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Abstract: Time–frequency analysis is an important tool used for the processing and interpretation
of non-stationary signals, such as seismic data and remote sensing data. In this paper, based on the
novel short-time fractional Fourier transform (STFRFT), a new modified STFRFT is first proposed
which can also generalize the properties of the modified short-time Fourier transform (STFT). Then,
in the modified STFRFT domain, we derive the instantaneous frequency estimator for the chirp signal
and present a new type of synchrosqueezing STFRFT (FRSST). The proposed FRSST presents many
results similar to those of the synchrosqueezing STFT (FSST), and it extends the harmonic signal to a
chirp signal that offers attractive new features. Furthermore, we provide a detailed analysis of the
signal reconstruction, theories, and some properties of the proposed FRSST. Several experiments are
conducted, and all of the results illustrate that the proposed FRSST is more effective than the FSST.
Finally, based on the linear amplitude modulation and frequency modulation signal, we present a
derivation for analyzing the limitations of the FRSST.

Keywords: novel short-time fractional Fourier transform; synchrosqueezing STFT; synchrosqueezing
STFRFT; theory analysis

1. Introduction

The Fourier transform (FT) is a fundamental technique used to process and interpret
signals [1,2]. It can detect the frequency contents within the signal, and it has been widely
applied in speech processing, quantum physics, and remote sensing images. As a general-
ization of the FT, the fractional FT (FRFT) was designed in the mathematics literature [3,4].
Both the FT and FRFT are global transformations that cannot describe the time location of
a frequency or fractional frequency. However, as we know, most actual signals are time-
varying frequencies. Thus, it is often necessary to localize the frequency characteristics
as they change over time. For this goal, the time–frequency analysis (TFA) method is an
effective and important tool that obtains the characterization of time-varying frequencies.
Based on the FT, many classical TFA methods have been proposed, such as the short-time
FT (STFT), wavelet transform (WT), S transform (ST), Wigner–Ville distribution (WVD), and
Cohen class distribution [5–13]. As developments of the FRFT, short-time FRFT (STFRFT),
fractional wavelet transform (FRWT), and fractional ST were also designed [14–19]. All of
these TFA tools can analyze the location of the signal frequency response. Unfortunately,
due to Heisenberg’s uncertainty principle, traditional methods always provide diffused
time–frequency representations (TFRs).

For FT-based TFR, to improve the quality and readability, many methods have been
proposed. Among the post-processing tools, the synchrosqueezing transform (SST) is one
of the most representative techniques [20,21]. In fact, the SST can be regarded as a special
situation of the reassigned method [21,22]. The SST retains superiority in concentrated
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energy and further allows for signal reconstruction [23]. The SST has, thus, been widely
extended and studied. On the one hand, the original SST is based on the CWT, and the inno-
vation was introduced into other classical transforms, such as the STFT, ST, and GST [24–26].
On the other hand, the translation direction of TF coefficients changes from the frequency
to the time, such the time-reassigned SST and the transient-extracting transform [27–30].
Moreover, a higher-order expansion of the amplitude and the phase are introduced into
the time or frequency domain, which improves the concentration and adaptability of the
SST-based method, such as the second-order SST, second SET [31–35], and high-order SST
or SET [36,37]. A higher order can provide a more highly concentrated TFR but requires
more complex computation. In fact, the SST also inspires some other ideas, such as the
multisynchrosqueezing (MSST) and synchroextracting transforms (SET) [38,39], which
have also drawn significant attention [40–44]. In conclusion, a perfect system of theory and
method for the FT-based SST already exists.

For FRFT-based approaches, it is just the beginning. Considering the resolution
and concentration, FRFT-based methods are combined with the idea of the SST. The syn-
chrosqueezed fractional wavelet transform (FRWSST) and synchrosqueezing-based short-
time fractional Fourier transform methods have been proposed [45–47]. In the FRWSST,
theory analysis was built and superiority was shown. In this study, we focus on the paper
concerning synchrosqueezing-based short-time fractional Fourier transform [47]. The au-
thor provided a corresponding definition, some derivations, and simple calculations, but
no systemic mathematical analysis of the approximation theory and properties is available.
In our work, the main aim is to bridge this gap.

In fact, there are many different definitions of the STFRFT [14–16], but most of these
definitions cannot generalize the classical result of the STFT that is interpreted as a bank
of filters [48]. To deal with this issue, a novel STFRFT was proposed [48]. In this study,
to achieve this goal, we design a modified STFRFT based on the novel STFRFT, and then
propose a new fractional synchrosqueezing transform. For the theoretical analysis of errors
of instantaneous frequency (IF) estimation and mode reconstruction, we extend the har-
monic wave-like signal class to the chirp-like ones. Then, we present a new approximation
result that differs slightly from the Fourier-based SST (FSST) [24], and also study some
of the properties of the proposed method. Furthermore, we present an analysis of the
inapplicability of the approach for linear amplitude modulation signals.

This paper is organized as follows. In Section 2, we briefly review the FRFT and
STFRFT. In Section 3, a new FRSST and the corresponding theoretical analysis of the
approximation theorem and some of its properties are presented. In Section 4, composite
examples are used to demonstrate the performance of the proposed FRSST. Finally, a brief
discussion and conclusion are presented in Sections 5 and 6.

2. Preliminaries
2.1. Fractional Fourier Transform

The fractional Fourier transform (FRFT) is one of the unitary integral transforms. For
one given signal f (t) ∈ L2(R), the definition of the FRFT is [4]

Fα(u) = F α{ f (t)}(u) =
∫
R

f (t)Kα(t, u)dt (1)

The kernel Kα(t, u) is

Kα(t, u)


Bαej u2+t2

2 cot α−jut csc α, α ̸= mπ

δ(t − u), α = 2mπ

δ(t + u), α = (2m − 1)π

(2)

where Bα =
√
(1 − j cot α)/2π and m ∈ Z, δ(·) is the Dirac Delta function, and t and u are

the time and fractional frequency, respectively. Like the Fourier transform (FT) spectrum,
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the FRFT can only provide fractional frequencies within the signal, but it cannot localize
frequency characteristics that change with time. Like the short-time FT (STFT), as is well
known, the simplest solution is the short-time FRFT (STFRFT) that gives the information of
the signal in time and frequency domains [14].

2.2. Short-Time FRFT

Indeed, there are many different STFRFTs proposed in the literature [49–51], but none
of those definitions can generalize the properties of the STFT. In this situation, Shi et al.
proposed a novel STFRFT [48]:

STFRFTα
f (t, u) =

∫
R

f (τ)g∗α,t,u(τ)dτ (3)

where
gα,t,u(τ) ≜ g(τ − t)e−j τ2−t2

2 cot α+jτu csc α (4)

Like the STFT, due to the fixed window, the STFRFT will obtain a TFR with diffused
energies. In fact, a synchrosqueezing-based STFRFT has been proposed [47]. However,
to our knowledge, no thorough theory is available. In this paper, to bridge that gap, we
propose a new synchrosqueezing transform based on the modified novel STFRFT defined
by (5).

3. FRSST-Based Novel STFRFT
3.1. Modified Novel STFRFT

Inspired by the modified STFT, we introduce a phase shift ejutcscα into the novel
STFRFT (3), and then define the modified STFRFT as

STFRFTα
f (t, u) =

∫
R

f (τ)g(τ − t)ej τ2−t2
2 cot α−ju(τ−t) csc αdτ (5)

In consideration of the novel STFRFT [48], the modified STFRFT (5) can preserve the
properties of the modified STFT well, and has the following equivalent form:

STFRFTα
f (t, u) =

∫
R

Fα(u′)G∗((u′ − u
)

csc α
)
K∗

α

(
t, u′)du′ (6)

where G∗(·) means the FT of g(t).

3.2. Definition of the New FRSST

To motivate the new synchrosqueezing short-time FRFT (FRSST), it considers a chirp
signal f (t) = Aejϕ(t), where ϕ(t) = a + ω0t + 1

2 ct2, and a Gaussian window function
g(t) = e−σt2

. Obviously,
f (τ + t) = f (t)ei[ϕ′(t)τ+ 1

2 ϕ′′ (t)τ2]

According to (6) and letting α = −arccot(c), we can obtain the FRFT of f (t) as

Fα(u) = Bα|sin α|Aej
ω2

0
4 sin 2αδ(u − ω0 sin α) (7)

Substituting (7) into (6),

STFRFTα
f (t, u) =

A
2π

Ĝ(ω0 − u csc α)ejϕ(t)

Then, we calculate the derivative of the STFRFT as

∂tSTFRFTα
f (t, u) = jϕ′(t) A

2π Ĝ(ω0 − u csc α)ejϕ(t)

= jϕ′(t)STFRFTα
f (t, u)

(8)
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It holds that
∂tSTFRFTα

f (t, u)

jSTFRFTα
f (t, u)

= ϕ′(t) = ω0 + ct (9)

Alongside the FSST, we can define the frequency estimation operator ωα
f (t, ω) in the

modified STFRFT domain as

ω̃α
f (t, u) = ℜ

{
∂tSTFTα

f (t, u)

jSTFTα
f (t, u)

}
(10)

Therefore, the new time–frequency-representative FRSST can be defined as

FRSSTα
f (t, ω) =

∫
Ξα

f

STFRFTα
f (t, u)δ

(
ω − ω̃α

f (t, u)
)

du (11)

where Ξα
f ≜

{
u ∈ R+

∣∣∣STFRFTα
f (t, u) ̸= 0

}
. If the α = π/2, the proposed FRSST be-

comes the conventional FSST. It is worth noting that the proposed FRSST preserves some
properties of the conventional FSST, which will be analyzed in detail. Similar to the
FSST [24,31], the FRSST only reassigns the coefficients and does not lose any information.
The FRSST, thus, allows for the reconstruction of the signal, which can be proven by the
following expression:∫

R FRSST(t, ω)dω =
∫ ∫

R×R+ STFRFTα
f (t, u)δ

(
ω − ω̃α

f (t, u)
)

dudω

=
∫
R STFRFTα

f (t, u)du
=
∫
R Fα(u′)K∗

α(t, u′)
∫
R+ G∗((u′ − u) csc α)dudu′

= 2π
csc α g∗(0)

∫
R Fα(u′)K∗

α(t, u′)du′

= 2π
csc α g∗(0) f (t)

(12)

Equation (12) illustrates that the proposed FRSST can restore the original signal. The
corresponding inverse FRSST is defined by

f (t) =
csc α

2πg∗(0)

∫
R

FRSST(t, ω)dω (13)

3.3. Theoretical Analysis of FRSSTT

In this section, we define a class of functions like the linear chirp that are well-separated
and give an approximation result to show that the proposed new FRSST can successfully
handle the defined class of signals. We start with the following definitions and propositions.

Definition 1. Let ε > 0, c > 0 and ∆ > 0. The set A∆,ε,c of multicomponent signals f (t) is
the set of all multicomponent signals with the amplitude An(t) and phase ϕn(t) satisfying the
following conditions:

An(t) ∈ C1(R) ∩ L∞(R), ϕn(t) ∈ C2(R),
sup
t∈R

ϕ′
n(t) < ∞, ϕ′

n(t) > 0 ∀t ∈ R,

|A′
n(t)|≤ ε, |ϕ′′

n(t)− c|≤ ε ∀t ∈ R.

Further, fn(t) = An(t)ejϕn(t) are separated with the fractional resolution ∆, i.e., for all
n ∈ {1, . . . , N − 1} and all t,

ϕ′
n+1(t)− ϕ′

n(t) ≥ 2∆
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Definition 2. Let function h(t) ∈ C∞(R) and
∫

h(t)dt = 1, and set the threshold ε̃ and the
accuracy λ. The FRSST of f (t) ∈ A∆,ε,c with ε̃ and λ can be defined by:

FRSSTλ,ε̃
f (t, ω) =

csc α

2πg(0)

∫
Ξα

f

STFRFTα
f (t, u)

1
λ

h

(
ω − ω̃α

f (t, u)

λ

)
du (14)

where Ξα
f ≜

{
u ∈ R+

∣∣∣STFRFTα
f (t, u) ̸= 0

}
. When ε̃ and λ approach zero, we obtain the usual

formula as in (11).

Without the loss of generality, assuming s ≥ 0 and according to Definition 1, for
∀n ∈ {1, . . . , N}, the following can easily be obtained:

|A(t + s)− A(t)| =
∫ s

0
A′

n(t + ξ)dξ ≤ εs (15)

and ∣∣ϕ′
n(t + s)− ϕ′

n(t)− cs
∣∣ = ∫ s

0
(ϕ′′

n(t + ξ)− c)dξ ≤ εs (16)

Furthermore, for any n ∈ {1, . . . , N} and t0 ∈ R,

ϕn(t)−
c
2

t2 = ϕn(t0)−
c
2

t2
0 +

(
ϕ′

n(t0)− ct0
)
(t − t0) +

∫ t−t0

0

(
ϕ′

n(t0 + s)− ϕ′
n(t0)− cs

)
ds (17)

Under these definitions and equivalences, we present the following two propositions:

Proposition 1. For the multicomponent signals f (t) =
N
∑

n=1
fn(t) and any (t, u) ∈ R2, it leads to

∣∣∣∣∣STFRFTα
f (t, u)−

N

∑
n=1

fn(t)G
(
u csc α −

(
ϕ′

n(t)− ct
))∣∣∣∣∣ ≤ εΓ1(t) (18)

where Γ1(t) = NI1 +
1
2 I2

N
∑

n=1
An(t), and Ik =

∫
R |x|k|g(x)|dx.

Proof. See Appendix A. □

Proposition 2. For the partial derivative ∂tSTFRFTg
f (t, u),∣∣∣∣∣∂tSTFRFTα

f (t, u)− j
N

∑
n=1

fn(t)ϕ′
n(t)G

(
u csc α −

(
ϕ′

n(t)− ct
))∣∣∣∣∣ ≤ ε(Γ2(t) + |u csc α + ct|Γ1(t)) (19)

where Γ2(t) = NI′1 + 1
2 I′2

N
∑

n=1
An(t), and Ik =

∫
R |x|k|g′(x)|dx.

Proof. See Appendix B. □

Proposition 1 and Proposition 2 extend the signal class to chirp-like ones and generalize
the FT domain to FRFT. Based on these definitions and propositions, we present the
following approximation theorem of the proposed new FRSST.

Theorem 1. Consider f (t) ∈ A∆,ε,c and set ε̃ = ε
1
3 . Let g(t) ∈ S(R), the Schwartz class,

satisfy supp(ĝ) ⊂ [−∆, ∆]. Further, if ε is small enough, then
(a)
∣∣∣STFRFTα

f (t, u)
∣∣∣ > ε̃ only when there exists n ∈ {1, . . . , N} such that (t, u) ∈ Zn :=

{(t, u), s.t. |u csc α − (ϕ′
n(t)− ct)| < ∆}.
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(b) For each n ∈ {1, . . . , N} and all (t, u) ∈ Zn such that
∣∣∣STFRFTα

f (t, u)
∣∣∣> ε̃ ,∣∣∣ω̃α

f (t, u)− ϕ′
n(t)

∣∣∣ ⩽ ε̃ (20)

(c) Moreover, for all n ∈ {1, . . . , N} and ∀t ∈ R, there is a C such that∣∣∣∣∣ limλ→0

(
csc α

2πg(0)

∫
|ω̃ f (t,u)−ϕ′

n(t)|≤ε̃
FRSSTλ,ε̃

f (t, ω)dω

)
− fn(t)

∣∣∣∣∣ ⩽ Cε̃ (21)

Proof. Different from the FSST, this theorem provides a strong approximation result for
the chirp-like signal class in the FRFT domain. Furthermore, it only uses the first-order
derivative of the STFRFT. Inspired by the FSST, the descriptions of the proof are shown in
Appendix C. □

3.4. Basic Properties of the FRSST

Benefited by the novel STFRFT, the proposed FRSST also shares some properties
with the FSST. Here, we list several of the most representative properties along with the
corresponding proof.

(1) Linearity: For f1(t), f2(t) ∈ A∆,ε,c and two scalar constants m1, m2, let f = m1 f1 + m2 f2,
and it holds

FRSSTα
f (t, ω) = m1FRSSTα

f1
(t, ω) + m2FRSSTα

f2
(t, ω) (22)

Proof. Similar to the modified STFT, the proposed modified STFRFT is also linear, i.e.,

STFRFTα
f (t, u) = m1STFRFTα

f1
(t, u) + m2STFRFTα

f2
(t, u). (23)

Following Theorem 1,

STFRFTα
f (t, u) =


m1STFRFTα

f1
(t, u), u ∈

(
(ϕ′

1(t)−ct)−∆
csc α , (ϕ

′
1(t)−ct)+∆

csc α

)
m2STFRFTα

f2
(t, u), u ∈

(
(ϕ′

2(t)−ct)−∆
csc α , (ϕ

′
2(t)−ct)+∆

csc α

)
≤ ε

1
3 , otherwise.

(24)

Then, according to (10),

ω̃α
f (t, u) = ℜ

{
∂tSTFTα

f (t, u)

jSTFTα
f (t, u)

}
= ℜ

 ∂t

(
m1STFRFTα

f1
(t, u) + m2STFRFTα

f2
(t, u)

)
j
(

m1STFRFTα
f1
(t, u) + m2STFRFTα

f2
(t, u)

)
 (25)

which, alongside (24), can obtain

ω̃α
f (t, u) =

 ω̃α
f1
(t, u), u ∈

(
(ϕ′

1(t)−ct)−∆
csc α , (ϕ

′
1(t)−ct)+∆

csc α

)
ω̃α

f2
(t, u), u ∈

(
(ϕ′

2(t)−ct)−∆
csc α , (ϕ

′
2(t)−ct)+∆

csc α

) (26)

Combining (11), (22) and (26),

FRSSTα
f (t, ω) =

∫
Ξα

f
STFRFTα

f (t, u)δ
(

ω − ω̃α
f (t, u)

)
du

=
∫

Ξα
f1

m1STFRFTα
f1
(t, u)δ

(
ω − ω̃α

f1
(t, u)

)
du

+
∫

Ξα
f2

m2STFRFTα
f2
(t, u)δ

(
ω − ω̃α

f2
(t, u)

)
du

= m1FRSSTα
f1
(t, ω) + m2FRSSTα

f2
(t, ω)

(27)

□
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(2) Complex Conjugate: If f (t) ↔ FRSSTα
f (t, ω) , it leads to

FRSSTα
f ∗(t, ω) =

(
FRSST−α

f (t,−ω)
)∗

(28)

Proof. Since the g(t) is a real window and the cot(·) and csc(·) are odd functions, we can
derive

STFRFTα
f ∗(t, u) =

∫
R f ∗(τ)g(τ − t)ej τ2−t2

2 cot α−ju(τ−t) csc αdτ

=

(∫
R f (τ)g(τ − t)ej τ2−t2

2 cot(−α)−ju(τ−t) csc(−α)dτ

)∗

=
(

STFRFT−α
f (t, u)

)∗ (29)

Furthermore, according to (10),

ω̃α
f ∗(t, u) = ℜ

{
∂tSTFTα

f ∗(t, u)

jSTFTα
f ∗(t, u)

}
= ℜ

{
−
(

∂tSTFT−α
f (t, u)

jSTFT−α
f (t, u)

)∗}
= −ω̃−α

f (t, u) (30)

which yields

FRSSTα
f ∗(t, ω) =

∫
Ξα

f
STFRFTα

f ∗(t, u)δ
(

ω − ω̃α
f ∗(t, u)

)
du

=
∫

Ξα
f

(
STFRFT−α

f (t, u)
)∗

δ
(

ω −
(
−ω̃−α

f (t, u)
))

du

=
∫

Ξα
f

(
STFRFT−α

f (t, u)
)∗

δ
(

ω + ω̃−α
f (t, u)

)
du

=
∫

Ξα
f

(
STFRFT−α

f (t, u)
)∗

δ
(

ω̃−α
f (t, u)− (−ω)

)
du

=

(∫
Ξα

f

(
STFRFT−α

f (t, u)
)

δ
(

ω̃−α
f (t, u)− (−ω)

)
du
)∗

=
(

FRSST−α
f (t,−ω)

)∗
(31)

□

(3) Translation: If f (t) ↔ FRSSTα
f (t, ω) , and t0 is a real number, then

FRSSTα
f (t−t0)

(t, ω) = FRSSTα
f (t − t0, ω) (32)

Proof. According to (5), we can obtain

STFRFTα
f (t−t0)

(t, u)

=
∫
R f (τ − t0)g(τ − t)ej τ2−t2

2 cot α−ju(τ−t) csc αdτ

=
∫
R f (ξ)g(ξ − (t − t0))ej (ξ+t0)

2−t2
2 cot α−ju(ξ−(t−t0)) csc αdτ

=
∫
R f (ξ)g(ξ − (t − t0))ej

ξ2−t2+2tt0−t20
2 cot α−ju(ξ−(t−t0)) csc αejt0ξ cot α−jt0t cot α+jt2

0 cot αdτ

=
∫
R f (ξ)g(ξ − (t − t0))ej ξ2−(t−t0)

2

2 cot α−j(u−t0 cos α)(ξ−(t−t0)) csc αdτ
= STFRFTα

f (t − t0, u − t0 cos α)

(33)

Combining (10) and (33),

ω̃α
f (t−t0)

(t, u) = ω̃α
f (t − t0, u − t0 cos α) (34)
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Then,

FRSSTα
f (t−t0)

(t, ω) =
∫

Ξα
f

STFRFTα
f (t−t0)

(t, u)δ
(

ω − ω̃α
f (t−t0)

(t, u)
)

du

=
∫

Ξα
f

STFRFTα
f (t − t0, u − t0 cos α)δ

(
ω − ω̃α

f (t − t0, u − t0 cos α)
)

du

= FRSSTα
f (t − t0, ω)

(35)

□

(4) Fractional Time Shift: If f (t) ↔ FRSSTα
f (t, ω) , and the fractional time shift of

f (t) is

Tα
t0

f (t) = f (t − t0)e−jt0(t−
t0
2 ) cot α (36)

whereby the STFRFT is

FRSSTα
Tα

t0
f (t)(t, ω) = e−jt0(t−

t0
2 ) cot αFRSSTα

f (t − t0, ω + t0 cot α) (37)

Proof. Similar to (33), for (36),

STFRFTα
Tα

t0
f (t)(t, u) = e−jt0(t−

t0
2 ) cot αSTFRFTα

f (t − t0, u) (38)

Then, combining (10) and (38),

ω̃α
Tα

t0
f (t)(t, u) = ω̃α

f (t − t0, u)− t0 cot α (39)

from which, alongside (11), we can derive

FRSSTα
Tα

t0
f (t)(t, ω) =

∫
Ξα

f
STFRFTα

Tα
t0

f (t)(t, u)δ
(

ω − ω̃α
Tα

t0
f (t)(t, u)

)
du

=
∫

Ξα
f

e−jt0(t−
t0
2 ) cot αSTFRFTα

f (t − t0, u)δ
(

ω −
(

ω̃α
f (t − t0, u)− t0 cot α

))
du

= e−jt0(t−
t0
2 ) cot αFRSSTα

f (t − t0, ω + t0 cot α)

(40)

□

(5) Modulation: For the f (t)ejω0t with ω0 ∈ R,

FRSSTα
f (t)ejω0t(t, ω) = ejω0tFRSSTα

f (t, ω − ω0) (41)

Proof. Alongside the variable substitution, the STFRFT (5) derives

STFRFTα
f (t)ejω0t(t, u) =

∫
R f (τ)ejω0τ g(τ − t)ej τ2−t2

2 cot α−ju(τ−t) csc αdτ

=
∫
R f (τ)g(τ − t)ej τ2−t2

2 cot α−j(u−ω0 sin α)u(τ−t) csc α+jω0tdτ

= ejω0tSTFRFTα
f (t, u − ω0 sin α)

(42)

which, substituted into (10), will allow to obtain

ω̃α
f (at)(t, u) = ω0 + ω̃α

f (t, u − ω0 sin α) (43)
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Then,

FRSSTα
f (t)ejω0t(t, ω)

=
∫

Ξα
f

STFRFTα
f (t)ejω0t(t, u)δ

(
ω − ω̃α

f (t)ejω0t(t, u)
)

du

=
∫

Ξα
f

ejω0tSTFRFTα
f (t, u − ω0 sin α)δ

(
ω −

(
ω0 + ω̃α

f (t, u − ω0 sin α)
))

du

= ejω0tFRSSTα
f (t, ω − ω0)

(44)

□

(6) Frequency Shear: For the f (t)ej b
2 t2

with b ∈ R,

FRSSTα

f (t)ej b
2 t2

(t, ω) = ej b
2 t2

FRSSTσ
f (t, ω − ct) (45)

where σ = arccot(cot α + b).

Proof. Similarly, for the f (t)ej b
2 t2

,

STFRFTα

f (t)ej b
2 t2

(t, u) =
∫
R f (τ)ej b

2 τ2
g(τ − t)ej τ2−t2

2 cot α−ju(τ−t) csc αdτ

= ej b
2 t2∫

R f (τ)g(τ − t)ej τ2−t2
2 (cot α+b)−j csc α

csc σ u(τ−t) csc σdτ

= ej b
2 t2

STFRFTσ
f
(
t, csc α

csc σ u
) (46)

and
ω̃α

f (t)ej b
2 t2

(t, u) = bt + ω̃σ
f

(
t,

csc α

csc σ
u
)

(47)

Then,

FRSSTα

f (t)ej b
2 t2

(t, ω) =
∫

Ξα
f

STFRFTα

f (t)ej b
2 t2

(t, u)δ
(

ω − ω̃α

f (t)ej b
2 t2

(t, u)
)

du

=
∫

Ξα
f

ej b
2 t2

STFRFTσ
f
(
t, csc α

csc σ u
)

·δ
(

ω −
(

ct + ω̃σ
f
(
t, csc α

csc σ u
)))

du

= ej b
2 t2

FRSSTα
f (t, ω − ct)

(48)

□

4. Numerical Examples

In this section, two examples are employed to show the performance of this new
FRSST. At the same time, we take the STFT, FRFT, FSST, and second-order SST (VSST) as
the compared methods. For all examples, the sampling frequency, sampling number of the
signal, and k are 1000 Hz, 1000, and 150, respectively. Herein, without the loss of generality,
all of the methods are conjured with a Gaussian window function.

4.1. Linear Modulations

To show the good resolution and concentration of the new FRSST, we use three
different signals, defined as

f11(t) = e2π j(200t+ k
2 t2) + e2π j(155t+ k

2 t2), f12(t) = e2π j(200t+ k
2 t2) + e2π j(175t+ k

2 t2),
f13(t) = e2π j(200t+ k

2 t2) + e2π j(195t+ k
2 t2)

(49)

where the frequency intervals of the different modes are decreasing. The corresponding
time–frequency representations (TFRs) are shown in Figures 1–3, respectively.
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4. Numerical Examples 
In this section, two examples are employed to show the performance of this new 

FRSST. At the same time, we take the STFT, FRFT, FSST, and second-order SST (VSST) as 
the compared methods. For all examples, the sampling frequency, sampling number of 
the signal, and k  are 1000 Hz, 1000, and 150, respectively. Herein, without the loss of 
generality, all of the methods are conjured with a Gaussian window function. 

4.1. Linear Modulations 
To show the good resolution and concentration of the new FRSST, we use three dif-

ferent signals, defined as 

( ) ( ) ( ) ( )

( ) ( )

2 2 2 2
2 2 2 2

2 2
2 2

2 200 2 155 2 200 2 1

2

11 12

13

75

200 2 195

, ,( ) ( )

( )

k k k k

k k

j t t j t t j t t j t t

j t t j t t

e e

e

f t e f t e

f t e

π π π π

π π

+ + + +

+ +

+ +

+

= =

=
 (49)

where the frequency intervals of the different modes are decreasing. The corresponding 
time–frequency representations (TFRs) are shown in Figures 1–3, respectively. 
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(b) FSST, (c) VSST, (d) STFRFT, and (e) FRSST.

From Figure 1, it is clear that the five different methods can distinguish the two
modes within the signal f11(t). As shown in Figure 1d, the resolution of the STFRFT is
still fixed, but it is higher than that of the STFT in Figure 1a. Like the analysis in the other
papers [21,22,31], the synchrosqueezing transforms (Figure 1b,c,e) improve the energy
concentration of the TFRs. Due to the same underlying assumptions, the FRSST (Figure 1e)
can provide a result with the same readability as the VSST (Figure 1c). Moreover, the FRSST
inherits the resolution of STFRFT. Thus, compared with the other methods, the proposed
FRSST has a better resolution and concentration.

For the signal f12(t), the frequency interval becomes 25 Hz; the TFR is given in Figure 2.
We can see that the STFT (Figure 2a) contains cross-terms because of the resolution. Due to
the post-processing of the STFT, the FSST (Figure 2b) and the VSST (Figure 2c) improve the
concentration of the energy, but still remain less cross-term. The result of the STFRFT is
shown in Figure 2d. Due to the improvement in the time–frequency resolution, the STFRFT
can still separate the two modes well, but the STFRFT shows low energy concentration.
However, the FRSST still exhibits the best performance of resolution and concentration.
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Figure 3. Illustration of the time–frequency representations for signal f13(t) obtained by the (a) STFT,
(b) FSST, (c) VSST, (d) STFRFT, and (e) FRSST.

When the interval reaches 5 Hz in the signal f13(t), the STFT (Figure 3a) cannot identify
the features of the two modes in the time–frequency domain, which leads to a useless result.
As illustrated in Figure 3b,c, the FSST and VSST share common phenomena of the STFT. As
shown in Figure 3d, the two components are well distinguished in the STFRFT domain.

It is worth noting that the FRSST shares the high resolution of the STFRFT and the
aggregation of the SST. For the three different frequency intervals of linear frequency-
modulated signals, as indicated in Figures 1e, 2e and 3e, the FRSST presents better perfor-
mance in terms of resolution and concentration, which helps for the subsequent processing
and interpretation.

4.2. Linear Modulation with Disturbance

Herein, we take the signal f2(t) as the second illustration to verify the superiority
of the FRSST. The results are shown in Figure 4. The STFT obtains a TFR with diffusion
and cross-terms between the two components. It can be seen from Figure 4b that the FSST
concentrates the energy of the TFR, but the cross-term still exists and is diffused at the
fast-changing frequencies (marked by the white arrow). The STFRFT in Figure 4c provides
a TFR that seems to be of the same concentration as that of the STFT. However, the STFRFT
can distinguish the two modes clearly and has fewer cross-terms. The conclusions of
the theory analysis indicate that the FRSST gives results that can best characterize the TF
features of the signal f2(t).

f2(t) = e2π j(200t+ k
2 t2+cos(3πt)) + e2π j(175t+ k

2 t2) (50)

In Definition 1, for the given signal, the window width should be wide enough to
ensure that the frequency resolution meets the separation condition. In this case, the
time resolution will be poor because of the Heisenberg uncertainty principle. As shown
in Figure 5a,b, the low time resolution still leads to the TFR of the STFT and FSST with
serious disturbance and energy diffusion. In Figure 5c, the time–frequency resolution
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of the STFRFT is obviously better than that of the STFT, and the two different modes
are separated completely. Unfortunately, the time–frequency distribution is insufficiently
concentrated. Like the STFRFT, the FRSST (Figure 5d) can separate the modes. However,
the wide window may enlarge the local approximation error, which leads to a bad frequency
estimation and then a diffused TFR, indicated by the white arrows in Figure 5d.
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Theorem 1 explains that a narrow window width is required to minimize the error
of the frequency estimation. The corresponding results obtained using the four different
methods with a narrow window are illustrated in Figure 6. The narrow window width
provides a low-frequency resolution, which makes the features of the two modes mixed
in the STFT (Figure 6a) or STFRFT (Figure 6c) domain. Though the FSST (Figure 6b) and
FRSST (Figure 6d) also have some cross-terms: they are much more concentrated in the
TFR because of the good estimation of the instantaneous frequency. In summary, the
corresponding results of the FRSST are always more concentrated and can better separate
the different components within the signal, i.e., the FRSST provides more flexibility in the
choice of window width.
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5. Discussion

In the theoretical analysis of the proposed FRSST method, for the signal f (t) = A(t)ejϕ(t),
it assumed that |A′(t)|≤ ε, |ϕ′′ (t)− c|≤ ε, ∀t ∈ R . The choice of the angle α is an impor-
tant point in the implementation of the FRSST. Herein, we consider a linear frequency
modulation signal h(t) = A(t)ejϕ(t) = ea1+b1t+ c1

2 t2
ej(a2+b2t+ c2

2 t2), and the derivative is

h′(t) = (b1 + c1t + j(b2 + c2t))h(t) (51)
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Then, we rewrite Equation (5) as

STFRFTα,g
f (u, t) =

∫
f (τ + t)g(τ)ej τ2

2 cot α+jτ(t cot α−u csc α)dτ (52)

According to (51) and (52),

∂tSTFRFTα,g
h (u, t) =

∫
(b1 + c1(τ + t) + j(b2 + c2(τ + t)))h(τ + t)g(τ)ej τ2

2 cot α+jτ(t cot α−u csc α)dτ

+j cot α
∫

h(τ + t)τg(τ)ej τ2
2 cot α+jτ(t cot α−u csc α)dτ

= (b1 + c1t + j(b2 + c2t))
∫

h(τ + t)g(τ)ej τ2
2 cot α+jτ(t cot α−u csc α)dτ

+(c1 + j(c2 + cot α))
∫

h(τ + t)τg(τ)ej τ2
2 cot α+jτ(t cot α−u csc α)dτ

= (b1 + c1t + j(b2 + c2t))STFRFTα,g
h (u, t) + (c1 + j(c2 + cot α))STFRFTα,τg

h (u, t)

where τg = τg(τ) and STFRFTα,τg
h (u, t) are the STFRFT with the window function

τg = τg(τ). Then,

∂tSTFRFTα,g
h (u, t)

STFRFTα,g
h (u, t)

= (b1 + c1t + j(b2 + c2t)) + (c1 + j(c2 + cot α))
STFRFTα,τg

h (u, t)

STFRFTα,g
h (u, t)

(53)

Further,

b2 + c2t = ℜ
{

∂tSTFRFTα,g
h (u, t)

jSTFRFTα,g
h (u, t)

}
−ℜ

{
(−jc1 + (c2 + cot α))

STFRFTα,τg
h (u, t)

STFRFTα,g
h (u, t)

}
(54)

where ℜ
{

∂tSTFRFTα,g
h (u,t)

jSTFRFTα,g
h (u,t)

}
is the operator ω̃(u, t), and it clearly shows that, under the

assumed condition c2 = −cotα. It is the exact estimation of the IF for the constant amplitude
linear chirp [46,47]. However, for the linear AM-FM signal, the frequency estimation will
diverge from reality.

We use two signals defined by (54) to show the corresponding effect on the time–
frequency representation.

f3(t) = e2π j(200t+ k1
2 t2) + e2π j(130t+ k2

2 t2), k1 = 200, k2 = 100
f4(t) = e2π j(200t+ k

2 t2+3cos(6πt))
(55)

The signal f3(t) consists of two modes with different chirp rates, and the TFRs obtained
using the STFRFT and FRSST are given in Figure 7. We can see that the α relates to the
concentration of the STFRFT result and the frequency estimation of the FRSST method. In
some work concerning the STFRFT, the way to best select the α for multi-component signals
was studied. However, in this work, we only consider different modes with the same
chirp rate. From the expression of signal f4(t), it obviously does not meet the assumed
conditions. As shown in Figure 8, the TFR is so diffused. In the future, we may consider
the higher-order terms of the instantaneous amplitude and phase to extend the FRSST and
reduce the influence of α for the concentration of the TFR. Furthermore, we created the
algorithm for the proposed method to show the resolution and concentration but do not
consider the computation time. The efficiency of the program we have written is low, and
this will be the focus of future work.
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6. Conclusions

In this paper, we developed a modified novel short-time fractional Fourier transform
and then proposed a new extension of the synchrosqueezing short-time Fourier transform
(FRSST). Most importantly, we developed a theoretical analysis of the FRSST that states
that the energy in the synchrosqueezing time–frequency plane associated with the STFRFT
is concentrated around the instantaneous frequency curves ϕ′

n(t), and the inverted compo-
nents fn(t) approximate the actual oscillatory components An(t)ejϕ′

n(t). We also provided
the derivation of its basic properties. Numerical examples verified the effectiveness and
practicality of the FRSST in terms of the time–frequency resolution and energy concentra-
tion, and the results were consistent with the theoretical analysis. Proof of the theoretical
limitations is provided in the Section 5, and relevant improvements are currently underway.
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Appendix A

Proof of Proposition 1. Let B =
N
∑

n=1
fn(t)ĝ(u csc α − (ϕ′

n(t)− ct)), which can also be

written as

B =
N
∑

n=1
fn(t)ĝ(u csc α − (ϕ′

n(t)− ct))

=
N
∑

n=1
An(t)ejϕn(t)

∫
R g(τ − t)e−j(τ−t)(u csc α−(ϕ′

n(t)−ct))dτ

=
N
∑

n=1
An(t)ejϕn(t)

∫
R ej(τ−t)(ϕ′

n(t)−ct)g(τ − t)e−j(τ−t)u csc αdτ

(A1)

Then, according to (5), the modified STFRFT of f (t) ∈ A∆,ε,c with α = −arccot(c)is

STFRFTg
f (t, u) =

∫
R f (τ)g(τ − t)ej τ2−t2

2 cot α−ju(τ−t) csc αdτ

=
∫
R

N
∑

n=1
An(τ)ejϕn(τ)g(τ − t)ej τ2−t2

2 cot α−ju(τ−t) csc αdτ

=
N
∑

n=1
ej c

2 t2∫
R (An(τ)− An(t))ej(ϕn(τ)− c

2 τ2)g(τ − t)e−ju(τ−t) csc αdτ

+
N
∑

n=1
ej c

2 t2∫
R An(t)ej(ϕn(τ)− c

2 τ2)g(τ − t)e−ju(τ−t) csc αdτ

(A2)
Following from (17) and (A2) is

STFRFTg
f (t, u) =

N
∑

n=1
ej c

2 t2∫
R (An(τ)− An(t))ej(ϕn(τ)− c

2 τ2)g(τ − t)e−ju(τ−t) csc αdτ

+
N
∑

n=1
An(t)ejϕn(t)

∫
R ej(τ−t)(ϕ′

n(t)−ct) × e
∫ τ−t

0 (ϕ′
n(t+s)−ϕ′

n(t)−cs)dsg(τ − t)e−ju(τ−t) csc αdτ

(A3)

which will obtain∣∣∣STFRFTg
f (t, u)− B

∣∣∣ ≤ N
∑

n=1

∫
R |An(τ)− An(t)||g(τ − t)|dτ

+
N
∑

n=1
|An(t)|

∫
R

∣∣∣e∫ τ−t
0 (ϕ′

n(t+s)−ϕ′
n(t)−cs)ds − 1

∣∣∣|g(τ − t)|dτ

(A4)

From (16),

e
∫ τ−t

0 (ϕ′
n(t+s)−ϕ′

n(t)−cs)ds − 1 ≃
∫ τ−t

0

(
ϕ′

n(t + s)− ϕ′
n(t)− cs

)
ds (A5)

Then, combining (15), (16), (A4) and (A5),
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∣∣∣STFRFTg
f (t, u)− B

∣∣∣ ≤ N
∑

n=1

∫
R |An(τ)− An(t)||g(τ − t)|dτ

+
N
∑

n=1
|An(t)|

∫
R

∣∣∣∫ τ−t
0 (ϕ′

n(t + s)− ϕ′
n(t)− cs)ds

∣∣∣|g(τ − t)|dτ

≤
N
∑

n=1

∫
R ε|τ − t||g(τ − t)|dτ +

N
∑

n=1
|An(t)|

∫
R

∣∣∣∫ τ−t
0 εsds

∣∣∣|g(τ − t)|dτ

≤
N
∑

n=1

∫
R ε|τ − t||g(τ − t)|dτ +

N
∑

n=1
|An(t)|

∫
R

1
2 ε|τ − t|2|g(τ − t)|dτ

= ε

(
NI1 +

1
2 I2

N
∑

n=1
|An(t)|

)
= εΓ1(t)

(A6)

□

Appendix B

Proof of Proposition 2. According to (A1),

N
∑

n=1
fn(t)ϕ′

n(t)ĝ(u csc α − (ϕ′
n(t)− ct)) =

N
∑

n=1
fn(t)ϕ′

n(t)
∫
R g(τ − t)e−j(τ−t)(u csc α−(ϕ′

n(t)−ct))dτ

= −j
N
∑

n=1
fn(t)

∫
R g(τ − t)d

(
e−j(τ−t)(u csc α−(ϕ′

n(t)−ct))
)
− (u csc α + ct)

×
N
∑

n=1
fn(t)

∫
R g(τ − t)e−j(τ−t)(u csc α−(ϕ′

n(t)−ct))dτ

= j
N
∑

n=1
An(t)ejϕn(t)

∫
R g′(τ − t)e−j(τ−t)(u csc α−(ϕ′

n(t)−ct))dτ

−(u csc α + ct)
N
∑

n=1
fn(t)ĝ(u csc α − (ϕ′

n(t)− ct))

(A7)

Through (A2) and (A3), we can obtain

∂tSTFRFTg
f (t, u) = ∂t

∫
R f (τ)g(τ − t)ej τ2−t2

2 cot α−ju(τ−t) csc αdτ

= −
∫
R A(τ)ejϕ(τ)g′(τ − t)ej τ2−t2

2 cot α−ju(τ−t) csc αdτ

+j(u csc α + ct)
∫
R f (τ)g(τ − t)ej τ2−t2

2 cot α−ju(τ−t) csc αdτ

= −
N
∑

n=1
ej c

2 t2∫
R (An(τ)− An(t))ej(ϕn(τ)− c

2 τ2)g′(τ − t)e−ju(τ−t) csc αdτ

−
N
∑

n=1
An(t)ejϕn(t)

∫
R e
∫ τ−t

0 (ϕ′
n(t+s)−ϕ′

n(t)−cs)dsg′(τ − t)e−j(τ−t)(u csc α−(ϕ′
n(t)−ct))dτ

+j(u csc α + ct)STFRFTg
f

(A8)

Combining (A6)–(A8),
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∣∣∣∣∂tSTFRFTα
f (t, u)− j

N
∑

n=1
fn(t)ϕ′

n(t)G(u csc α − (ϕ′
n(t)− ct))

∣∣∣∣
=

∣∣∣∣− N
∑

n=1
ej c

2 t2∫
R (An(τ)− An(t))ej(ϕn(τ)− c

2 τ2)g′(τ − t)e−ju(τ−t) csc αdτ −
N
∑

n=1
An(t)ejϕn(t)

∫
R e
∫ τ−t

0 (ϕ′
n(t+s)−ϕ′

n(t)−cs)dsg′(τ − t)

×e−j(τ−t)(u csc α−(ϕ′
n(t)−ct))dτ + j(u csc α + ct)STFRFTg

f +
N
∑

n=1
An(t)ejϕn(t)

∫
R g′(τ − t)e−j(τ−t)(u csc α−(ϕ′

n(t)−ct))dτ

−j(u csc α + ct)
N
∑

n=1
fn(t)ĝ(u csc α − (ϕ′

n(t)− ct))
∣∣∣∣

≤
N
∑

n=1

∫
R |An(τ)− An(t)||g′(τ − t)|dτ +

N
∑

n=1
|An(t)|

∫
R

∣∣∣∫ τ−t
0 (ϕ′

n(t + s)− ϕ′
n(t)− cs)ds

∣∣∣|g′(τ − t)|dτ

+
∣∣∣(u csc α + ct)

(
STFRFTg

f (t, u)− B
)∣∣∣

≤
N
∑

n=1

∫
R ε|τ − t||g(τ − t)|dτ +

N
∑

n=1
|An(t)|

∫
R

1
2 ε|τ − t|2|g′(τ − t)|dτ + ε|u csc α + ct|Γ1(t)

= ε

(
NI′1 + 1

2 I′2
N
∑

n=1
|An(t)|

)
+ ε|u csc α + ct|Γ1(t)

= ε(Γ2(t) + |u csc α + ct|Γ1(t))

□

Appendix C

Proof of Theorem 1. (a) As the result of Proposition 1,∣∣∣∣∣STFRFTα
f (t, u)−

N

∑
n=1

fn(t)G
(
u csc α −

(
ϕ′

n(t)− ct
))∣∣∣∣∣ ≤ εΓ1(t) (A9)

Since supp(G = ĝ) ⊂ [−∆, ∆], and the frequency interval between every two modes

are larger than 2∆, for any (t, u) /∈
N
∪

n=1
Zn, and if

ε̃ ≤ ∥Γ1∥
− 1

2
∞ (A10)

Then ∣∣∣STFRFTα
f (t, u)

∣∣∣ ≤ εΓ1(t) ≤ ε̃3 · ε̃−2 = ε̃ (A11)

Furthermore, for any (t, u) ∈ R2, there is, at most, one n, which satisfies (a). As-
suming there exist two integers n1 > n2 such that

∣∣∣u csc α −
(

ϕ′
n1
(t)− ct

)∣∣∣ < ∆ and∣∣∣u csc α −
(

ϕ′
n2
(t)− ct

)∣∣∣ < ∆. It then holds that

ϕ′
n1
(t)− ϕ′

n2
(t) ≤

∣∣∣ϕ′
n1
(t)− ϕ′

n2
(t)
∣∣∣

=
∣∣∣u csc α −

(
ϕ′

n2
(t)− ct

)
−
(

u csc α −
(

ϕ′
n1
(t)− ct

))∣∣∣
≤
∣∣∣u csc α −

(
ϕ′

n1
(t)− ct

)∣∣∣+ ∣∣∣u csc α −
(

ϕ′
n2
(t)− ct

)∣∣∣
< 2∆

(A12)

which conflicts with ϕ′
n+1(t)− ϕ′

n(t) ≥ 2∆. Thus, for any pair (t, u) under consideration,

there is, at most, one mode of the signal f (t) that satisfies
∣∣∣STFRFTα

f (t, u)
∣∣∣ > ε̃.

(b) In the Proposition 2, we have the following estimation of ∂tSTFRFTg
f (t, u):∣∣∣∣∣∂tSTFRFTα

f (t, u)− j
N

∑
n=1

fn(t)ϕ′
n(t)G

(
u csc α −

(
ϕ′

n(t)− ct
))∣∣∣∣∣ ≤ ε(Γ2(t) + |u csc α + ct|Γ1(t)) (A13)



Remote Sens. 2024, 16, 1173 20 of 22

It should be noted that, since the sets Zn are disjointed, there are no more than two
non-zero terms in that involved in the Equations (A9) and (A13). Then, for every (t, u) ∈ Zn,∣∣∣ω̃α

f (t, u)− ϕ′
n(t)

∣∣∣ = ∣∣∣∣ ∂tSTFRSTg
f (t,u)

jSTFRSTg
f (t,u)

− ϕ′
n(t)

∣∣∣∣
≤

∣∣∣∣∣∣∣
∂tSTFRSTg

f (t,u)−j
N
∑

n−1
fn(t)ϕ′

n(t)G(u csc α−(ϕ′
n(t)−ct))

jSTFRSTg
f (t,u)

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣
jϕ′

n(t)

(
N
∑

n−1
fn(t)G(u csc α−(ϕ′

n(t)−ct))−STFRSTg
f (t,u)

)
STFRSTg

f (t,u)

∣∣∣∣∣∣∣∣
≤ ε((Γ2(t)+|u csc α+ct|Γ1(t)))

ε̃ + ϕ′
n(t)

εΓ1(t)
ε̃

= ε̃2((Γ2(t) + (|u csc α + ct|+ ϕ′
n(t))Γ1(t)))

≤ ε̃2((Γ2(t) + (2ϕ′
n(t) + ∆)Γ1(t)))

(A14)

Hence, for all t, if it satisfies

ε̃ ≤
(
Γ2(t) +

(
2ϕ′

n(t) + ∆
)
Γ1(t)

)−1 (A15)

Then, ∣∣∣ω̃α
f (t, u)− ϕ′

n(t)
∣∣∣ ≤ ε̃2((Γ2(t) +

(
2ϕ′

n(t) + ∆
)
Γ1(t)

))
≤ ε̃ (A16)

(c) According to Reference [33],

lim
λ→0

∫
|ω−ϕ′

n(t)|≤ε̃ FRSSTλ,ε̃
f (t, ω)dω = csc α

2πg(0)

∫
|STFRFTg

f (t,u)|>ε̃ STFRFTg
f (t, u)

× lim
λ→0

∫
|ω̃ f (t,u)−ϕ′

n(t)|≤ε̃
1
λ h
(

ω−ω̃α
f (t,u)

λ

)
dωdu

= csc α
2πg(0)

∫
|STFRFTg

f (t,u)|>ε̃∩|ω̃ f (t,u)−ϕ′
n(t)|≤ε̃ STFRFTg

f (t, u)du

= csc α
2πg(0)

[∫
|STFRFTg

f (t,u)|>ε̃ STFRFTg
f (t, u)du

−
∫
|STFRFTg

f (t,u)|>ε̃\|ω̃ f (t,u)−ϕ′
n(t)|≤ε̃ STFRFTg

f (t, u)du
]

(A17)

Alongside (a), for (21),∣∣∣∣ limλ→0

∫
|ω−ϕ′

n(t)|≤ε̃ FRSSTλ,ε̃
f (t, ω)dω − An(t)ejϕ′

n(t)
∣∣∣∣

=

∣∣∣∣ csc α
2πg(0)

∫
|STFRFTg

f (t,u)|>ε̃ STFRFTg
f (t, u)du − An(t)ejϕ′

n(t)
∣∣∣∣

+

∣∣∣∣ csc α
2πg(0)

∫
|STFRFTg

f (t,u)|>ε̃\|ω̃ f (t,u)−ϕ′
n(t)|≤ε̃ STFRFTg

f (t, u)du
∣∣∣∣

≤
∣∣∣ csc α

2πg(0)

∫
|u csc α−(ϕ′

n(t)−ct)|<∆

[
STFRFTg

f (t, u)− B
]
du
∣∣∣

+
∣∣∣ csc α

2πg(0)

∫
|u csc α−(ϕ′

n(t)−ct)|<∆ STFRFTg
f (t, u)du

∣∣∣
+
∣∣∣∫|u csc α−(ϕ′

n(t)−ct)|<∆
csc α

2πg(0)Bdu − An(t)ejϕ′
n(t)
∣∣∣

=
∣∣∣ csc α

2πg(0)

∫
|u csc α−(ϕ′

n(t)−ct)|<∆ (εΓ1(t) + ε̃)du
∣∣∣

+
∣∣∣ csc α

2πg(0)

∫
|u csc α−(ϕ′

n(t)−ct)|<∆ Bdu − An(t)ejϕ′
n(t)
∣∣∣

≤ ∆
πg(0) (εΓ1(t) + ε̃) + 0

= 2∆
πg(0) ε̃

(A18)
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Further, let C = 2∆
πg(0) ; then, it will be proven that∣∣∣∣ limλ→0

∫
|ω−ϕ′

n(t)|≤ε̃
FRSSTλ,ε̃

f (t, ω)dω − An(t)ejϕ′
n(t)
∣∣∣∣ ≤ Cε̃

□
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