

MRG-T (Ours) 85.88 85.90 86.22 85.68

Moreover, to explore the inter-attribute relationship, we compute the similarity be-
tween different attribute feature embeddings. Here, we employ cosine similarity (Cos⟨·, ·⟩)
as a metric to gauge the inter-attribute relations. The cosine similarity value spans from −1
(indicating a strong negative correlation) to 1 (representing a strong positive correlation).
Consequently, a larger cosine similarity value implies a stronger relationship between
two distinct attributes. As illustrated in Figure 9, we calculate the cosine similarity of
attribute embeddings in MRG-T on the test set of PETA and PA100K. The results demon-
strate that the proposed MRG-T method effectively discerns the correlation among different
attributes. Some attributes have higher relations, e.g., Cos⟨LongCoat, boots⟩ is 0.9568,
Cos⟨Casuallower, Casualupper⟩ is 0.9710, and Cos⟨Formallower, Formalupper⟩ is 0.9764.
Additionally, for attributes with weaker correlations, such as Longhair and Male, MRG-T
also reveals a negative correlation between the two attributes, e.g., Cos⟨Longhair, Male⟩ is
−0.6929. In Table 5, we provide the analysis results with respect to the impacts of MRRM
and MARM. We select four common sets of attributes, including two sets of positive sam-
ples and two sets of negative samples. The results show that MRRM and MARM are
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able to make the relationship between attributes more accurate. For example, the relation
between Longhair and Skirt becomes stronger, and the relation between Casuallower and
LeatherShoes becomes weaker.

Figure 9. Illustration of cosine similarity of attribute embeddings in MRG-T on PETA and PA100K
datasets. Data on the left are obtained from PETA, and on the right from PA100K. Best viewed
in color.

Table 5. Relation analysis between attributes of MRG-T. Operation Cos⟨·, ·⟩ is short for cosine
similarity, and Cos⟨a, b⟩ ∈ [−1, 1].

Method
Cos⟨Longhair, Male⟩ Cos⟨Longhair, Skirt⟩ Cos⟨Casuallower, LeatherShoes⟩ Cos⟨Formallower, LeatherShoes⟩

MRRM MARM

- - −0.6578 0.6267 −0.5138 0.5299
- ✓ −0.6731 0.6476 −0.5598 0.5711
✓ ✓ −0.6929 0.6998 −0.5739 0.5925

4.4.4. Mapping Visualizations of Regions and Attributes

In MRG-T, our RAMM models the relation mappings between spatial features and
semantic attributes. We visualize the activation maps before the classifier layer to gain a
deeper insight into how RAMM captures the mapping alignment between regions and
attributes. We employ the widely used visualization technique, Grad-cam [71], for gen-
erating visualizations. Figure 10 shows that the proposed MRG-T can locate attributes at
different regions according to its semantic characteristics. We illustrate more activation
maps of attributes in Figure 11. When recognizing attributes of pedestrians, RAMM helps
to locate the region that needs attention. For instance, when identifying the attribute “Hat”,
more attention is directed toward the head region, and when recognizing the attribute
“Jeans”, it pays close attention to the lower body.

Short sleeve CarryingOther Shoes Jeans CarryingOther Casual lower

ResNet50
(Backbone)

MRG-T
(Ours)

Input Image Input Image Input Image

Figure 10. Visualization of the activation map of ResNet50 (Backbone) and MRG-T (Ours) models.
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(a) (b) (c) (d) (e) (f) (g)

Figure 11. Activation map visualization of MRG-T on PETA dataset: (a) denotes raw image, and
(b–g) represents activation map of attributes of CarryingOther, Hat, Jeans, Longhair, Messenger
Bag, and No accessory, respectively.

4.4.5. Settings Analysis of MRG-T

We analyze the effect of transformer encoder and loss weights.
Effect on Transformer Encoder. The performance that MRG-T achieved can be affected

by the layers of multi-head attention and the number of encoder layers in the Transformer,
which play a crucial role in modeling correlations among embeddings of different regions
and attributes. To assess the significance of multi-headed self-attention, we conduct exper-
iments by changing the number of multi-head attention layers and observe that the mA
improves as the multi-head attention layers increase. Due to resource constraints, we set
the number of multi-head attentions to four in our experiments. Additionally, we explore
the significance of the number of encoder layers, denoted as Nr. With the Nr set to two,
three, and four, the mA values are 86.14%, 86.22%, and 86.12%, respectively. Consequently,
we opt to set the number of encoder layers Nr to three in our experiments.

Effect of loss weights. In MRG-T, two loss functions are involved: L f and Ll , as
shown in the Equation (12). Parameter λ represents the trade-off between L f and Ll . We
evaluate the effect of weight parameter λ in Equation (12) as shown in Figure 12. When
λ = 0.0, L f is discarded and cannot exploit relations between different regions. With the
injection of L f , mA improves significantly. MRG-T model attains its peak performance
when λ is set to 0.2. Furthermore, if the value of λ is further increased, the performance
experiences a gradual decline, which demonstrates the robustness of MRG-T with respect to λ.
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Figure 12. Effect of weight parameter λ in Equation (12) on the PETA dataset.
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4.4.6. Ablation Studies on Aerial Image Dataset PRAI-1581

In this section, ablation studies are provided to systematically analyze the proposed
MRG-T method on the PRAI-1581 dataset. Since PRAI-1581 is an aerial image person
ReID dataset, it does not contain the attribute labels required by PAR. In this paper, we
manually annotate 218 images, a total of 11 pedestrians, for ablation experiments. Four
experimental settings shown in Table 6 are designed to analyze the influence of each module
on retrieval effectiveness.

• T0: Use only visual features extracted by ResNet50 and label embeddings retrieved by
an embedding layer.

• T1: Add visual mask-guided Transformer MRRM based on T0 to model inter-region
relations of images.

• T2: Add label mask-guided Transformer MARM based on T1 to model inter-attribute
relations of labels.

• T3: Add RAMM module to model region-attribute mapping relations.

Table 6 shows that our proposed MRG-T achieves remarkable performance in inference
on aerial image datasets. Compared with T0, after adding the Transformer of visual
features MRRM to the T1 model, mR increases by 9.31. After introducing T2 to explore
the relationship between attributes by MARM, the mR increases by 2.48. Finally, RAMM
is introduced to model the mapping relationship between the image regions and label
attributes, which improves by 1.35 compared to T2 and improves by 13.14 compared with
the initial T0.

Table 6. Ablation studies of different compositions on the aerial image dataset PRAI-1581.

Ablation
Model

Module
mA

MRRM MARM RAMM

T0 80.13
T1 ✓ 89.44
T2 ✓ ✓ 91.92
T3 ✓ ✓ ✓ 93.27

4.5. Discussion

In this subsection, we provide more analysis and discussion on the superiority and
the weaknesses of the proposed method compared to the existing literature.

We propose a novel framework named MRG-T to mitigate the image and attribute
information redundancy dilemma by two different masking strategies and model the
three inter-region, inter-attribute, and region-attribute mapping relations simultaneously in
a unified framework for remote vision-based PAR. Compared with holistic and localization
methods such as MsVAA [23], ALM [22], Baseline [69], etc., our proposed method first uses
CNN to extract local features and then uses Transformer to model relationships while
also obtaining a global receptive field. It displays better performance in the recognition
of global attributes such as gender and age. Compared with relation-based methods,
most current methods focus on inter-region or inter-attribute relations such as JRL [18],
RCRA [11], SCRL [25], SSChard [70], and IAA-Caps [19]. Our proposed method models
three relationships simultaneously, which is more comprehensive and specific. Compared
with Transformer-based methods, such as VTB [24] and PARFormer [61], the model we
propose uses Transformer to model explicit relationships, not just to obtain global features.

Although the method proposed in this paper achieves excellent performance, it has
a relatively large number of parameters compared with some existing methods, such as
ALM [22], RC [11], and RA [11]. Of course, the number of parameters has not increased
significantly compared to VTB [24] and PARFormer [61]. What this brings is an increase
in training time and inference time, which is detrimental to some UAV airborne models
with limited memory. This requires further light-weighting of the model or improving the
performance of the UAV.
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5. Conclusions

In this paper, we present an end-to-end remote vision-based PAR model that can
effectively model potential relations of regions and attributes. In contrast to existing
methods, the proposed MRG-T fully explores the three relationships of inter-regions, inter-
attributes, and mapping of region and attribute. Extensive experiments conducted on
three publicly available datasets and a large aerial person imagery dataset demonstrate
that the proposed method shows the effectiveness of mask-relation-guided modeling in the
remote vision-based PAR task.

The real-world application of remote vision-based PAR in aerial imagery faces the
following challenges. (1) Model lightweight issue: Current deep-learning models usually
require a large amount of computing resources and are difficult to be implemented in
UAVs due to limited computing power. (2) Drone battery issue: The flight duration of
a drone is limited by its battery capacity. Long flights deplete the battery, restricting the
drone’s endurance during surveillance missions. (3) Monitoring picture quality issues: The
aerial images are captured at high altitudes and may be affected by factors such as weather,
lighting, and occlusion, resulting in poor image quality.

In the future, we believe that more and more researchers will invest in PAR based
on remote vision. However, due to many limitations such as cost, future research can be
discussed from further improving model performance or more lightweight model methods.
It should be noted that everyone should pay attention to privacy protection and other
aspects. We believe that in the future, there will be a more efficient, intelligent, and socially
friendly pedestrian attribute recognition system based on remote vision.
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