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Abstract: Natural disasters, notably landslides, pose significant threats to communities and infras-
tructure. Landslide susceptibility mapping (LSM) has been globally deemed as an effective tool to
mitigate such threats. In this regard, this study considers the northern region of Pakistan, which is
primarily susceptible to landslides amid rugged topography, frequent seismic events, and seasonal
rainfall, to carry out LSM. To achieve this goal, this study pioneered the fusion of baseline models
(logistic regression (LR), K-nearest neighbors (KNN), and support vector machine (SVM)) with
ensembled algorithms (Cascade Generalization (CG), random forest (RF), Light Gradient-Boosting
Machine (LightGBM), AdaBoost, Dagging, and XGBoost). With a dataset comprising 228 landslide
inventory maps, this study employed a random forest classifier and a correlation-based feature
selection (CFS) approach to identify the twelve most significant parameters instigating landslides.
The evaluated parameters included slope angle, elevation, aspect, geological features, and proximity
to faults, roads, and streams, and slope was revealed as the primary factor influencing landslide
distribution, followed by aspect and rainfall with a minute margin. The models, validated with an
AUC of 0.784, ACC of 0.912, and K of 0.394 for logistic regression (LR), as well as an AUC of 0.907,
ACC of 0.927, and K of 0.620 for XGBoost, highlight the practical effectiveness and potency of LSM.
The results revealed the superior performance of LR among the baseline models and XGBoost among
the ensembles, which contributed to the development of precise LSM for the study area. LSM may
serve as a valuable tool for guiding precise risk-mitigation strategies and policies in geohazard-prone
regions at national and global scales.

Keywords: landslide susceptibility mapping; machine learning; baseline learning algorithms; ensemble
learning algorithms

1. Introduction

Natural disasters, particularly landslides, pose significant threats at various social
and economic levels [1]. Landslides occur due to many environmental factors, such as
complex topography, seismic activity, weather, etc. Moreover, anthropogenic activity driven
by population expansion also results in slope instability, particularly in landslide-prone
areas [2]. Landslides mostly result in fatalities, and data reveal that the global mortality
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rate is approximately one thousand individuals per annum [3]. In this context, the northern
area of Pakistan, specifically Gilgit-Baltistan, is prone to the phenomena of landslides.
Because more than 90% of Gilgit-Baltistan comprises hills and mountains with severe
weather conditions, this region has a higher susceptibility to landslides compared to other
regions [4]. Complicated geomorphological structures, including steep slopes, complex
geological formations, and soil features, lead to the heightened risk of landslides in this
region [4]. According to the Gilgit-Baltistan Disaster Management Authority (GBDMA),
in the year 2022, twenty-three people lost their lives, four people went missing, and the
Karakoram Highway, a trans-national logistic route, faced severe disruption [5]. The
closure of routes at various locations disrupted trade and logistics, regressing economics
and mounting social pressure. The most affected areas were the districts of Ghizar, Nagar,
Diamer, Ghanche, and Astore, with four hundred and twenty homes being destroyed
and seven hundred and forty being damaged [6]. Such facts and figures indicate the
vulnerability of the region to landslides, and it becomes imperative to identify locations that
are prone to landslides in the region to mitigate their adverse effects [7]. The development
and incorporation of landslide susceptibility mapping (LSM) is necessary to mitigate
disaster risks through strategic disaster management policies [8].

LSM refers to the probability of the occurrence of a landslide in a given region depend-
ing on multiple factors [9]. It requires comprehensive data collection regarding influencing
factors, focusing not only on historical sites but also environmental conditions and ren-
dering the probability of occurrences and re-occurrences [10]. In this regard, along with
compulsory information, the utilization of cutting-edge mathematical models also remains
pivotal to obtaining precise results. The prediction of landslide risk entails the application
of different models, for instance, weight of evidence (WOE) [11], frequency ratio (FR) [12],
the analytic hierarchy process (AHP) [13], and fuzzy logic (FL) [14], which are among
the most elementary and widely used approaches. Contemporarily, these approaches are
considered conventional and are being replaced by machine learning (ML) models.

In the past few years, there has been an upward pattern in the application of ML tech-
niques, for instance, support vector machines (SVMs) for identifying landslide-prone loca-
tions [15–17], logistic model trees (LMTs) [18,19], artificial neural networks (ANNs) [20–22],
and decision trees (DTs) [23–25]. Most scholars claim that ML techniques are comparatively
more efficient and effective than conventional approaches. For example, Duan, Gong Hao
et al. (2023) documented that a support vector machine outperformed the AHP for the
prediction of landslides [26]. Other researchers have also suggested integrating various
distinct models into more sophisticated hybrid algorithms with the aim of improving the
outcomes and predictive ability of such methods [27]. The research conducted by Chinh
Luu et al. (2023) strengthens this claim by demonstrating that the hybrid combination of the
multiboost algorithm and naive Bayes tree outperformed both multilayer perceptron and
support vector machine models [28]. However, as noted by Wolpert and David H (1996),
there is no single technique that will produce the best results across all regions [29]. Every
area exhibits diverse features of geomorphology, topography, hydrology, and anthropo-
logical activities [30]. Consequently, it is necessary to investigate and evaluate alternative
methods to determine the most effective one.

Against this backdrop, the primary goal of this study was to train baseline and
ensemble models to assess the LSM of the current study area and pinpoint the most efficient
model. In the current investigation, the authors employed three baseline algorithms,
namely logistic regression (LR), K-nearest neighbors (KNN), and a support vector machine
(SVM), and six ensemble algorithms, namely random forest (RF), a Light Gradient-Boosting
Machine (LGBM), Extreme Gradient Boosting (XGBoost), Adaptive Boosting (AdaBoost),
Dagging ensemble, and Cascade Generalization (CG) ensemble. The results of these models
were verified using the Kappa index, accuracy (%), and the “receiver operating curve
(ROC)” to determine their validity. This research aimed to fuse ML models for LSM, as
only traditional approaches have been implemented previously.
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2. Materials and Methods
2.1. Study Area and Geological Setting

The proposed study area is situated in the Central Karakoram National Park within
Gilgit-Baltistan, Pakistan, encompassing the Haramosh Valley, the Bagrote Valley, and
sections of the Nagar Valley (Figure 1). Covering approximately 10,000 km2, the Central
Karakoram National Park stands as one of Gilgit-Baltistan’s foremost protected areas,
boasting a wealth of natural resources [31]. Dominated by extensive glaciers settled in
alpine regions and freshwater sourced from high mountain glaciers, the park features
slopes ranging from 50 to 70 degrees and elevations spanning 1400 to 7788 m above sea
level. Despite monthly winter temperatures dropping below 0 ◦C in the prominent valleys
above 2300 m in altitude, the maximum temperature in the summertime can surpass 40 ◦C.
The research area is positioned within one of the most seismically active zones globally,
flanked by active mountainous ranges to the north in the Himalayas, northwest in the
Hindu Kush Mountains, and southwest in the Suleiman Mountains [32,33]. The northward
movement of the Indian tectonic plate at a rate of 31 mm per year, subducting beneath the
Eurasian continent, escalates seismic risks in Pakistan, India, and Afghanistan [34].
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The geological narrative of the region unfolds with the prevalence of an ancient Or-
thogneiss complex, identified as the Nanga Parbat Gneiss and further categorized into
Shengus and Iskere gneisses by Madin and Lawrence [35]. The origination dates back to
the Proterozoic era; the gneisses went through significant alterations before the establish-
ment of Himalayan tectonics. Within this complex geological framework, the Kohistan
Sequence takes the central stage, characterized by diverse and distinct types of metabasic
rock featuring the Shuta Gabbro, and standing out with the presence of sediments and
volcanic rocks along the northern boundary [36]. Noteworthy characteristics—for example,
lamprophyres and biotite granite sheets—contribute to the formation of the Main Mantle
Thrust in the Indus Gorge [37]. The Sassi area of the Indus Gorge, especially along the
Main Mantle Thrust, is particularly dominated by landslides. Here, significant structural
discontinuities are exhibited in overlapping units from the Kohistan and Indian continental
sequences, which render the region highly susceptible to landslides (Figure 2). As the
geological makeup of the Bagrote area is explored, the Chalt Group dominates, exhibiting
diverse volcanic and sedimentary rocks. Datuchi serves as a main location illustrating the
interface between the Kohistan arc series and the Chalt Group [36]. Intrusions by diorites
and granites, representing younger igneous stages, add to the geological complexity. The
Dobani-Dasau ultramafic lineament strip in this area, encompassing ultramafic rocks, in-
creases the susceptibility to landslides (Figure 2). Further south, the Terigeneous Formation
in the Nagar Valley, characterized by conglomerates and phibolites, is prone to landslides
due to numerous structural discontinuities [36]. Across the entire study region, Quaternary
deposits amplify the risk of landslides, creating a geological landscape where various rock
types, structural intricacies, and the influence of Quaternary deposits collectively contribute
to the heightened susceptibility to landslides in specific formations [36].
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2.2. Dataset

In conformity with the current research objectives, a topographic assessment within
the research region was performed. For this, we employed a digital elevation model
(DEM) with a resolution of 12.5 m rooted in the Alaska Satellite Facility (ASF) datasets
derived from ALOS-PALSAR. The data were accessed on 29 June 2023 through https:
//search.asf.alaska.edu/. DEM provided detailed illustrations of the terrain. However,
we utilized high-resolution SPOT-5 imagery for landslide inventory generation. Acquired
from the SPOT-5 satellite, this imagery offered detailed coverage of the research area,
facilitating the accurate identification and mapping of landslides [39]. The assessment
benefitted from the enhanced capabilities of SPOT-5, ensuring a thorough examination
of landslide occurrences. Creating a land-cover map involved using Sentinel-2 imagery
from the Copernicus dataset featuring a spatial resolution of 10 m (accessed on 30 August
2023). To explore the geological features in the research area, ArcGIS software version 10.8
was used for processing geological maps and fault lines [40]. To evaluate the correlation
between precipitation and landslides, we obtained annual precipitation data from the
GIOVANNI online database system (https://giovanni.gsfc.nasa.gov/giovanni/, accessed
on 19 September 2023). This step was grounded in the recognized direct proportional
relationship between rainfall and landslide events. The geographic coordinate of WGS84
Datum in the UTM-Zone 43 system was employed throughout the analysis. Figure 3
illustrates a flowchart outlining the current research, and afterward, a concise explanation
of the steps is provided.
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Step 1 involved creating a map of landslides by verifying a total of 228 landslide
polygons. Consistent with previous work, a corresponding sample of 228 non-landslide
sites was developed concerning the landslide locations [41].

In Step 2, the correlation-based feature selection technique and random forest clas-
sifier were employed to select 12 landslide predictors for the subsequent analysis. The

https://search.asf.alaska.edu/
https://search.asf.alaska.edu/
https://giovanni.gsfc.nasa.gov/giovanni/
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approximate contribution of each predictor was then calculated based on landslide suscep-
tibility [42].

In Step 3, aiming to model landslide susceptibility in the research field, three base-
line algorithms (LR, KNN, SVM) and six ensemble algorithms (RF, LightGBM, XGBoost,
AdaBoost, Dagging, CG) were selected.

Step 4 involved creating the training and validation datasets. The 228 landslide sites
were randomly divided, with 70% allocated for training the models and the remaining 30%
for validating the models.

In Step 5, nine models were established and executed using the training dataset,
consisting of landslide sites and 12 predictors. Simultaneously, statistical indices such
as ROC-AUC, ACC%, and the Kappa index were calculated using both the training and
validation datasets to assess the models’ performance.

In Step 6, the most accurate model was used to assess landslide susceptibility, which
was determined by statistical metrics.

In Step 7, to produce the landslide susceptibility map, the landslide predictors were
utilized in the GIS environment. The significance was determined by the best model. The
map was stratified into five levels utilizing the natural breaks technique in ArcGIS software,
and the stratifications were very low, low, medium, high, and very high susceptibility [43].

2.3. Landslide Inventory

An integral aspect of LSM consists of the generation of inventory maps exhibiting
detailed landslide occurrences [44]. Landslide inventory maps have several objectives,
ranging from the documentation of diverse landslide types to identifying geographical
locations within a specific region. These play a significant role in supplying fundamental
data for the formulation of models related to landslide risk or susceptibility [44,45]. More-
over, these maps quantify the limits of mass movements, determine statistical indexes for
the frequency and spatial distribution of failures of a slope, and regress the consequences of
particular landslide-triggering events, i.e., intense rainfall, rapid snowmelt, seismic activity,
etc. [46]

In this research, a landslide inventory was established utilizing visual image catego-
rization techniques while employing SPOT-5 images. Additionally, field verification was
conducted for the confirmation of identified landslides, and necessary adjustments were
made. The generation of a precise inventory map incorporating cutting-edge information
on recent landslide occurrences is a crucial element of LSM through ML methodologies [44].
In this context, a comprehensive dataset interrelated to landslide occurrences over the
last decade was gathered. Consequently, the present study area generated a total of
228 landslides, which were detected and derived from obtainable reports and field surveys.
Subsequently, an equivalent number of non-landslide locations were randomly distributed
and divided in a ratio of 70/30 for the training and validation of the models using the
‘Create random point tool’ [47–49].

2.4. Landslide Causative Factors (LCFs)

Several elements influence the distribution and severity of landslides within a given
area [50]. To fully grasp the mechanisms behind landslides, it is essential to evaluate their
combined impact on spatial distribution [51]. This study integrated diverse geospatial data
sources, as outlined in Table 1. The effectiveness of LSM in predicting susceptible areas
hinges on the precise selection and thorough preparation of the LCF dataset [52]. Because
there is no universally accepted framework for determining independent variables in LSM,
the choice of LCFs was guided by a comprehensive review of the relevant literature, study-
area-specific data, and field investigations [53]. The current study employed twelve LCFs
featuring a range of variables, including elevation, land use/land cover (LULC), lithology,
distance to faults, rivers, and roads, curvature, “topographic wetness index (TWI)”, aspect,
rainfall, and slope [54–56] (refer to Table 1). Figures 4 and 5 depict the creation of thematic
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layers with 12.5 × 12.5 m pixel size conducted within the WGS84 Datum and UTM-Zone
43 coordinate system.

Table 1. Geospatial data overview and sources.

S.NO Parameters Data Origins Comprehensive Details

1

Elevation
Slope

Aspect
Curvature

TWI
Distance to River

DEM
12.5 m

https://search.asf.alaska.edu/#/,
accessed on 29 June 2023

2 LULC Sentinel-2 images 10 m https://earthexplorer.usgs.gov/#/,
accessed on 30 August 2023

3
Lithology

Distance to Road
Distance to Fault

Geological map scale: 1:650,000 Geological Map of Pakistan
(Searle & Khan 1996) [57]

4 Rainfall GIOVANNI https://gpm.nasa.gov/data/sources/giovanni#/,
accessed on 19 September 2023

2.5. Baseline Learning Algorithms

Baseline algorithms play a fundamental role in ML, serving as essential models that
offer a basic yet crucial benchmark for comparison. These straightforwardly designed
models set an initial performance standard, enabling the evaluation of more advanced
ensemble methods.

2.5.1. Logistic Regression

The binary nature of data means that they are typically subjected to analysis through
logistic regression, which aligns well with procedures involving binary classification due
to its inherent structure [58]. While the underlying concept of logistic regression is similar
to that of linear regression, the use of the ‘sigmoid function’ or ‘logistic function’ in logistic
regression adds a significant level of sophistication [59]. In the context of regional-scale
landslide susceptibility modeling, logistic regression is widely recognized as one of the
most commonly employed algorithms [53].

To objectively assess the models’ effectiveness, the acquired data underwent partition-
ing into training and testing sets [60]. The models were developed and trained utilizing
the training data. The performance of the models was consequently validated and tested
against the testing data [61]. Here, data stratification lacked universal standards. The
dataset was dissected into two subsets: one for training purposes, which encompassed 70%,
and one for testing, which encompassed 30%. The division of the training and testing sets
utilized a stratified after-class method to ensure an even distribution of landslide samples
versus non-landslide samples [61]. Moreover, to ensure model repeatability, a random state
was set.

2.5.2. K-Nearest Neighbors (KNN)

K-nearest neighbors (KNN) is a widely recognized algorithm that is effectively em-
ployed for identifying patterns in both classification and regression tasks [62]. It belongs to
the category of unsupervised ML algorithms and is commonly referred to as a lazy learning
algorithm [63]. The considered principles of KNN involve computing the distances among
a single test observation and all observations in a training dataset, subsequently identifying
the K-nearest neighbors [64].

In the current study, the said procedure was repeatedly performed for all the test
observations to reveal and detect common variables in the dataset; for measuring distances,
KNN was used with other metrics such as Euclidean or Manhattan distance, etc. [65].

https://search.asf.alaska.edu/#/
https://earthexplorer.usgs.gov/#/
https://gpm.nasa.gov/data/sources/giovanni#/
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2.5.3. Support Vector Machine

Support vector machines (SVM) have been effective in numerous real-world scenarios
historically [66]. An SVM is a kind of supervised ML that employs hyperplanes to describe
different categories while using training data for predictions and generalizations [67]. This
algorithm calculates a hyperplane to enhance the gap, i.e., the distance amongst the nearest
possible training data points on each side of the hyperplane [68]. SVMs, regardless of their
potential for estimating resource consumption during the variable selection process, are
characterized by and capable of resolving complex problems through kernel techniques [69].

2.6. Ensemble Learning Algorithms

In contrast to baseline algorithms, ensemble models utilize the cooperative potential of
various base models by mixing them to enhance predictive efficiency. Ensemble algorithms
aim to achieve superior accuracy, generalization, and robustness compared to conventional
ML models by using the diverse and mutually reinforced attributes of individual models.

2.6.1. Random Forest (RF)

Random forest (RF) is an extensively assumed technique in regression as well as the
stratification of tasks, exploiting an amalgamation of various decision trees for the sake of
predictive analysis [70,71]. For classifications, RF utilizes majority voting to calculate class.
However, during regression, the process estimates the average of the predicted values [72].
The primary strength of RF remains in its capability to effectively handle both continuous
and categorical variables at subjective and objective scales. The process efficiently handles
the regression and classification scenarios at the same time while showing superior perfor-
mance in contrast to the other two classification algorithms. Even though the procedure
is efficient, there are certain challenges with RF arising from the potential variability in
outcomes across individual trees [12,73].

The alleviation of such challenges was tackled through a strategic approach. This ap-
proach involved the use of various decision trees; each tree was randomized with a distinct
selection of parameters and data-driven base classifiers. Furthermore, by combining the
predictions through these diverse trees, RF improved the calculation and also discussed the
complications of changes and assortments amongst the trees, strengthening the reliability
and accuracy of the outcomes [12].

2.6.2. LightGBM

The LightGBM gradient-boosting context stands out due to its exceptional tactics when
framing decision trees [74]. LightGBM uses a leaf-wise strategy for tree growth as opposed
to traditional level-wise methods, which results in improved arithmetic performance [74,75].
The technique involves training trees in a manner where the growth of each leaf is em-
phasized. To enhance performance as well as promote the efficient management of large
datasets, LightGBM implements particular components into its architecture [76–79]. For
instance, it implies gradient-driven single-side sampling, a procedure that focuses on the
utmost valuable data points throughout tree establishment. Additionally, LightGBM em-
ploys exclusive feature grouping performances, optimizing the preparation of features to
boost competence and predictive accuracy [76].

2.6.3. Extreme Gradient Boosting (XGBoost)

The XGBoost model stands out as a vigorous supervised classification method grounded
in the Gradient Tree Boosting method [80]. It was documented by Chen and Guestrin.
XGBoost has gained worldwide acceptance in the field of ML [81]. XGBoost is designed
to exploit multiple processing cores; XGBoost progresses in catching and learning from
non-linear forms within a dataset. The performance is further improved via the utility of
standardized boosting, an approach that avoids overfitting, consequently enhancing model
accuracy and discriminating it from over-boosting methods [82,83]. One prominent benefit
of XGBoost fibs is its scalability, which makes it appropriate for several use cases with
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lower computational resource requirements. The model portrays performance with speed,
handles extensive data, and characterizes a comprehendible implementation process [84].
The training methods of XGBoost use an additive approach and maintain a reasonable
success rate in numerous data science contests. The usage of the XGBoost model demands a
cautious approach to certain fundamental frameworks for ideal performance [84,85]. In this
regard, three fundamental hyperparameters perform a pivotal role in the training model:
‘nrounds’, regulates the maximum number of boosting repetitions; ‘subsamples’, depict the
ratio of training occurrences applied for each iteration; and ‘colsample bytree’, signifies the
column ratio of the subsample while consolidating every tree [86].

2.6.4. AdaBoost

Adaptive Boosting, termed AdaBoost, is an ensemble method documented by Freund
and Schapire [87]. It is distinguished as a highly popular boosting technique that involves
the sequential creation of independent classifiers. Each classifier in the ensemble is designed
to appropriately categorize and summarize the training data [87]. The training samples
utilized by the classifier are calculated through an adaptive resampling method [88]. To
enhance the performance of a new classifier on a dataset, the common practice is to favor
a dataset incorrectly classified by a previous classifier over a correctly classified one [89].
In each iteration, a weight is assigned to the dataset, focusing subsequent integrations
on adjusted datasets that were initially misclassified [87]. The final model is derived
by calculating the weighted total of all the fundamental models of the classifier [90].
Additionally, AdaBoost allows the assessment of variable significance by analyzing the
frequency of selection by weak learners [90].

2.6.5. Dagging Ensemble

Ting and Witten pioneered the Dagging algorithm in 1997, intending to fundamentally
enrich classification accuracy [91]. The Dagging model stratifies the improved accuracy by
means of the resampling technique, which merges components of both majority voting and
classification diversity [92]. Moreover, this technique uses the ratio of disjoint variables,
develops basic samples, and exchanges the bootstrap samples [91,93]. Other advantages
are the efficacy and efficiency in processing noisy data; here, the Dagging model surpasses
the boosting method in such scenarios [94].

2.6.6. Cascade Generalization (CG) Ensemble

Cascade Generalization (CG) is extensively applied in various research fields. It is
possible that the method is sensitive to the quality of output data [95]. CG exploits the
output data as the primary samples and enhances the range of input data [96,97]. CG
integrates diverse sample stratifications via a parallel or stacking strategy [98]. One benefit
of CG is the nature of intermediate categorization, which enables the capture of original
characteristics [98]. In the conventional application of CG, the combination of real-world
information is a common practice; the method adds new characteristics to enhance the
performance of the machine. As a result, CG improves the classification accuracy as the
fallacy of bias is removed across the training variables [96].

In this study, models were built using the Python programming language. Machine
learning libraries such as Scikit-learn, XGBoost, LGBM, TensorFlow, and Keras were em-
ployed. Other libraries, including NumPy, Matplotlib, Seaborn, Rasterio, Geopandas, and
Shapely, were also utilized. The specific computer used was a ThinkPad laptop with a 12th
Gen Intel(R) Core(TM) i7-1260P processor running at 2.10 GHz, equipped with 32.0 GB of
RAM, and operating on a 64-bit system.

2.7. Validation Methods

The ROC curve is the assessment criterion for the validation of most of the algo-
rithms [99]. The model’s accuracy is efficiently demonstrated via the Area Under the Curve
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(AUC). AUC values near 1 attain higher model reliability. The AUC is determined by the
following equation:

AUC =
∑ TP + ∑ TN

P + N
(1)

In Equation (1), TP is the total of correctly classified landslide polygons and TN
encompasses the total number of correctly classified non-landslide polygons. Here, P is the
number of pixels in landslides, and N is the count of non-landslides. The performance of
landslide prediction models is calculated via success and prediction rates. These values can
be achieved through the following procedure: The X-axis illustrates the total percentage of
landslide susceptibility, and the Y-axis shows the percentage of landslide pixels [100]. The
Kappa index estimates the relationship between the two evaluators stratifying landslide
and non-landslide locations [101]. The Kappa statistic is higher than or equal to 0 if the
ratio of two assessors is higher than or equal to the predicted agreement ratio. However,
these ratios are intrinsic to the anticipated proportions [102]. The formula for determining
the Kappa index is provided below:

k =
P0 − Pe

1 − Pe
(2)

where P0 represents Observed Landslide Pixels and Pe represents Calculated Landslide Pixels.

2.8. Determining Key Factors with Correlation-Based Features and a Random Forest Classifier

The identification of landslide predictors is a crucial step that must precede the im-
plementation of any data-mining techniques in the process of estimating susceptibility to
landslides [103]. However, specific criteria for this task are not well defined [104]. One of
the main objectives of predictor selection procedures is to analyze the effect of each factor
on the landslide prediction phase and to filter the modeling procedures by cancelling and
eliminating noise, overadjustments, and irrelevant data [105]. This initial step majorly
enhances the model’s predictive ability [106]. Various methods used in prior research to
identify variables with the best predictive capacity include Information Gain [107], One
Rule Attribute Evaluation (ORAE) [105], and correlation-based feature selection (CFS) [23].

In the present study, the appropriate factors for the construction of LSM were identified
via the application of correlation-based feature selection (CFS) and a random forest (RF)
classifier. The CFS technique handles the statement that a robust correlation exists between
landslide susceptibility and specific subgroups of features. Variables showing a strong link
with landslide locations but a relatively weaker link with other predictors are assigned
high CFS values [23]. The estimation of CFS scores can be gained using the following
equation [108].

CFS =
krcf√

k + k(k − 1)rff
(3)

CFS presents the relationship between each landslide predictor and landslide/non-
landslide pixels. k is the percentage of landslide predictors. Here, rcf is the correlation
amongst landslide predictors in the areas prone to landslides, while rff refers to the average
value of the inter-correlations between landslide predictors.

After the identification of primary predictors through CFS, this study extends to
refine and quantify the significance of these factors to predict landslide susceptibility via
the RF classifier [109]. As the RF classifier is specified for the analysis of complex and
non-linear interactive relationships, a stratified sampling strategy was utilized to over-
carefully curate the dataset to train the RF algorithm [110]. During the process, a proper
distinction was established between the representative distributions of landslides and non-
landslide instances [111]. So, the algorithm used a bootstrapped subset and produced an
ensemble of decision trees. The RF classifier considered a random subset of characteristics
at each node during the training process. Consequently, the RF algorithm resulted in a
mean decrease in the Gini impurity metric for the evaluation of the significance of each
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predictor or variable [111]. Because the said metric measures the rate at which any variable
could split the nodes in the decision tree, it calculates and quantifies the contribution of
variables, and as a result, this whole process improves the model accuracy substantially.
This approach characterizes the impact of each variable in accordance with landslide
susceptibility analysis. The collective insights from the CFS and RF classifier intimated
the last selection of variables for the construction of the LSM. This ensured a robust and
accurate display of the factors making contributions to LSM in the research region.

The formula for calculating the mean decrease in Gini impurity for a variable V is:

Mean Decrease in Gini Impurity(C) = ∑trees Gini Decrease(∨, trees)
Number o f Trees

(4)

where
Gini Decrease (V, tree) is the decrease in Gini impurity for variable V in a specific tree.
The sum is taken from all trees in the random forest.

3. Results
3.1. Feature Importance Evaluation with Correlation-Based Feature Selection and Random
Forest Classifier

Based on the findings presented in Table 2, it is observed that the implementation
of CFS yielded Average Merit (AM) values greater than 0 for all the landslide predictors.
Table 2 displays the results of our CFS analysis, which aimed to identify the most relevant
predictors for LSM. Notably, all 12 predictors exhibited positive AM values, indicating their
potential significance in influencing landslide occurrences. The attribute with the maximum
AM value was a slope, and the minimum was the distance to the stream. In addition to
AM values, Table 2 offered intuitions into the ranking of these predictors, signified by the
Average Rank (AR) values. Detailed information on the Error (AR) values is also obtainable
in the table, further assisting our understanding of the predictive competencies of each
factor.

Table 2. CFS ranking variables.

Attribute Average Merit (AM) Average Rank (AR) Rank Error (AR)

Slope 29.92 1 0.0

Elevation 24.82 2 0.0

Aspect 17.61 3 0.0

Annual Rainfall 14.85 4 0.0

Distance to Fault 11.32 5 0.0

LULC 6.08 6 0.0

TWI 5.164 7 0.0

Distance to Road 5.141 8 0.0

NDVI 5.139 9 0.0

Geology 4.291 10 0.0

Curvature 0.141 11 0.0

Distance to Stream 0.218 12 0.0

Moreover, the variable importance analysis from the random forest classifier culti-
vated our understanding of the crucial determinants of landslide susceptibility in our
research area. Notably, slope stood out as the most influential factor, underscoring the
significant role of terrain slope in predicting landslide occurrences. However, distance
to streams showed lower importance, indicating a comparatively weaker influence on
landslide susceptibility in this analysis (see Figure 6). The outcomes of the CSF and random
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forest classifiers exhibited remarkable consistency, with minor variations observed in both
variable importance categories. This underscores the reliability of both methods employed
in assessing landslide causative factors. These findings provide a nuanced understanding
of the relative contributions of different LCFs to landslide occurrences in our study region,
offering valuable insights for effective LSM.
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3.2. Model Validation and Comparison for Landslide Susceptibility

The 12 predictors were integrated into the training process of nine distinct baseline
and ensemble models. Table 3 presents the evaluation outcomes for the baseline algorithms
on the testing set. LR exhibited the highest accuracy (ACC = 0.912), followed closely by
SVM (ACC = 0.910), and KNN (ACC = 0.896). In terms of the ‘Area Under the Curve
(AUC)’, LR again led with a value of 0.784, outperforming both SVM (AUC = 0.734)
and KNN (AUC = 0.750). The Kappa index (K) also favored LR (K = 0.394), with KNN
(K = 0.409) and SVM (K = 0.359) following in the respective order (Figure 7). This suggested
that LR was the most accurate and discriminative among the baseline algorithms on
the testing dataset. Table 4 presents the evaluation outcomes for ensemble algorithms
on the testing set. XGBoost emerged as the top-performing algorithm with the highest
accuracy (ACC = 0.927), followed by LGBM (ACC = 0.925), and RF (ACC = 0.914). In terms
of AUC, XGBoost led the ensemble algorithms with a value of 0.910, closely followed
by LGBM (AUC = 0.907) and RF (AUC = 0.909) (Figure 8). The Kappa index revealed
that XGBoost achieved the highest discriminative power (K = 0.620), followed by LGBM
(K = 0.579) and RF (K = 0.481). This indicated that XGBoost was the most accurate and
discriminative among the ensemble algorithms on the testing dataset. The validation results
highlighted LR as the top-performing baseline algorithm, while XGBoost stood out as the
superior ensemble algorithm based on accuracy, AUC, and the Kappa index. These findings
provide valuable insights into the comparative performance of the evaluated models on
the testing dataset.
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Table 3. Evaluation outcomes for baseline algorithms.

Testing Set

KNN SVM LR

ACC 0.896 0.910 0.912

AUC 0.750 0.734 0.784

K 0.409 0.359 0.394
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3.3. Construction and Validation of LSM

After a comprehensive analysis of the statistical indicators, it became evident that
logistic regression (LR) stood out as the most accurate baseline model, while the XGBoost
model excels among the ensemble learning algorithms. The intricate topography and varied
environmental factors were seamlessly integrated into the maps, providing a comprehen-
sive overview of susceptibility levels. Figures 9 and 10 showcase graphical representations
of the LSM generated through the application of different algorithms. The ultimate LSM
was portrayed and segmented into five susceptibility categories using the natural break
technique: very low, low, moderate, high, and very high levels of susceptibility. The se-
lection of LR as the top-performing baseline model and XGBoost as the optimal ensemble
learning algorithm underscores their effectiveness in LSM. However, among all the ML
models, XGBoost was the top-performing model.
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4. Discussion
4.1. Feature Selection

In our investigation of variable importance using a random forest classifier and CFS, a
remarkable alignment in the order of significance was discerned among the key predictor
variables. Both methodologies consistently identified slope, aspect, annual rainfall, dis-
tance to fault, elevation, land use/land cover (LULC), topographic wetness index (TWI),
distance to road, normalized difference vegetation index (NDVI), curvature, geology, and
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distance to stream as influential factors. The noteworthy similarity in the order of variable
importance reaffirmed the robustness of our findings and fortified the credibility of the
identified factors.

Specifically, the top-ranked variables in both analyses, such as slope, aspect, and
annual rainfall, consistently emerged as primary drivers in predicting outcome. The results
concur with the outcomes of prior research [62], where researchers concluded that slope
was the primary predictor of landslide occurrence [65]. Landslide probability increased
with an increase in terrain gradient; however, the weight diminished for slopes exceeding
70 degrees. Cliffs devoid of colluvium cover are likely attributed to the reduced frequency
of landslides at slope angles of more than 70 degrees. Geological map indications signified
the influential role of lithological sections in landslide distribution. Terrigenous formations
and Quaternary deposits, identified as loose materials, were revealed to be the geological
units that were most susceptible [112]. Road networks, too, emerged as a significant
and extensive factor determining landslide spatial distribution, which is attributed to
frequent landslides being due to unregulated blasts and excavation activities during road
construction on sensitive slopes [113].

This concurrence in the hierarchy of importance suggests a consensus regarding the
dominant role that the variables demonstrated while shaping the observed patterns. The
preservation of order across a range of environmental, topographic, and anthropogenic
variables further improved the comprehension of their respective impacts on the studied
phenomenon. The comparative analysis demonstrated the strength of CFS in identifying
clear, linear connections; however, RF unveiled hidden, non-linear relationships. Es-
tablished factors like slope and elevation dominate with linear relationships; contrarily,
geological characteristics gain prominence due to RF’s ability to capture complex inter-
actions. The current research enriches the discourse on landslide prediction by not only
reaffirming the significance of conventional predictors, but also advocating for a dynamic
modeling approach.

The variable importance order between the RF and CFS methods, which highly con-
cur, implied a degree of internal validation as two independent approaches converge on
similar conclusions. This robust correlation in the ranking of variables not only provides a
more comprehensive understanding of their relative significance, but also lends additional
support to the overall reliability and generalizability of the results of this study. While
subtle variances might exist in the exact rankings, the overarching concurrence in vari-
able importance undermines the continuous influence of particular factors across both
analytical techniques.

4.2. Validation of the Models

ML approaches have achieved global recognition among scientific academics as ef-
fective tools for addressing various real-world problems and challenges, exploiting both
fundamental and specific information [114]. However, an ongoing debate continues within
the scientific community regarding the optimal ML models capable of providing signifi-
cantly precise predictions for landslides, i.e., landslide susceptibility [115]. Precision can
be calculated and evaluated based on a diverse set of factors [116], leading to a noticeable
increase in the quantity of models used for accuracy assessment [117].

This research investigated and integrated a range of baseline and ensemble ML mod-
els, encompassing KNN, SVM, LR, RF, XGBoost, CG, LGBM, AdaBoost, and Dagging.
Prominently, the geomorphological scientific community has invested a substantial amount
of effort and time in the development and testing of new models [118]. However, the
distinction between baseline and ensemble algorithms is highlighted in predictive perfor-
mance. Logistic regression (LR) resulted in an ACC of 0.912 and AUC of 0.784, although
SVM and KNN also exhibited competitive accuracy. The accuracy of the LR algorithm
aligns with the results of the research conducted by Bahareh Kalantara, who examined the
predictive competencies of three discrete algorithms for landslide prediction: LR, SVM,
and ANN. This further highlights the robustness of linear models in such circumstances, as
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LR outperforms SVM and ANN in terms of overall accuracy [119]. Contrarily, ensemble
algorithms, specifically XGBoost, LGBM, and (RF), surpassed the baseline models with
higher ACC and AUC values. XGBoost remained distinctive, with an ACC of 0.927 and
an AUC of 0.910, showcasing its efficacy in classification. The precision of the XGBoost
algorithm matches with the conclusions of the study led by Isma Kulsoom, who explored
the predictive capabilities of five dissimilar algorithms for landslide prediction: Naïve
Bayes, KNN, RF, XGBoost, and ANN,. Additionally, it also emphasizes the strength of
ensemble models in such scenarios, as XGBoost outperforms the distinct models in terms
of overall accuracy [120].

The ensemble models exceeded the baseline models in terms of accuracy (ACC) and
Kappa (K). Through all metrics, ensemble models attained higher average scores, with
XGBoost reaching the highest accuracy. This suggested that the amalgamation of multiple
learning models can result in more robust and accurate predictions compared to individual
models. The AUC metric demonstrated a similar performance for both groups. While
ensembles have a minor edge in AUC as well, the differences were not significant compared
to ACC and Kappa. This could indicate that both groups were effective at distinguishing
among positive and negative classes, but ensembles might be advantageous at correctly
classifying borderline cases.

The cumulative robustness of the ensemble methods, combining diverse model capa-
bilities, proved superior for improved predictive accuracy. This emphasizes the potential of
ensemble methods and techniques over individual models, with the choice depending on
the specific application needed and considerations of accuracy, AUC, and Kappa statistics.
Nevertheless, it was notable that all the distinct ensemble models examined in the current
study illustrated adequate performance, highlighting the promising potential and efficacy
of the hybrid approach in enhancing model performance [117].

In general, ML models offer various advantages when compared to alternative meth-
ods. Automated data analysis techniques, specifically, provide an efficient and streamlined
identification of trends and patterns. These eliminate the need for human intervention,
which improves productivity while reducing the potential for errors. Moreover, automated
data analysis facilitates continuous progress, as it can be performed regularly with minor
time and resource limitations. These techniques aid the progression of processing multidi-
mensionally complex data while establishing an enhanced and comprehensive analysis.
Lastly, automated data analysis contributes to and provides users with a diverse set of tools
and functionalities.

4.3. Use of LSM in Landslide Management

LSM is one of the primary resources in the management of landslide-prone landscapes.
Governments and policy-making institutions may have a choice to use high-performance
predictive models to determine landslide-vulnerable areas [121]. In this regard, the current
research illustrated the different classes of landslide susceptibility via the natural breaks
(NB) model [98]. LSM, ranging from minimal susceptibility to maximum susceptibility,
was derived from the ensemble and baseline models, which consisted of five different
susceptibility levels. These models’ classes were categorized in the following pattern:
LR—very low susceptibility with a probability range of 39.0%; low susceptibility with
a probability range of 20.3%; moderate susceptibility with a probability range of 8.6%;
high susceptibility with a probability range of 14.3%; and very high susceptibility, with
a probability range of 17.7% (Figure 11). RF—very low susceptibility with a probability
range of 7.7%; low susceptibility with a probability range of 24.4%; moderate susceptibility
with a probability range of 35.8%; high susceptibility with a probability range of 14.8%; and
very high susceptibility with a probability range of 17.4% (Figure 12).
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This research identified very low to very high landslide-prone regions with distinct
variations in landslide susceptibility rate. The susceptibility levels generated a diverse mo-
saic, and irregular patterns of dispersion were found across the research area. This irregular
pattern further added to the complexity of the interplay of factors. It further undermined
the comprehension of local terrain intricacies to apprehend the development of effective
and efficient strategies for landslide risk mitigation. The utilization of LSM, generated
through advanced predictive models, proved instrumental in effective landslide manage-
ment. This detailed mapping will not only aid government entities in pinpointing high-risk
areas, but also serve as a foundational tool for implementing targeted mitigation strategies.

5. Conclusions

The accurate identification of landslide-prone locations necessitates the application
of cutting-edge ML methods for the precise tracking and assessment of landslides. In
this study, nine advanced ML techniques were employed to assess landslide risks in the
research region.

Using ROC curve analysis, ACC%, and Kappa techniques, we compared already-
established LSM to actual landslide events, completing the evaluation procedure. Among
the models tested, the ensemble learning algorithm XGBoost and the baseline learning algo-
rithm LR outperformed all other ML models. However, among all the ML models, XGBoost
was the top-performing model. Analyzing the elements influencing landslide risk in the
research area revealed that slope was the most crucial factor. This research underscores the
value of employing the most suitable ML methods for measuring landslide susceptibility,
as these methods require less time to learn and produce more accurate findings.

This study pinpoints the significant advantage of ML approaches and their capacity to
handle both continuous and categorical data without necessitating the classification of con-
tinuous parameters. Land-use planning, early warning system development, foundation
planning, and scientific infrastructure evaluation can all benefit from the approach adopted
in this research.

Moreover, future research should focus on integrating deep learning models and
InSar techniques to enhance the accuracy and precision of LSM. This dynamic duo has the
potential to propel research forward, offering improved insights for more effective and
detailed analyses in future studies. Though the present study has yielded significant results,
the deficiency of the available landslide dataset provides room for future prospects. With
improved datasets, the accuracy and potency of the presented ML models can be enhanced.
Furthermore, the accurate selection of non-landslide points during the delineation process
can improve the rigor and validity of the study.
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