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Abstract: Urban heat islands (UHI) are a well-known phenomenon adversely affecting human
health and urban environments. The worldwide COVID-19 lockdown in 2020 provided a unique
opportunity to investigate the effects of decreased emission of air pollution and anthropogenic heat
flux (AHF) on UHI. Although studies have suggested that reduced AHF during lockdown decreased
atmospheric UHI (AUHI) and surface UHI (SUHI), these results contain inherent uncertainties due to
unaccounted weather variability and urban-rural dynamics. Our study comprehensively analyzes
the impact of the COVID-19 lockdown on AUHI and SUHI in Prague, Czechia. By selecting days
with similar weather conditions, we examined changes in mean SUHI using MODIS satellite images
and in AUHI based on air temperature from Prague weather stations for the Lockdown period during
March–April 2020 versus a Reference period from March–April 2017–2019. Our results show that,
in comparison to the Reference period, the Lockdown period was associated with a 15% (0.1 ◦C)
reduction of SUHI in urbanized areas of Prague and a 0.7 ◦C decline in AUHI in the city center.
Additionally, the observed decreases in satellite-based aerosol optical depth and nitrogen dioxide
by 12% and 29%, respectively, support our hypothesis that the weakened UHI effects were linked to
reduction in anthropogenic activities during the lockdown. Revealing the largest decrease of mean
SUHI magnitude around the periphery of Prague, which has predominantly rural land cover, our
study emphasizes the need to consider the effects of urban-rural dynamics when attributing changes
in SUHI to AHF. Our findings provide additional insights into the role of reduced anthropogenic
activities in UHI dynamics during the COVID-19 lockdown and offer policymakers a comprehensive
understanding of how the complex interaction between urban and rural microclimate dynamics
influences the SUHI phenomenon.

Keywords: urban heat island; surface urban heat island; anthropogenic heat flux; land surface
temperature; COVID-19 lockdown

1. Introduction

Coronavirus disease (COVID-19) caused by the severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) emerged in Wuhan, the capital of Hubei Province, China,
early in December 2019, then spread globally within several months. The World Health
Organization declared the COVID-19 outbreak a pandemic on 11 March 2020. Extraordinary
measures were implemented around the world to slow the spread of the virus, ranging
across closures of public services, schools, and universities due to national curfews.

The implementation of COVID-19 lockdown measures led to a significant reduction in
human activities and mobility. This, in turn, caused a decrease in anthropogenic emissions,
which subsequently led to a rapid improvement in air quality in locations across the
globe [1–4]. For example, based on the Google mobility index and satellite data (Sentinel-
5P), 90% reduction in mobility and 30% decline in NO2 emissions were observed in six
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countries across the northern hemisphere due to lockdowns in March 2020 (compared to
March 2019) [1].

Similarly, studies using ground observations reported as much as 34%, 47%, and
64% reductions in PM2.5, PM10, and NO2 concentrations, respectively, in cities across the
globe due to restrictions on anthropogenic emission sources during the lockdown [1–4].
Furthermore, reduction in CO2 emissions during the lockdown during March–April 2020
has been documented on global (8.8%, [4]) as well as local scales (e.g., a drop by 30% in
the San Francisco Bay Area [5]). The drop in CO2 was attributable primarily to changes in
traffic [4,5].

Similar to the changes in air pollution, anthropogenic heat emissions likely decreased
during the lockdown, as they are closely associated with the same human activities that
release air pollutants. Anthropogenic heat flux (AHF) is one of the well-known causes of the
urban heat island (UHI) effect [6] and an important input parameter of the surface energy
budget in urban areas [7]. Unlike air pollution emissions and concentrations, however,
AHF is challenging to measure; it needs to be estimated from such other proxy variables as
air pollution [8], energy consumption data [9], or land surface temperature (LST) [10]. The
near-surface thermal microclimate of a given site is defined by the surface energy balance
equation, which is represented as follows:

Q* + QF = QH + QE + ∆QS + ∆QA (1)

where Q* is the net all-wave radiation, QF is AHF density, ∆QS is net heat storage, ∆QA is
net advective heat flux, QH is sensible and QE is latent heat flux density [7,11]. The two
turbulent heat flux densities, sensible and latent heat flux, facilitate the energy transfer
between the surface and the atmosphere [7,12]. AHF is an added energy input to the energy
balance that impacts primarily thermal characteristics of the urban canopy layer. However,
authors agree that AHF is also an important driver of LST due to enhanced heat exchange
between the atmosphere and urban land surfaces [7,10,12–15]. Hence, it is hypothesized
that the reduction in AHF during the COVID-19 lockdown led to a weaker UHI effect and
a decreased magnitude of the surface UHI (SUHI) [16–19].

Since the outbreak of the COVID-19 pandemic, there has been a growing body of
literature on the effects of lockdowns on UHIs [15,20,21]. A recent review of 29 studies
on urban temperature anomalies during the COVID-19 lockdown revealed a decrease in
UHI, LST, or SUHI, respectively, in the majority of 46 cities across various regions and
climate zones [22]. The average LST decrease in developed (i.e., mid- and high-latitude)
countries was smaller than that in developing countries, which is in line with findings
from China [15] where the UHI-decline effect related to the lockdown weakened with
increasing latitude.

Another global study suggests that while there was a substantial decrease in the SUHI
magnitude of Chinese cities, the results from Europe and the USA were less significant [23].
Similar patterns were observed in a study comparing LST in Europe and North America
during March–May 2020 to the same period in 2015–2019 [20]. The decrease in LST was
generally larger in urban areas compared to rural landscapes, suggesting weakening SUHI
effects, especially during nighttime. On the contrary, daytime LST increased over large
parts of Europe due to less attenuation of solar radiation by atmospheric aerosols and
anticyclonic synoptic conditions over Europe during the lockdown period [20,24]. These
findings highlight the importance of taking into account the spatial and temporal variability
in synoptic conditions when analyzing and comparing temporal changes in SUHI.

Indeed, while the aforementioned studies offer important insight into large-scale
effects of the COVID-19 lockdown on LST and SUHIs, they mostly neglect within-city
differences between urban and rural land cover types and the way they are affected by day-
to-day weather variability [20,24]. Distinguishing between urban and rural microclimate
dynamics and controlling for the effect of natural weather variability are, however, crucial
steps in identifying changes in SUHI attributable to variations in AHF [21]. While urbanized
areas are largely affected by anthropogenic heat, rural areas are more susceptible to changes
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in weather conditions. Nevertheless, most studies do not take into account this effect when
assessing the impacts of COVID-19 lockdowns on SUHIs and attribute all changes in cities
to anthropogenic heat. In order to attribute the changes in SUHI more precisely to AHF
variability, it is necessary to control for the effects of synoptic conditions. This can be
achieved via a rigorous process for selecting study period based on synoptic conditions
and evaluating the results by taking into account the local dynamics as well.

In this study, we aim to assess the effect of the COVID-19 lockdown during March
2020 on UHI dynamics in Prague, Czechia. In order to determine the changes in SUHI
magnitude, we used MODIS satellite images for eight selected days within the main
lockdown period during March–April 2020 and ten selected days during March–April
in the years 2017–2019. To ensure consistent synoptic conditions, only days with similar
weather parameters were selected. SUHI magnitude was defined as the difference between
urbanized areas (i.e., areas within the city having artificial land cover) and selected rural
areas (i.e., areas within the city having typically rural land cover). Furthermore, to provide
a more comprehensive picture of UHI patterns during the lockdown period, we cross-
validated the change in SUHI magnitude during the lockdown period with: (i) atmospheric
UHI (AUHI) changes calculated from selected Prague weather stations, and (ii) changes in
air pollution concentrations obtained from Sentinel-5′s TROPOMI and MODIS’s Aerosol
Optical Depth products.

Our study presents a novel approach to decouple confounding factors from the poten-
tial impact of AHF variations on UHI dynamics. First, we introduced robust image selection
criteria to minimize the effect of synoptic variability and changes in global radiation during
the lockdown period. Furthermore, by distinguishing urbanized and rural areas within
the city boundaries, we were able to control for the confounding effects of contrasts and
interactions between urban and rural microclimates (referred to as urban-rural dynamics)
on the changes in SUHI magnitude. Finally, by investigating the effect in zones of Prague,
we were able to explain the association between the level of urbanization and other factors
influencing UHI. Employing this approach, our study provides new insight into attribut-
ing UHI dynamics during the COVID-19 lockdown to the role of AHF while considering
intra-urban microclimate variations between urban and rural areas.

2. Materials and Methods
2.1. Study Area

Prague is the capital city of Czechia. It is located at approximately 50◦4′ north latitude
and 14◦25′ east longitude. The city covers an area of 496.2 km2. According to the Köppen
classification, Prague experiences a temperate oceanic climate (Cfb) that is characterized by
distinct seasons with relatively mild temperatures and moderate rainfall throughout the
year [25]. The population of Prague reached 1.33 million in 2020, and this has not changed
substantially in recent years [26].

2.2. Data

Table 1 presents all datasets used in the analysis. For the assessment of SUHI dynam-
ics, we used daily LST variables obtained from NASA’s Moderate Resolution Imaging
Spectroradiometer (MODIS) program. The CORINE Land Cover 2018 product was used
to identify urban and rural land cover categories within the city of Prague. Additionally,
we employed MODIS’s Aerosol Optical Depth (AOD) dataset and the Offline Nitrogen
Dioxide (OFFL NO2) product of Sentinel 5 Precursor to analyze changes in air pollution
concentrations. All remote sensing data were downloaded and processed via the Google
Earth Engine catalog.

The final analysis of LST and SUHI spatial dynamics was conducted in the ArcGIS 11
software. Records of hourly temperature, cloud cover, precipitation, and daily mean global
radiation from four professional weather stations in Prague (Praha-Karlov, Praha-Kbely,
Praha-Libus, and Praha-Ruzyne; Figure 1), managed by the Czech Hydrometeorological In-
stitute, were used to control for synoptic conditions and changes in AUHI. Three concentric
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zones of Prague (Inner City, Outer City, Periphery), based on urbanization level and de-
mographic spatial patterns [27], were used to relate the changes in SUHI to anthropogenic
activities (Figure 1, Table 2).

Table 1. Datasets used in this study.

Category Variables Temporal and Spatial Resolution Data Source

LST–MODIS day LST_Day_1 km daily, 1 km National Aeronautics and
Space Administration

AOD–MODIS Optical_Depth_055 daily, 1 km National Aeronautics and
Space Administration

NO2–Sentinel 5 tropospheric_NO2_column_
number_density daily, 1 km European Space Agency

Land cover–CORINE CLC2018 minimum mapped unit of 25 ha European Space Agency

Weather station air temperature
global radiation

hourly
daily

Czech Hydrometeorological
Institute
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Table 2. Characteristics of the three concentric zones of Prague as defined in Figure 1 [27].

Zone Area (km2) Population Count Population Density (Inhab/km2)

Inner City 173.6 35.0% 727,589 60.9% 4651
Outer City 115.1 23.2% 370,106 27.9% 3216
Periphery 207.5 41.8% 146,656 11.1% 707

Prague (total) 496.2 100.0% 1,324,277 100.0% 2669



Remote Sens. 2024, 16, 1113 5 of 19

2.3. Methods

In order to assess the effects of the COVID-19 lockdown on Prague’s UHI, we com-
pared temperature and air quality conditions during the lockdown period with a selected
reference period following the workflow in Figure 2. This workflow was implemented
for the lockdown and reference periods separately. The results were then compared.
Lockdown-related changes in SUHI were compared in the three concentric zones of Prague
as described in Table 2. As the highest population density is in Inner City and the lowest is
in Periphery, the largest decrease in SUHI can be expected in Inner City followed by Outer
City and the smallest in Periphery. Details of the individual steps are explained below.
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2.3.1. Determination of the Study Period and Satellite Image Selection

Consistent with other countries’ prevention strategies, declaration of a lockdown
was necessary to limit the spread of COVID-19 after its outbreak in Czechia. A state
of emergency was declared on 14 March 2020. A countrywide lockdown with the most
stringent measures began two days later and lasted until the end of April [28].

Lockdown measures (including closure of public services, schools, places of em-
ployment, and retail sales outlets; restrictions upon mobility between regions and public
gatherings) dramatically affected human lifestyles, especially in urban areas. For example,
data from Václav Havel Airport in Prague report an almost 80% decrease in the number
of checked-in passengers in 2020 compared to 2019 (and the same decrease in the number
of flights). This not only affected traffic at the airport per se but also influenced general
tourism-related mobility in the city [29]. Accordingly, overall traffic intensity in Prague
dropped by more than 30% during the spring of 2020 compared to usual rates in 2019,
before returning to nearly normal levels in the summer [30].

To identify changes in SUHI magnitude due to the lockdown, we selected MODIS
Aqua satellite images acquired during the effective lockdown period defined from the start
of the most stringent measures (16 March) to the third wave of the loosening of measures
(27 April), after which the relaxation plan accelerated [28]. To ensure that the comparison
of lockdown versus reference periods was minimally affected by weather variability, we
selected satellite images reflecting weather characteristics as similar as possible. In the
first step, we filtered satellite images with total cloud cover over the Prague area with less
than 45% coverage and used their temperature range (as defined by daily temperature
data from Prague weather stations) as a benchmark to filter images in the reference period.
In addition, conditions antecedent to image acquisition were also considered. Therefore,
images with high cloud cover before acquisition and/or precipitation recorded a day before
acquisition were excluded from the analysis. Additionally, we used daily global radiation
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records as a proxy for solar radiation to control for changes in radiative fluxes due to natural
covariation of weather patterns and atmospheric composition during the lockdown [15,20].
Due to the limited number of available images and a lack of established thresholds in
the literature for similar studies, we listed relevant variables for the available images and
excluded outliers. This way, we ensured that background conditions in the two periods
were comparable and the observed changes in LST were attributable to changes in human
activities and AHF.

As a result, eight satellite images from the period 14 March–27 April were selected
and defined as Lockdown. The dates of selected satellite images and their temperature and
global radiation values are listed in Table A1. To avoid significant changes in land cover, we
only chose days from the previous three years, 2017, 2018, and 2019, as the reference period.
Using the same criteria as for Lockdown, ten images from the previous three spring seasons
(March–April in the years 2017–2019) were selected and defined as Reference (Table A1).
The same days were selected for the comparison of air temperature data (Section 3.3).

2.3.2. Land Surface Temperature Estimation

Land surface temperatures were derived from the Aqua satellite’s Moderate Resolution
Imaging Spectroradiometer (MODIS) sensor (MYD11A1, version 6.1) with 1 km resolution
over Prague. Aqua satellite images were acquired at ~13:30 local solar time. For LST,
the “LST_Day_1km” dataset and for quality assessment, the “QC_Day” layer were used.
Nighttime LST data were not used due to high cloud percentages. Detailed methods for
the LST algorithm and layers used are described in the MODIS documentation [31].

2.3.3. Surface Urban Heat Island Magnitude Calculation

To quantify the dynamics of SUHI within a city, selection of the reference rural land
cover area requires careful consideration. In this study, we used Pastures (class 231) and
Transitional woodland-shrub (class 324) land cover types from the CORINE land cover
data [32] as reference LSTrural [33]. Thus, day-to-day weather variability was captured and
the thermal characteristics of individual images were more comparable.

The SUHI magnitude of each MODIS image was calculated according to the follow-
ing formula:

SUHI magnitude = LSTimage − LSTrural, (2)

in which LSTimage represents the LST in each pixel of the selected image and LSTrural is the
mean value of the rural reference of the corresponding image.

Median SUHI magnitude values were computed for all images from the Lockdown pe-
riod (SUHIlockdown) and the Reference period (SUHIreference). Consequently, SUHIlockdown
and SUHIreference values were extracted separately for “urbanized areas” (defined as
CORINE land cover classes continuous and discontinuous urban fabric, industrial or
commercial units, road and rail networks and associated land, port areas, and airports)
and changes in SUHI magnitude between Lockdown and Reference periods related to
urbanized areas in the three concentric zones of Prague (see Figure 1) were compared. In
this way, changes in SUHI were quantified while controlling urban-rural dynamics and the
level of human activities.

2.3.4. Analyzing the Atmospheric Urban Heat Island

We used the mean hourly temperature records at 13:00 and 14:00 CET (T14) from the
four Prague weather stations (Figure 1) to analyze the changes in daytime AUHI during
Lockdown. Records at 13:00 and 14:00 CET were used, as these are most consistent with the
time of MODIS image acquisition. Because Ruzyne and Kbely are stations situated at two
Prague airports (i.e., their records might have been affected by changes in their traffic load
during the lockdown) and Karlov is located in Prague’s city center near the main traffic
artery called “Severojižní magistrála”, we considered Libus a “rural” reference station least
affected by anthropogenic influences. Consequently, we quantified the potential effect of
Lockdown on temperatures in Karlov, Kbely, and Ruzyne, as their average T14 anomalies
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(AUHI magnitudes) vis-à-vis Libus on days included in the Lockdown and Reference
periods (Table A1), respectively.

2.3.5. Analyzing Air Pollution

In addition to air temperature and LST, we analyzed two indicators of air quality based
on satellite data to verify the changes in anthropogenic activities. We used the Copernicus
Sentinel-5P TROPOspheric Monitoring Instrument (TROPOMI) sensor to estimate the
changes in NO2, and daily MODIS Aerosol Optical Depth (AOD) to estimate changes in
particulate matter concentrations [34,35].

For this purpose, we acquired images for the whole effective Lockdown period
(16 March–27 April). Likewise, for the Reference period, we used the mean for the same
period in 2017, 2018, and 2019 for MODIS AOD, but only 2019 for TROPOMI NO2, as the
latter product is not available from previous years.

3. Results
3.1. Atmospheric Urban Heat Island Analysis

Figure 3a shows the distribution of afternoon temperature (T14) observed at Prague
weather stations during the Lockdown and Reference periods. On average, we observed
lower temperatures for Lockdown than Reference at all stations, except for Libus. Only
the suburban station in Libus was slightly colder during Reference, but the difference was
insignificant (less than 0.1 ◦C). This finding suggests that this station was least affected by
anthropogenic changes and can be used as a reference station for the AUHI analysis.
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Figure 3. (a) Afternoon air temperatures (T14) at four Prague weather stations during the Reference
and Lockdown periods. (b) Atmospheric urban heat island (AUHI) magnitudes calculated as T14
difference between a given weather station and the reference station in Libus. Box plots indicate
medians and interquartile ranges of the values. Gray points denote mean values across all days in a
given period at each station.

The results suggest that the AUHI magnitude decreased during Lockdown by a
mean of 0.5 ◦C. The most important change observed in Karlov suggests a marginal (less
than 0.1 ◦C) difference between the city center (Karlov) and its outskirts (Libus) during
Lockdown, compared to 0.7 ◦C in the Reference period (the change in AUHI magnitude was
statistically significant according to the two-sample t-test with p-value < 0.05). Although
colder than Libus, the decrease in AUHI between Reference and Lockdown was comparable
(0.7 ◦C, p < 0.01) at Ruzyne, while at Kbely it was only 0.4 ◦C (p = 0.1) colder.

3.2. Surface Urban Heat Island Analysis

While the results for AUHI suggested a significant decrease in UHI magnitude during
Lockdown in Prague, we observed smaller changes in SUHI. Figure 4 shows the spatial
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distribution of SUHI magnitude in the whole domain city of Prague during the Reference
and Lockdown periods. Both images indicated clear spatial clustering of areas with the
largest SUHI magnitude (up to 3.5 ◦C) in predominantly urbanized areas (i.e., near the city
center and important transport corridors), while peripheral areas showed predominantly
negative SUHI anomalies (by as much as −4.0 ◦C).

Remote Sens. 2024, 16, x FOR PEER REVIEW 8 of 20 
 

 

Figure 3. (a) Afternoon air temperatures (T14) at four Prague weather stations during the Reference 
and Lockdown periods. (b) Atmospheric urban heat island (AUHI) magnitudes calculated as T14 
difference between a given weather station and the reference station in Libus. Box plots indicate 
medians and interquartile ranges of the values. Gray points denote mean values across all days in a 
given period at each station. 

The results suggest that the AUHI magnitude decreased during Lockdown by a mean 
of 0.5 °C. The most important change observed in Karlov suggests a marginal (less than 
0.1 °C) difference between the city center (Karlov) and its outskirts (Libus) during 
Lockdown, compared to 0.7 °C in the Reference period (the change in AUHI magnitude 
was statistically significant according to the two-sample t-test with p-value < 0.05). 
Although colder than Libus, the decrease in AUHI between Reference and Lockdown was 
comparable (0.7 °C, p < 0.01) at Ruzyne, while at Kbely it was only 0.4 °C (p = 0.1) colder. 

3.2. Surface Urban Heat Island Analysis 
While the results for AUHI suggested a significant decrease in UHI magnitude 

during Lockdown in Prague, we observed smaller changes in SUHI. Figure 4 shows the 
spatial distribution of SUHI magnitude in the whole domain city of Prague during the 
Reference and Lockdown periods. Both images indicated clear spatial clustering of areas 
with the largest SUHI magnitude (up to 3.5 °C) in predominantly urbanized areas (i.e., 
near the city center and important transport corridors), while peripheral areas showed 
predominantly negative SUHI anomalies (by as much as −4.0 °C). 

 
Figure 4. Spatial distribution of surface urban heat island (SUHI) magnitude during Reference (left) 
and Lockdown (right) periods in Prague based on Aqua satellite’s Moderate Resolution Imaging 
Spectroradiometer (MODIS) sensor. 

Figure 5 illustrates the spatial distribution of differences in SUHI magnitude between 
Lockdown and Reference. While the results indicate that some areas had stronger SUHI 
during Lockdown, mean SUHI magnitude in Prague was 0.2 °C lower during Lockdown 
(Figure A1a). To investigate the potential effect of AHF, we analyzed the changes of SUHI 
in urbanized areas only (Figure A1b, Figure 5). The mean difference in SUHI magnitude 
between Reference and Lockdown in urbanized areas was 0.1 °C (i.e., 15% decrease). 
Contrary to AUHI magnitudes, the changes in SUHI magnitude were relatively small. 
However, histograms in Figure A1 suggest a generally lower frequency of pixels with 
positive SUHI magnitude during Lockdown. This suggests overall weakening of spatial 
SUHI magnitude in Prague during Lockdown. 

Figure 4. Spatial distribution of surface urban heat island (SUHI) magnitude during Reference
(left) and Lockdown (right) periods in Prague based on Aqua satellite’s Moderate Resolution Imaging
Spectroradiometer (MODIS) sensor.

Figure 5 illustrates the spatial distribution of differences in SUHI magnitude between
Lockdown and Reference. While the results indicate that some areas had stronger SUHI
during Lockdown, mean SUHI magnitude in Prague was 0.2 ◦C lower during Lockdown
(Figure A1a). To investigate the potential effect of AHF, we analyzed the changes of SUHI in
urbanized areas only (Figures A1b and 5). The mean difference in SUHI magnitude between
Reference and Lockdown in urbanized areas was 0.1 ◦C (i.e., 15% decrease). Contrary
to AUHI magnitudes, the changes in SUHI magnitude were relatively small. However,
histograms in Figure A1 suggest a generally lower frequency of pixels with positive SUHI
magnitude during Lockdown. This suggests overall weakening of spatial SUHI magnitude
in Prague during Lockdown.
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To analyze SUHI magnitude changes in the context of urbanization level and popula-
tion density, a comparison was also made between the three concentric zones of Prague.
Figure 6 shows the spatial distribution of SUHI magnitude differences in urbanized areas
only. The SUHI magnitude difference for the three zones is presented in Table 3.
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Table 3. SUHI magnitude changes in the three concentric zones of Prague during Lockdown.

Zone Reference Lockdown Change (◦C) Change (%) Change (%)/Population Density (%)

Inner City 0.6 0.5 0.1 −17% −31
Outer City 0.6 0.6 0 0 0
Periphery −0.2 −0.4 −0.2 −100% −1213

The largest decrease in SUHI magnitude was observed in Periphery. As this zone
is characterized by the lowest population density and prevalence of agricultural land
cover and forests (according to CORINE land cover classification: Figure A2), the SUHI
magnitude was generally negative. The largest SUHI magnitude differences in this zone
are related to the largest changes in the rural land cover types, especially in arable land and
forests (Figure A3). As rural areas are generally more susceptible to both short-term (e.g.,
the occurrence of rainy days before the image acquisition) and seasonal weather variability
(e.g., the beginning of the growing/seeding/harvesting season), we could observe the
largest variance in SUHI magnitude in these classes (Figure A3).

On the other hand, Periphery is greatly affected by the daily commute from Prague
suburbs to the city and intense flow of both national and international traffic on the
highway circuit around the city. Furthermore, several industrial zones, such as a cement
manufacturing plant in Radotín (the cool spot in the southwestern part of Prague in
Figures 5 and 6), are located in Periphery. Thus, the changes in SUHI in this zone might
have been partly related to the significant drop in traffic intensity and AHF in these
areas during Lockdown. However, given the 1 km resolution of MODIS images and
linear character of the traffic-related activities, we were not able to obtain more precise
information and we assume that most of the changes were related to the dynamics in rural
areas within the city boundaries.

A 17% decrease in SUHI magnitude was observed in Inner City. This change was
substantially smaller than that for Periphery. Inasmuch as industrial and urban fabric
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(Figure A2) cover more than 70% of the total area, however, and population density is
highest in Inner City, we may assume that the reduction in SUHI magnitude in this zone
was driven primarily by changes in human activities.

No significant change in SUHI was observed in Outer City, which can be characterized
as a transition zone between Periphery and Inner City. Having a similar amount of
industrial and urban fabric but higher population density (4.5 times as great) compared to
Periphery, Outer City’s negligible change in SUHI magnitude suggests that the decrease
observed in Periphery was related rather to changes in the rural areas’ dynamics than
to AHF.

3.3. Air Pollution Analysis

In accordance with the AUHI analysis, a significant decrease in air pollution concen-
tration was observed during Lockdown. Figure 7 shows differences in AOD and NO2
concentrations between the Lockdown and Reference based on satellite data. Quantification
of the changes in the three concentric zones of Prague is presented in Table 4.
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Table 4. Difference in NO2 and aerosol optical depth (AOD) concentrations in the three concentric
zones of Prague.

NO2 (µmol/m2) AOD
Zone Reference Lockdown Change Change (%) Reference Lockdown Change Change (%)

Inner City 147.7 111.1 −36.6 −32.9 0.103 0.092 −0.011 −10.8
Outer City 132.4 103.9 −28.4 −27.3 0.106 0.093 −0.012 −11.8
Periphery 124.2 99.1 −25.2 −25.4 0.105 0.091 −0.014 −13.3

Regarding NO2 concentrations, we observed an average decrease of 29% during
Lockdown in 2020 compared to the same period in 2019. The decrease was largest in Inner
City (33%), followed by Outer City (27%) and Periphery (25%). As NO2 concentrations
are strongly related to traffic, these results support the hypothesis that SUHI magnitude
changes in Inner City were more related to AHF variability, while changes in Periphery
were driven by the rural dynamics.

Similarly, our analysis revealed a mean 12% decrease in AOD during Lockdown
compared to the same period of 2017–2019. In contrast to NO2, the largest decrease was
observed in Periphery (13%), followed by Outer City and Inner City (−12% and −11%),
respectively. The generally smaller percentage decrease in AOD compared to NO2 may
be attributed to the longer reference period. Moreover, AOD is not a direct measure of
a pollutant; instead, it represents the optical thickness of aerosols along a column of the
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atmosphere. Therefore, compared to the short-lived NO2, AOD is more influenced by
long-range transport and the prevailing westerly winds in Prague that carry pollutants
from the city center to the east [36,37].

4. Discussion

In this study, we employed a comprehensive analytical approach to assess the effect of
the COVID-19 lockdown on UHI dynamics in Prague, Czechia. We analyzed ground and
satellite observations from the March–April 2020 Lockdown period and the March–April
Reference periods in the years 2017–2019. This analysis quantified changes in mean AUHI
and SUHI magnitudes, as well as in air quality distribution, between the two periods.
Our findings show that the COVID-19 lockdown in Prague was associated with: (i) a
0.1 ◦C (15%) decrease in mean daytime SUHI magnitude over urbanized areas; (ii) a 0.7 ◦C
decrease in mean afternoon (13:00–14:00 CET) AUHI magnitude in the city center (Praha-
Karlov weather station vs. the reference station in Praha-Libus); and (iii) a 29% and 12%
drop in mean NO2 and AOD concentrations, respectively, over the city.

Regarding changes in air temperature, our findings are in line with prior studies that
observed weakened AUHI effects due to the COVID-19 lockdown. Similar to the results
of our ground observations, an analysis performed with a high-accuracy observational
network in Ghent, Belgium, revealed lower afternoon UHI magnitude (by as much as
0.4 ◦C/h) in the dense urban site during lockdown in 2020 as compared to the reference
years [38]. Likewise, a study across 300 cities in China observed a mean 0.42 K decrease in
daytime AUHI magnitude due to lockdown [15].

Regarding SUHI changes, while some studies show a decrease similar to our find-
ings [15,21,39], others report an increase in SUHI effect during the lockdown [16,20]. This
discrepancy results from the large thermal variation for land surfaces, which depends
largely on local synoptic conditions and spatial distribution of land cover types [24]. To
better understand the underlying reasons for variations among results in previous stud-
ies and to comprehend the impacts of lockdown on SUHI and UHI better, the roles of
anthropogenic heat and rural dynamics need to be elaborated.

4.1. Role of Anthropogenic Heat

Despite the solid theoretical background on the importance of AHF for UHI [7], the
evidence of specific mechanisms linking selected types of human activities with various
aspects of UHI is limited due to the challenges in quantifying these associations. In mid-
latitudes, AHF has a distinct seasonal pattern, and it has been considered a dominant
contributor to UHI, especially during the cold part of the year. AHF is the product of
human activities such as transportation, industrial and construction activities, heating,
lighting, and human metabolism, and the heat flux is dissipated through both sensible and
latent heat [7]. The quantity and impact of these emission sources on UHI can significantly
vary throughout a city, influenced by the intensity of human activities and the time of day.
The amount of these emission sources and their impacts on UHI may vary significantly
across a city, depending on the intensity of human activities and the time of day. For
example, temporal dependence of UHI magnitude on the weekly commuting pattern has
been documented in Australia [40], while another study observed a significant increase in
UHI magnitude related to massive migration during the Lunar New Year celebrations in
China [41].

Although emissions of anthropogenic heat affect mainly the canopy UHI via enhanced
sensible heat flux, SUHI is affected indirectly by modified thermal and radiative properties
of the atmosphere (e.g., urban greenhouse effect) that intensify the amount of heat emitted
by the atmosphere back to the surface [4,7]. Therefore, studies have documented both
long-term and short-term associations between SUHI magnitude and reduction in human
activities [10,42–45]. For example, a study in eastern China observed a positive correlation
between SUHI magnitude and AHF (0.0275 ◦C warming of SUHI per each 1.0 W/m2

increase in AHF), which was estimated from energy consumption [46]. Accordingly, prior
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research documented a significant association between SUHI and AHF in seven Chinese
cities using a linear mixed-effect model [47].

Reduced mobility and transport of city dwellers have been considered to contribute an
important part of the reduction in AHF during the COVID-19 lockdown [15,22]. Data from
Prague suggest an 80% drop in checked-in flights at the Prague airport and a 30% decrease
in the city’s traffic intensity [29,30]. Accordingly, our results show a 29% and a 12% decrease
in concentrations of NO2 and AOD, respectively, during Lockdown. Transportation data
and our findings on air pollution support the hypothesis that the 0.1 ◦C (15%) decrease in
mean daytime SUHI magnitude over urbanized areas in Prague and 0.7 ◦C decline in AUHI
was driven by the decrease in AHF from human mobility during the lockdown period. The
larger decrease in AUHI than in SUHI magnitude is in line with the indirect effect of AHF
on SUHI. Similar to our findings, a larger reduction of daytime AUHI (by a mean of 0.42 K)
than of SUHI (mean of 0.25 K) was observed during the COVID-19 lockdown in China [15].

Previous studies using the MODIS LST product to identify effects of the lockdown
on SUHI revealed mean 0.20–0.41 K, 2 ◦C, and 0.25 K decreases in SUHI magnitude in
the North Indian River Plain [21], the Middle East [14], and China [15], respectively. Most
authors attribute these changes to reduced emissions of anthropogenic heat from traffic. For
example, researchers documented a mean decrease in NO2, AOD, and SUHI, respectively
by 23.7%, 3.7%, and 19.2%, in the United Arab Emirates during the lockdown compared to
the same period in 2019 [48]. A study analyzing 43 European cities, on the other hand, was
not able to attribute the reduction of air pollution concentrations to mobility changes during
the lockdown, due to large spatial variability dominated by meteorological patterns [24].

When comparing the lockdown period to previous years, however, these studies
considered the lockdown period as a whole, overlooking changes in synoptic conditions. A
recent study also illustrated that nighttime LST in Paris and London were higher during
the lockdown compared to 2019. However, this change was primarily driven by natural
variability (due to higher temperatures during lockdown), and not related to changes in
AHF [49]. Similarly, some parts of Europe experienced an increase in LST from usual levels
during the lockdown period [20]. The authors hypothesized that this warming was related
to anticyclonic weather conditions prevailing across a large part of Europe in spring 2020
and decreased concentrations of aerosols, which enhanced the amount of solar radiation
incoming to the land surface. This could have enhanced the positive radiation balance
during the lockdown period [21,50–52]. These findings highlight the important role of the
natural variability of temperature and solar radiation that cannot be attributed to variations
in AHF during lockdown. As far as we know, our study is the only one to analyze SUHI
dynamics during the lockdown by rigorously selecting MODIS satellite images based
on comparable synoptic conditions (i.e., taking into account similar temperature, cloud
cover, and precipitation) and considering global radiation (as a proxy for solar radiation)
(Appendix A). This approach ensured that our results would be more robust in the face of
confounding factors.

In terms of spatial variability, our findings indicate a relatively small decrease in SUHI
magnitude across the urbanized areas of Prague, while it even increased in some parts.
While the decline in SUHI magnitude in urbanized areas was presumed to be linked to a
decrease in AHF, this might not be the case in some historical parts of the city that have
been within permanent traffic-restricted areas and/or pedestrian zones. In these areas, the
changes in SUHI might be more influenced by favorable microclimatic conditions. Despite
our efforts to mitigate the impact of changes in synoptic conditions through a rigorous
selection of satellite images and careful consideration of reference land cover types for SUHI
calculation, we acknowledge the possibility of their effects on our results. On the other
hand, the consistent spatial pattern of SUHI between the Reference and Lockdown periods,
along with generally small differences observed between the two periods, underscore
the robustness of our method. This highlights the importance of considering possible
confounding factors when assessing the effect of lockdown on SUHI.
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4.2. Role of Urban-Rural Dynamics

Most prior studies have either covered multiple regions or primarily concentrated on
large-scale effects. Although some of the previous studies have acknowledged the effects
of urban-rural dynamics when analyzing the changes in SUHI [21], they often neglected
the within-city dynamics between urban and rural land cover types when interpreting
their results. Therefore, the options to compare our results with prior research are lim-
ited. For example, a 2 ◦C decrease in SUHI was observed in Paris during lockdown [49].
However, the spatial distribution of LST indicated a noteworthy temperature increase in
surrounding rural areas, suggesting that a significant part of the SUHI decrease may have
been attributable to increased LST in the rural areas. Given that the study did not consider
the role of rural-urban dynamics or analyze the results in relation to development zones or
urbanization, we are unable to compare its findings with ours. To better understand the
role of urban-rural dynamics in the present study, we carefully distinguished urbanized
and rural areas within the city boundaries when calculating the SUHI magnitude. Addi-
tionally, we investigated the complex interactions by employing the three concentric zones
of Prague based on urbanization levels. As a result, we observed the largest decrease of
SUHI magnitude in the Periphery zone with its predominantly rural land cover types. This
is in line with some studies [17,21], although others have reported a larger LST decrease in
urban areas compared to rural landscapes [17,19,39].

The additional analysis of SUHI changes in individual land cover classes indicated a
generally larger variance in SUHI magnitude for rural land cover types, especially arable
land and forests (Figure A3), compared to urban land covers (Figure A3). The difference
may arise from rural areas’ natural systems and water reliance, which heighten their
susceptibility to short-term and seasonal weather variations. These findings emphasize
the importance of considering the effects of urban-rural dynamics within cities when
attributing changes in SUHI magnitude to variations in AHF.

Although we tried to eliminate the effects of urban-rural dynamics on urbanized
areas of Prague, results for the urban land cover classes were still affected by the “mixed
pixels” problem [53]. The pixel values of urban areas, particularly those that are small and
adjacent to larger rural areas, may be influenced by the predominance of these surrounding
rural areas. This is because each MODIS pixel also contains information from neighboring
pixels [53]. Hence, we may assume that SUHI variability in Inner City was predominantly
driven by urban land cover characteristics and human-related activities, whereas changes
in Periphery were primarily driven by the dynamics of prevalent rural land cover types,
such as arable land and forests.

While previous studies provide knowledge and valuable insights, our study suggests
that considering confounding factors such as changes in synoptic conditions and the urban-
rural dynamics within city boundaries may provide better estimates and understanding of
the effect of the COVID-19 lockdown on UHI and SUHI variations. Taking into account
these factors, our findings support the hypothesis that the observed changes in SUHI
magnitude within urbanized areas of the city were driven by the decrease in anthropogenic
heat release during the lockdown period.

4.3. Limitations

We must acknowledge a few limitations of the study. First, due to lack of data on
spatial distributions of anthropogenic heat sources and the amount of reduction in AHF
during Lockdown, we were unable to solely attribute all changes to anthropogenic heat.
Similarly, we could not quantify the specific impact of reduced AHF on the magnitude of
SUHI. To estimate the effect of AHF reduction related to human activity, we employed
the three concentric zones of Prague that are based on the level of urbanization and
population density. While our approach enhances understanding of potential effects
of urban development and human activities, we recognize that a more comprehensive
understanding could be achieved by incorporating data on anthropogenic heat sources.
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In addition, as AHF depends on population density and economic activities in the
city [54], it is highly variable among cities [55]. This factor (together with methodological
differences) limits meaningful comparison of our results with other case studies.

Furthermore, the study of SUHI changes relied on MODIS Aqua satellite images,
which have inherent limitations. MODIS satellite images, while providing spatial coverage,
may not capture the fine-scale variations in UHI effects within the city. For a more precise
determination of the impact of human activities on urbanized areas in Prague, higher-
resolution data (e.g., Landsat 8 images) could have been used to analyze the effects of
the COVID-19 lockdown on SUHI [56,57]. Due to the low temporal resolution of Landsat,
however, the number of available cloudless images was insufficient to be used in our
methodology. Likewise, although nighttime UHI effects are generally more important in
terms of health effects, we did not include nighttime analysis in this study due to high
cloud coverage of the satellite images.

Another point of consideration is that air temperature data, while more precise and
more relevant to human thermal comfort, are often restricted to a few stations. Thus, they
do not fully capture the spatial variations in thermal conditions within a city. Therefore,
many studies have utilized satellite images and remote sensing methods to analyze the
spatial variations of UHIs in response to the COVID-19 lockdown [22].

Finally, although we implemented rigorous criteria to ensure comparable background
conditions for the analyzed satellite images, we could not entirely eliminate the effects of
synoptic variability on LST and urban-rural dynamics. Consequently, we could not quantify
the specific contribution of the lockdown to UHI changes. This is especially difficult during
the spring season, which is characterized by large day-to-day weather variability in Central
Europe [58].

4.4. Future Research and Policy Implications

Controlling for potential confounding factors such as synoptic variability and urban-
rural dynamics, our study suggests that the reduction of anthropogenic heat release can be
used as an effective strategy to mitigate UHI effects in Prague, especially in the Inner City.
Despite inconclusive results regarding SUHI and LST changes in Europe [20,24], our results
align with research indicating that reduced mobility during the COVID-19 lockdown
considerably improved the air quality and AUHI conditions in the city. Additionally,
employing a rigorous selection of satellite images to eliminate the differences in synoptic
conditions, we observed a decrease in mean SUHI magnitude across the urbanized areas
of Prague.

Our findings underscore the significant influence of urban-rural dynamics within a city
on SUHI variability and the role of spatial dependence. We encourage follow-up studies to
further eliminate these effects, thereby enabling a clearer understanding of the reduction of
AHF’s impact on SUHI. This approach aligns with Tobler’s first law of geography, which
emphasizes the importance of spatial dependence: “Everything is related to everything
else, but near things are more related than distant things”. [59].

The literature suggests reduction in anthropogenic activities as a potential SUHI
mitigation strategy [10,42–45] and our study emphasizes the importance of carefully con-
sidering the local context. Our findings indicate that, especially in the city’s periphery, the
effect of urban-rural dynamics needs to be taken into account when attributing changes in
SUHI to anthropogenic activities. At the same time, mitigation strategies to reduce AHF in
Periphery might not be as effective as anticipated due to the dominant influence of rural
areas in this zone. A more sophisticated approach for quantifying the effect of urban-rural
dynamics and investigating the relationship between spatial distribution of AHF and SUHI
magnitude should be considered in future research. Quantifying these effects is necessary
to plan effective mitigation strategies [47].

With the emergence of the COVID-19 pandemic, many cities have implemented
measures to promote and encourage active mobility (walking and cycling), as well as
to revitalize urban areas. This includes increasing bike lanes, setting up low emission
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zones, limiting car traffic, and revitalizing parking lots [22]. In addition to providing health
benefits during the pandemic, these measures have other potential co-benefits such as
improved air quality, reduced noise pollution, and reduced greenhouse gas emissions.
Moreover, our study demonstrated that reduction in AHF during the lockdown, as a result
of transportation and industrial activities, can reduce UHI and SUHI effects. Therefore, we
recommend a transit-oriented development (TOD) approach that promotes sustainable,
compact, and pedestrian-friendly urban design around transit hubs. TOD strategies,
such as increased green spaces, energy-efficient buildings, reduced car dependence, and
fostering community engagement, enhance human health (improving air quality and
thermal comfort), mitigate UHI, and promote urban resilience [60–62].

Overall, the experience with the COVID-19 pandemic and the results of subsequent
studies can motivate urban climate researchers, city planners and policy makers to collabo-
rate and develop more resilient cities [22].

5. Conclusions

The unprecedented social and economic stagnation experienced worldwide during
the COVID-19 pandemic provided an opportunity to investigate the effect of AHF on
UHI and SUHI. In this study, we employed a comprehensive analytical approach to assess
effects of the COVID-19 lockdown on mean UHI, SUHI, and air quality distribution in
Prague, Czechia. The Lockdown period during March–April 2020 was compared with the
Reference periods of March–April during the years 2017–2019.

Our results show that, based on MODIS observation, the COVID-19 lockdown was
associated with a 15% reduction in the daytime magnitude of SUHI in urbanized areas
of Prague. These findings were consistent with the 0.7 ◦C increase in afternoon AUHI
magnitude (considered as the difference between the city center station and reference station
in the city outskirts). Likewise, two main air quality indicators based on satellite data for
aerosol optical depth and offline nitrogen dioxide concentrations, showed a 12% and 29%
decrease, respectively. Taking into account changes in synoptic conditions and the dynamics
of LST in urban-rural dynamics, we hypothesize that these changes may be attributed
to the decreased anthropogenic emissions, mainly through reduced transportation and
industrial activities.

The method employed in the study, which eliminates the differences in synoptic
conditions and enables comparison between different periods, can be used to understand
the effect of changes in AHF on SUHI during lockdown in other cities.

Ultimately, our study not only provides important insights for scientists regarding
anthropogenic heat effects on the SUHI phenomenon, but also incentives for public policy-
makers to understand the complex dynamics of urban heat islands, by highlighting the
interplay between urban and rural microclimates.

Because UHI is a complex phenomenon influenced by various factors, successful
mitigation strategies that enhance thermal comfort and air quality can be achieved only
through comprehensively understanding UHI. Such understanding can guide researchers
and policymakers in developing targeted mitigation strategies that reduce the adverse
effects of UHI on the environment and human well-being and also promote sustainable
urban development.
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Appendix A

Table A1. List of selected satellite images with dates, daily mean global radiation, and mean afternoon
temperature (13:00–14:00 CET) as observed at Prague weather stations.

Global Radiation (kJ/m2) Air Temperature (◦C)
Weather
Station Karlov Libus Libus Kbely Karlov Ruzyne

28 March 2017 18137 19551 21.6 21.5 22.5 21.0
31 March 2017 18060 19350 20.9 20.6 22.0 20.1
1 April 2017 18243 19518 18.7 19.1 19.2 19.2
7 April 2018 20936 21337 21.0 20.0 21.7 20.0

18 April 2018 22439 22908 22.4 22.5 23.8 21.9
19 April 2018 21669 22204 19.2 19.1 19.8 18.7
23 March 2019 17323 17570 20.9 20.6 21.2 20.3
19 April 2019 23617 24119 21.4 20.9 21.8 19.8
21 April 2019 23905 24517 20.4 19.2 20.8 19.1
22 April 2019 24333 25125 16.7 16.1 16.7 16.7
7 April 2020 20614 21511 20.0 19.1 20.7 18.7
8 April 2020 22022 22937 21.4 20.7 21.7 20.2
9 April 2020 20523 21371 21.3 20.9 21.8 20.3

12 April 2020 22195 23034 22.0 20.6 21.6 20.6
17 April 2020 22039 23039 21.1 19.4 20.7 19.8
22 April 2020 24899 25628 16.9 17.0 17.3 16.1
23 April 2020 24648 25472 19.2 18.4 19.1 18.2
27 April 2020 25154 24679 21.7 20.7 21.0 19.9
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