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Abstract: Infrared–visible image fusion is valuable across various applications due to the complemen-
tary information that it provides. However, the current fusion methods face challenges in achieving
high-quality fused images. This paper identifies a limitation in the existing fusion framework that
affects the fusion quality: modal differences between infrared and visible images are often overlooked,
resulting in the poor fusion of the two modalities. This limitation implies that features from different
sources may not be consistently fused, which can impact the quality of the fusion results. Therefore,
we propose a framework that utilizes feature-based decomposition and domain normalization. This
decomposition method separates infrared and visible images into common and unique regions. To
reduce modal differences while retaining unique information from the source images, we apply
domain normalization to the common regions within the unified feature space. This space can
transform infrared features into a pseudo-visible domain, ensuring that all features are fused within
the same domain and minimizing the impact of modal differences during the fusion process. Noise in
the source images adversely affects the fused images, compromising the overall fusion performance.
Thus, we propose the non-local Gaussian filter. This filter can learn the shape and parameters of
its filtering kernel based on the image features, effectively removing noise while preserving details.
Additionally, we propose a novel dense attention in the feature extraction module, enabling the
network to understand and leverage inter-layer information. Our experiments demonstrate a marked
improvement in fusion quality with our proposed method.

Keywords: infrared and visible image fusion; unified feature space; dynamic instance normalization;
non-local Gaussian filter; dense attention

1. Introduction

Recently, infrared and visible image fusion (IVIF) has gained considerable attention,
owing to its extensive applications in various fields [1–3]. Single-modal images typically
contain limited scene information and cannot fully reflect the true environment. Therefore,
fusing information from different imaging sensors helps to enhance the informational
richness of the images. Infrared and visible images have strong complementarity, i.e.,
infrared cameras capture thermal radiation but may not provide detailed information, while
visible images are not sufficient in detecting hidden objects. Due to the complementarity
and advantages of these two modalities, IVIF is widely applied in fields such as nighttime
driving, military operations, and object detection.

In recent years, researchers have proposed various methods for IVIF, which can
be categorized into traditional and deep learning-based methods. Traditional methods
aim to design optimal representations across modalities and formulate fusion weights.
These methods include multi-scale decomposition (MSD)-based methods [3–6], other
transformation-based methods [7–9], and saliency-based methods [10–12]. The advance-
ments of deep learning have significantly accelerated the evolution of IVIF. Researchers
have proposed sophisticated modules or structures [13–18] for the integration of features
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from both infrared and visible images. Autoencoders [19–24] have also been introduced
into the IVIF process due to their powerful feature extraction capabilities. Additionally,
generative adversarial networks (GANs) [25–28] have been employed to enhance the fusion
performance. However, existing research often neglects the differences between infrared
and visible images, as well as the noise present in source images.

There are still some challenges that need to be tackled. Firstly, there is a significant
difference between infrared and visible images. This difference leads to the inconsistent
fusion of features when they come from these different sources. As a result, the quality of the
fusion results is often affected. The differences between the infrared and visible modalities
can be attributed to variations in wavelength, sources of radiation, and acquisition sensors.
These modal differences lead to variations in images, such as texture, luminance, contrast,
etc., subsequently affecting the fusion quality. Although decomposition representation-
based methods can reduce the impact of modal differences, they often require complex
decomposition and fusion rules. Secondly, low luminance may result in noisy source
images. These images often impact the performance of image fusion, leading to suboptimal
results. Thirdly, many methods neglect essential information from the middle layers, which
are crucial in the fusion process. While dense connections [22] have been introduced into
the fusion network, these connections lead to higher computational costs.

To address these challenges, we propose a novel method (UNIFusion) for IVIF, which
includes cosine similarity-based image decomposition, a unified feature space, and dense
attention for feature extraction. To obtain high-quality fused images, our method reduces
the differences between infrared and visible features through the unified feature space,
while also preserving their unique information. We first decompose the infrared and visible
images into common and unique regions, respectively. Then, the features extracted from
common regions are fed into the unified feature space to obtain fused features without
modal differences. Specifically, we first obtain unique and common regions based on the
cosine similarity between the embedded features of infrared–visible images. The unique
regions contain private information that should be preserved in the fusion process, while
the common regions in both infrared and visible images contain similar content. Sec-
ondly, to obtain fusion results with more information, we design a unified feature space
to eliminate the differences between common features. In the space, infrared features are
transformed to the pseudo-visible domain, thereby eliminating the differences between
modalities. Thirdly, we propose a dense attention to enhance the feature extraction capa-
bilities of the encoder, particularly focusing on improving the model’s ability to capture
important information from the input data. By applying an attention weight across all
layers of the encoder, this method ensures that the model focuses on important features,
which helps the model to perform fusion tasks better. Moreover, we propose the non-local
Gaussian filter to enhance the fusion results. This filter can learn the shape and kernel
parameters, enabling it to remove noise while retaining details.

As demonstrated in Figure 1, our method outperforms current fusion algorithms like
FusionGAN [26], PMGI [29], and U2Fusion [15]. It is apparent that we can obtain better
results through the unified feature space. Even the current state-of-the-art methods for IVIF
cannot obtain satisfactory fused images. For example, FusionGAN generates blurred fused
images, while PMGI and U2Fusion lead to fusion artifacts. Conversely, our method can
improve the fusion performance by fusing multi-modal features in a consistent space.

The main contributions of this paper are summarized as follows.

• To eliminate the modal difference, we propose a domain normalization method based
on the unified feature space, which enables the transformation of infrared features
to the pseudo-visible domain, ensuring that all features are fused within the same
domain and minimizing the impact of modal differences during the fusion process.

• We propose a feature-based image decomposition method that separates images into
common and unique regions based on the cosine similarity. This approach eliminates
the need to manually craft intricate decomposition algorithms, offering an adaptive
solution that simplifies the process.
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• We design a dense attention to allow the encoder to focus on more relevant features
while ignoring redundant or irrelevant ones. Moreover, the Non-local Gaussian filter
is incorporated into the fusion network to reduce the impact of noisy images on the
fusion results.

 
 

  
Infrared Visible FusionGAN 

  
PMGI U2Fusion Ours 

 Figure 1. A comparison of the fused images generated by our UNIFusion and other state-of-the-art
fusion methods.

2. Related Works

In this section, we review various IVIF methods, categorizing them into traditional,
AE-based, and GAN-based approaches. Additionally, related works on image-to-image
translation are briefly presented to obtain a deeper understanding of the proposed models.

2.1. Traditional-Based Methods

In the study of traditional methods for IVIF, various techniques have been proposed,
which include multi-scale decomposition, saliency detection, etc. Multi-scale decomposi-
tion methods [4,5,7] decompose and reconstruct the features of infrared and visible image
at various levels to better fuse details, structures, etc. These approaches align the process
of scale information with the human visual system. Saliency detection methods [10–12]
can enhance the fusion performance on important targets by assigning higher weights to
salient regions or objects. Sparse representation techniques [30] use dictionaries learned
from a large set of images to encode and preserve essential information from the source
images during the fusion process. These traditional approaches provide a foundation for
IVIF, which can retain the image details and improve the visual effect.

2.2. CNN-Based Methods

The introduction of convolutional neural networks (CNN) has revolutionized the field
of infrared and visible image fusion (IVIF). Specifically, Liu et al. [13] were pioneers in this
area, applying a Siamese CNN structure to effectively generate a weight map from the
source images. Over time, the architectures of CNNs in IVIF have continuously evolved.
Early CNN architectures included single-branch and dual-branch configurations. For in-
stance, Li et al. [14] incorporated residual connections to enhance the fusion capabilities.
Xu et al. [31] developed a multi-scale unsupervised network based on joint attention mech-
anisms, significantly improving the detail preservation in the fused images. Moreover,
the research by Ma et al. [17] presents a fusion technique anchored in the Transformer
framework, equipped with an attention module to integrate global information. Alongside
this, the impact of the lighting conditions in fusion tasks is noteworthy. PIAFusion [18]
tries to improve the fusion performance based on an illumination-aware module, but its
model is not successful in handling complex lighting scenarios.
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2.3. Autoencoder-Based Methods

Autoencoders are effective in infrared–visible image fusion as they are adept at encod-
ing and decoding image features. This capability is essential to effectively fuse infrared
and visible information. Li et al. introduced the DenseFuse method [22], which marked a
significant advancement in IVIF tasks. This approach efficiently fuses visible and infrared
images, paving the way for further research and development in this area. After the in-
troduction of DenseFuse, AE-based methods for IVIF received significant development,
which can be categorized as single-branch-based methods [19,20] and dual-branch-based
methods [21–24]. The advancements of autoencoders have played a crucial role in im-
proving both the efficiency and performance of the image fusion process. Additionally,
the introduction of innovative modules has significantly enhanced the quality of the fused
images. These modules include residual connections, channel attention, and self-attention.

Autoencoder-based methods can significantly enhance the fusion performance due to
their strong capacity for feature extraction and reconstruction. This ability allows for the
more comprehensive fusion of source image information, leading to superior fusion results.

2.4. GAN-Based Methods

In the IVIF task, generative adversarial networks (GANs) have been employed to gener-
ate fused images that contain rich information from the source images. Liao et al. [25] lever-
aged the powerful generative capabilities of GANs to produce realistic and information-rich
fused images, demonstrating the advantages of GAN-based methods in infrared and visible
image fusion. Furthermore, Xu et al. [27] developed a conditional GAN featuring dual
discriminators, each trained on infrared and visible images. This approach effectively
balances features from both types of images, thereby enhancing the fusion performance.

The architectural innovation in GAN-based methods is noteworthy. Researchers have
experimented with multiple discriminators to improve the fusion performance. For exam-
ple, Song et al. [28] introduced a novel GAN-based method with a triple discriminator for
IVIF, which produces detailed fused images. In addition, researchers are focusing on the
design of loss functions and architectures. For example, Li et al. [32] and Yuan et al. [33]
used the Wasserstein distance and group convolution in GAN architectures, respectively,
which led to better fusion results.

2.5. Image-to-Image Translation Methods

The objective of image-to-image (I2I) translation is to convert an image from a source
domain to a target domain, ensuring that the essential characteristics of the input image
are retained. Various generative adversarial network (GAN)-based frameworks have been
proposed to align the output image distribution with that of the target domain. For instance,
in 2016, Isola et al. introduced Pix2Pix [34], a conditional GAN model capable of translating
images across domains using paired training data. Subsequently, Pix2PixHD [35] was
developed to address high-resolution image translation. However, a significant challenge
with these paired I2I translation methods is their dependence on paired datasets, which can
be challenging and expensive to acquire, and sometimes even unattainable. Consequently,
various approaches [36–39] have been explored to overcome the limitation for paired
datasets. For instance, Bousmalis et al. [40] proposed an I2I translation method based on
unsupervised training that applies domain adaptation in the pixel space. In our approach,
we design a unified feature space to transform infrared features into the pseudo-visible
domain. This ensures that all features exist within the same domain, eliminating the impact
of modality differences on the fusion process.

3. Methods
3.1. Overview

Our proposed UNIFusion is an autoencoder structure, which consists of image de-
composition, feature extraction, fusion, and reconstruction modules. The feature extraction
module is a three-branch network based on dense attention, consisting of encoders Eir,
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Evi, and Eu, which are used to extract unique and unified features. The fusion and recon-
struction module is devised to fuse features and generate fusion results, while employing
a non-local Gaussian filter to reduce the adverse impact of noise on the fusion quality.
The complete architecture is depicted in Figure 2, providing a detailed overview. Specifi-
cally, we decompose infrared–visible images into common regions (Cvi and Cir) and unique
regions (Pvi and Pir). The dense attention is leveraged to effectively extract features from
the common and unique regions. To eliminate modal differences, we propose the unified
feature space to transform infrared features into the pseudo-visible domain. As noisy
source images may degrade the fusion quality, we design a non-local Gaussian filter to
minimize the impact of noise on the fusion results while maintaining the image details.

 

Figure 2. The overall framework of the proposed method. The method consists of (a) image decom-
position, (b) feature extraction module, and (c) fusion and reconstruction module. (a) decomposes
source images into common and unique regions, respectively. (b) is a three-branch network, consist-
ing of encoders Eir, Evi, and Eu. The encoders based on dense attention are used to extract unique
and unified features. (c) is devised to fuse features and generate fusion results, while employing a
non-local Gaussian filter to reduce the adverse impact of noise on the fusion quality.

During the training phase, we use the S3SIM and MSE loss functions to evaluate
the similarity between the fused image and the original inputs. This helps to refine the
network parameters.

3.2. Image Decomposition Based on Cosine Similarity

To obtain the common regions (Cvi and Cir) and unique regions (Pvi and Pir) of the
source images, we embed the infrared and visible images into a shared parameter space Z
to obtain consistent feature representations. By comparing the similarity of these features
using cosine similarity, we can capture the directional similarity of the image features
without being affected by the absolute luminance. The size of the feature map is h× w
and the dimension is d, which leads to the definitions (1) and (2) for feature representation.
Elements within these feature maps are denoted by the lowercase z, which are vectors in the
d-dimensional space. The superscript of z indicates the modality (with vi for visible light
and ir for infrared), and its subscript denotes the position of the element. The definitions
are shown below:

Zvi =

 zvi
1,1 · · · zvi

1,w
...

. . .
...

zvi
h,1 · · · zvi

h,w


h×w

, Zvi ∈ Rd×h×w, (1)
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Zir =

 zir
1,1 · · · zir

1,w
...

. . .
...

zir
h,1 · · · zir

h,w


h×w

, Zir ∈ Rd×h×w, (2)

where zvi
i,j is the element in the i-th row and j-th column of the visible feature matrix. zir

i,j is
the element in the i-th row and j-th column of the infrared feature matrix.

The cosine similarity (denoted as cs in the Equation (3)) is used to decompose infrared
and visible images into common and unique regions. This is because the cosine similarity
captures the structural similarity between infrared and visible images, which is more
important for image fusion than absolute luminance. Two types of masks for source image
decomposition are derived by computing the cosine similarity (denoted as c), namely Mc
(common mask) and Mp (unique mask), as detailed in Equations (4) and (5):

S = cs(Zvi, Zir) =

 cs(zvi
1,1, zir

1,1) · · · cs(zvi
1,w, zir

1,w)
...

. . .
...

cs(zvi
h,1, zir

h,1) · · · cs(zvi
h,w, zir

h,w)


h×w

, (3)

Mc =
1+S

2 , (4)

Mp = 1−S
2 , (5)

where S is the similarity matrix of size h× w, representing the cosine similarity between
visible and infrared features. cs is the cosine similarity function. Mc represents the common
mask, and 1+S

2 normalizes the similarity scores to a range [0, 1], where 1 indicates the
maximum similarity. Mp is the unique mask, and the transformation 1−S

2 also normalizes
the scores, with 1 indicating the maximum difference.

Next, we upsample the common mask and unique mask to align with the source
image size. Element-wise multiplication is performed between the two masks (Mc and Mp)
and infrared–visible images (Iir and Ivi) to yield four decomposed outcomes (Cir, Pir, Cvi,
and Pvi). The decomposed results are defined as followed, representing infrared–visible
common regions and unique regions, respectively:

Cir = Iir ×Upsample(Mc), (6)

Pir = Iir ×Upsample(Mp). (7)

Cvi = Ivi ×Upsample(Mc), (8)

Pvi = Ivi ×Upsample(Mp), (9)

The employment of cosine similarity enables more precise decomposition, ensuring
that the common regions and unique regions between the infrared and visible images
are captured.

3.3. Dense Attention for Feature Extraction

Although the current fusion methods [15,22] try to utilize skip connection structures
to obtain rich features, the differences between multi-scale features are not sufficiently
taken into account. Specifically, low-level features capture basic input characteristics, while
high-level features are more abstract, representing complex concepts and structures. Dense
connections and residual connections concatenate multi-scale features directly, which can
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make it challenging for neural networks to differentiate important features, consequently
limiting the fusion performance.

To address this limitation, we propose a dense attention-based feature extraction
module to obtain multi-scale features, as shown in Figure 3. By inserting attention into
every dense connection, the model can learn the significant features and relationships
between different layers. Furthermore, as the network depth increases, this attention
mechanism helps the model to learn long-range dependencies, improving its generalization
and robustness.

 

 
  

f1 f2 f4f3C C C
4 8 16 32

S

S

SigmoidConv2d

ConcateBatchNorm2d

SplitLinear

Hadamard ProductReLU

C

S

Figure 3. The structure of the feature extraction module based on dense attention.

3.4. Unified Feature Space Based on Dynamic Instance Normalization

We construct the unified feature space to eliminate the difference between infrared and
visible features at the multi-scale feature level. The core components of the space include a
scale-aware module, shifted patch embedding, and dynamic instance normalization (DIN),
as shown in Figure 4. Specifically, the scale-aware module is trained to determine the size
and shape of a patch. With the n pairs of scale and size parameters output by this module,
shifted patch embedding can divide the feature map into n groups. For each group, it
splits the feature map into patches according to the corresponding scale and size. DIN
transforms infrared features into a pseudo-visible domain for each patch, which eliminates
the differences between infrared and visible images. Subsequently, the learned confidence
merges the features from the two modalities to produce the output result.

 

Confidence

Map

Unified 

Features

Patch

Norm

Multi-patch 

Infrared Features

Multi-patch

Visible Features

Infrared

Features

Visible 

Features

G
P

ReLU

Linear

Size

Shape

S

S

b
b

×3

DIN

b

Confidence

Map

Tanh

Linear

ReLU

Linear

Tanh

Linear

×3

C

CConv2d 3×3

BachNorm2d

ReLU

×3
Conv2d 3×3
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ReLU
×3

concatenate
(Fir, Fvi)

Shifted 

Patch-embdding

Shifted 

Patch-embdding

Fir

Fvi

mean standard 

deviation

Scale-aware

Module

Learnable-confidence

Module

MLP

Pseudo-visible

Features

Element-wise Multiplication

Element-wise

Multiplication

Calculate the patch-wise 

mean and standard deviation 
Concatenate

GP Global Pooling

Add

Figure 4. An illustration of the unified feature space based on dynamic instance normalization (DIN).

More specifically, the unified feature space enables the domain transformation from
infrared to pseudo-visible, while also being adaptable to multi-scale targets. Dynamic
instance normalization (DIN) is the core of the unified feature space, capable of transform-
ing features from infrared features to pseudo-visible, thereby eliminating the difference
between the two modalities. Moreover, we employ global pooling to concatenate features
in order to enable a multilayer perceptron (MLP) to generate n pairs of size and shape
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parameters. The multi-patch embedding module divides the infrared and visible features
into n groups along the channel dimension. Within each group, the features are segmented
into patches of the same scale, determined by a set of size and shape parameters. Then,
DIN transforms the infrared features to the pseudo-visible domain for each patch after
shifted patch embedding. For the fusion of infrared and pseudo-visible features, we de-
sign a learnable confidence module to learn fusion weights; this method can adjust the
fusion weight depending on the image content, compared with the fusion rules of addition,
concatenation, and so on.

Although adaptive instance normalization (AdaIN) [41,42] plays a crucial role in
image translation tasks, the core idea of AdaIN is to adjust the feature distribution of a
content image to match the feature distribution of a target style image, thereby achieving
style transfer. This process involves normalizing the features of the content image and then
adjusting these normalized features with the statistical data (mean and variance) of the
target style image. Through this method, the content image adopts the style characteristics
of the style image while retaining its content structure. However, this method is not
very precise due to the transformation of the domain at the level of global features. This
limitation prevents independent domain transformations for each patch, restricting the
effectiveness of domain transformation. To address this, we introduce dynamic instance
normalization (DIN), which astutely segments the feature map into distinct subregions, as
shown in Figure 5. This segmentation allows for independent domain transformations on
each patch, enhancing the adaptability of the process. The DIN function is mathematically
represented as

DIN(X, Y) = [AdaIN(x1, y1), AdaIN(x2, y2), . . . , AdaIN(xn, yn)], (10)

AdaIN(x, y) = σ(y) ·
(

x− µ(x)
σ(x)

)
+ µ(y), (11)

where both X and Y denote global features, X represents the content input, and Y is the
modal attribute input. Both X and Y are segmented into n patches, resulting in patch-wise
pairs denoted as (xi, yi) for i = 1, 2, . . . , n, where each pair corresponds to matching patches
from X and Y. The terms µ(x) and µ(y) denote the means of x and y, respectively, while
σ(x) and σ(y) denote their standard deviations.

A

B μ σ× ＋
Normalized B

Output

…

…

…

…

AdaIN

AdaIN

A

B

Patch-wise

Patch-wise DIN

Output

（a）AdaIN （b）Dynamic instance normalization (DIN)

Figure 5. Different domain transformation methods. (a) AdaIN performs domain transformation by
adjusting the global feature distribution of the content input (denoted as B), making it match the
global feature distribution of the modal attribute input (denoted as A). (b) DIN, extended from AdaIN,
adjusts the feature distribution at the patch-wise level, enabling more detailed domain adaptation.

In particular, we feed the concatenated infrared and visible features into a scale-aware
module to obtain the scales and ratios. The shifted patch embedding module separately
splits infrared and visible features into n groups and partitions each group of features into
patches based on the scale and ratio. Infrared and visible patches can be represented as
X = [x1, x2, · · · , xn] and Y = [y1, y2, · · · , yn], respectively. Applying DIN to each infrared–
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visible patch pair, as shown in Equation (10), we transform the infrared features into the
pseudo-visible domain at the patch level. Then, we multiply them element-wise with a
neural network-derived confidence metric to form the final fusion features. We obtain the
final unified features by fusing pseudo-visible and visible features based on the learnable-
confidence module.

3.5. Hierarchical Decoder for Fusion and Reconstruction

The hierarchical decoder does not only allow us to fuse infrared–visible features
and generate fused images, but is also robust to the noise contained in source images
and enhances the clarity of the fusion result. In this paper, we propose a multi-stage
decoder to achieve more refined fusion, which can be divided into fusion, reconstruction,
and enhancement stages.

The specific design of the hierarchical decoder is shown in Figure 6. We deploy two
convolutional layers to fuse unified and unique features, receptively, in order to retain more
infrared–infrared information. Then, in the reconstruction, we propose a novel module
to learn the fusion strategy and obtain refined features. As every scale feature is vital to
the fusion task, we not only insert a nest connection to learn the fusion strategy, but also
propose a direct connection to output multi-scale features. Specifically, in the proposed
architecture, features are reconstructed to match the size of the input image through a series
of convolutional or transposed convolutional layers. These reconstructed features are then
propagated to subsequent layers. In the final enhancement stage, we employ two distinct
sets of convolutional layers to obtain a guidance feature used to obtain the filter parameters
and preliminary fused images. Subsequently, we utilize a cascade of three convolutional
layers to derive two-dimensional positional offsets and non-local Gaussian kernels.
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Figure 6. The structure of the hierarchical decoder.

Regarding the non-local Gaussian filter (shown in Figure 7), used for image enhance-
ment, the process involves refining a preliminary fusion result, denoted as f . Here, fi,j
represents the value at position (i, j) after an initial fusion step. The refined fusion outcome,
f̂ , is achieved through an advanced filtering technique, mathematically formulated as

Si,j =
N

∑
n=1

wn
i,j, (12)
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f̂i,j =
N

∑
n=1

wn
i,j

Si,j
· fi+∆in ,j+∆jn , (13)

where fi,j represents the value at position (i, j), and N is the total number of neighbors,
with a default value of 9. The term wn

i,j denotes learnable Gaussian kernels for the n-th
neighbor of the pixel at (i, j). Si,j is the sum of weights for all neighbors, used to normalize
the weights such that the sum of weights within the neighborhood equals 1. The terms
∆in and ∆jn represent the positional offset values for the n-th neighbor, indicating the
deviations in the row (vertical) and column (horizontal) directions, respectively, relative to
the central pixel (i, j).

⾮局部动态⾼斯滤波

* 图像

阵
）

(a) Gaussian filter (b) Non-local Gaussian filter
Figure 7. An illustration of the non-local Gaussian filter, which employs a dynamic kernel to enhance
the image fusion.

The non-local Gaussian filter enables the adaptive refinement of the fusion process.
By dynamically adjusting the offsets and weights based on the local structures of the
initial fusion result, the network can achieve a more optimized and contextually aware
fusion outcome.

3.6. Loss Function

In this paper, we introduce two types of loss functions to simultaneously preserve
crucial information from the source images and enhance the saliency of the fused image.
Our loss functions incorporate two key components: the mean squared error (MSE) loss
Lmse and the proposed saliency structural similarity index (S3IM) loss Ls3im. The MSE
loss is used to constrain the similarity between the fusion results and the infrared–visible
images. This loss focuses on maintaining fidelity to the source images by minimizing
pixel-wise differences. Our proposed S3IM loss aims to emphasize the saliency in the fused
image. The total loss is calculated as follows:

L(θ, D) = Lmse(θ, D) + λLs3im(θ, D), (14)

where θ represents the parameters of the neural network, D represents the training data,
and λ is the hyperparameter that balances the two losses.

Due to its efficiency and stability, the mean squared error loss Lmse can provide high
accuracy and reliability in many cases. Therefore, we use it to constrain the similarity
between the source images I1, I2, and the fused image I f . Its definition is as follows:

MSE(A, B) =
1
N

N

∑
i=1

(Ai − Bi)
2, (15)

Lmse(θ, D) = µ1MSE(I f , I1) + µ2MSE(I f , I2), (16)
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where µ1 and µ2 are hyperparameters that balance the weights of the two MSE terms in
the loss function. This allows the model to adjust the reliance on the visible image and the
infrared image according to the needs of the specific task.

The structural similarity index measure (SSIM) [43] is a widely used image quality
assessment metric that aims to quantify the perceptual similarity between two images.
However, in infrared images, there are pixels with zero or very low intensity values, which
means that the corresponding regions do not have objects with thermal radiation. In the
fusion process, they should be assigned lower weights. To address this issue, we propose
the saliency SSIM (S3IM). Specifically, S3IM can adaptively determine the loss weights
based on the pixel intensity. We divide the normalized pixel values into three major regions:
the low-saliency area, the linear area, and the high-saliency area, as shown in Figure 8.

 

Loss weight

Pixel intensity

High-salient 

area
Linear area

Low-salient 

area

α β

k

w2

w1

o

Figure 8. The schematic diagram of the s3im weight.

The low-saliency area contains pixels with lower intensity values, which typically
do not contain target information. When calculating the loss, they should be assigned
a very low weight. The high-saliency region contains pixels with high intensity values,
indicating objects with high thermal radiation, and they should have higher saliency in
the fused image. For the remaining pixels, we adopt a linear transformation strategy to
determine their loss weights, corresponding to the linear region in Figure 8. In summary,
the calculation method is shown as follows:

h(x) =


w1, x < α
kx + b, α ≤ x ≤ β
w2, x > β

, (17)

Ls3im(θ, D) = ϕ
[
1− SSIM(I f , I1)

]
+ h(I2) ·

[
1− SSIM(I f , I2)

]
, (18)

where ϕ is a hyperparameter used to adjust the weights of the infrared and visible images
during the fusion process.

4. Experimental Results

In this section, we describe the experimental setup and the details of the network train-
ing. Following this, we perform a comparative analysis of the current fusion methods and
carry out generalization experiments to highlight the benefits of our approach. Additionally,
we conduct ablation studies to validate the effectiveness of our proposed methods.

4.1. Experimental Settings

We conduct experiments using four publicly available datasets. The M3FD dataset [44]
is used for model training, while the TNO [45], RoadScene [15], and VTUAV [46] datasets
are used to evaluate the performance of our method. The M3FD dataset contains 300 pairs
of infrared and visible images for IVIF, including targets such as people, cars, buses,
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motorcycles, trucks, etc. These images were collected under various illuminance conditions
and scenarios. The TNO dataset contains multispectral imagery from various military
scenarios. The RoadScene dataset includes 221 image pairs featuring roads, vehicles,
pedestrians, etc. The VTUAV dataset is used for remote sensing analysis and contains
complex backgrounds and moving objects. We selected 20 pairs of infrared–visible images
from both the TNO and RoadScene datasets, as well as 10 pairs from the VTUAV dataset,
for the evaluation of our approach.

Our UNIFusion is compared with nine current state-of-the-art fusion methods, in-
cluding a biological vision-based method, i.e., PFF [47]; an autoencoder-based method,
i.e., MFEIF [48]; two generative adversarial network -based methods, i.e., FusionGAN [26]
and UMF [49]; two convolutional neural network-based methods, i.e., U2Fusion [15],
PMGI [29], and RFN [50]; a transformer-based method, i.e., swinfusion [17]; and a high-
level task supervision-based method, i.e., PIAFusion [18].

To quantitatively evaluate the fusion performance, we utilize five key metrics: the
average gradient (AG) [51], standard deviation (SD) [26], correlation coefficient (CC) [52],
spatial frequency [53], and multi-scale structural similarity index (MS-SSIM) [54]. The AG
measures the texture richness in the image, while the SD highlights the contrast within
the fused image. The SF is indicative of the detail richness and image definition. The CC
evaluates the linear relationship between the fusion results and infrared–visible images.
MS-SSIM is employed to calculate the structural similarity between images. Generally,
higher values in AG, SD, SF, MS-SSIM, and CC denote superior fusion performance.

4.2. Implementation Details

We trained our fusion model using the M3FD fusion dataset, which contains
300 infrared–visible pairs. During training, we randomly cropped the infrared–visible
image pairs into multiple 256 × 256 patches, applied random affine transformations to
enhance the model performance, and normalized all images to the [0, 1] range before
inputting them into the fusion model. For training, we utilized the Adam optimizer with
a batch size of 16. The initial learning rate was set to 5 × 10−4 and was halved every
two epochs starting from epoch 30, continuing this reduction until the final epoch at 60.
Additionally, we set the parameters of Equations (13)–(16) as follows: λ = 1, µ1 = 1, µ2 = 1,
α = 0.2, β = 0.7, k = 1, b = 0, w1 = 0.2, w2 = 2, ϕ = 1. The entire network was trained using
the PyTorch 1.8.2 framework on an NVIDIA GeForce GTX 3080 GPU and a 3.69 GHz Intel
Core i5-12600KF CPU.

4.3. Fusion Performance Analysis

In this section, we conduct a comprehensive qualitative and quantitative analysis to
illustrate the advantages of our UNIFusion, comparing our method with nine state-of-the-
art (SOTA) fusion approaches. In addition, we test the performance of our UNIFusion
across various illumination scenarios within the VTUAV dataset.

4.3.1. Qualitative Results

The visualized comparisons of our UNIFusion with the nine SOTA methods are
provided in Figures 9–11. Figures 9 and 10 present the fusion results of the different
methods on the TNO and RoadScene datasets, respectively, while Figure 11 shows the color
fusion results. Moreover, we evaluate our model’s performance with remote sensing data
collected under normal and low-light conditions, as shown in Figure 11. In our approach,
we effectively transform infrared features into the pseudo-visible domain, resulting in fused
images that maintain superior visual perception. This transformation process enhances
the fusion of infrared and visible information, yielding more natural and clearer fusion
results. Notably, our image decomposition method plays a crucial role in preserving
unique information from multiple modalities, thereby highlighting salient objects in the
fused images.
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In Figure 9, it can be seen that FusionGAN, PMGI, RFN, U2Fusion, and UMF generate
fusion results with less information and lower brightness (see the red boxes), which contain
more infrared information and do not fully fuse visible image. The objects in MFEIF
and PIAFusion are not salient and therefore not easily observed (see the orange boxes in
Figure 9). SwinFusion suffers from overexposure and oversmoothing, resulting in some
details not being clear enough (see the orange boxes in Figure 9). Although PFF can fuse
more details, the results of this method contain noise (see the yellow boxes in Figure 9).
On the contrary, our fused images can fuse more information through the unified feature
space, which leads to rich details and structures (see the red boxes in Figure 9). Our
UNIFusion can also obtain better fusion performance on small objects (see the orange boxes
in Figure 9). Moreover, the results generated from our method are clear and contain less
noise due to the non-local Gaussian filter (see the orange boxes in Figure 9).
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Figure 9. Qualitative comparison of the fused images from various methods on the TNO dataset.
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Figures 10 and 11 show more fused images on the RoadScene dataset. In the red boxes,
it can be seen that the fused images obtained from PFF contain more visible information
and lees infrared information. In the fusion results obtained by FusionGAN, PMGI, and
RFN, the overall brightness of the image is relatively low, leading to objects in the fused
image that are not salient (see the red boxes). FusionGAN, PMGI, and RFN generate fusion
results with low overall brightness, resulting in less salient objects (see the red boxes).
Although MFEIF, PIAFusion, SwinFusion, and UMF produce brighter fusion results, their
results appear less contrasted in Figures 10 and 11. In the orange boxes of Figure 11,
the fusion result from PIAFusion and SwinFusion exhibits blurry details for the cloud,
and the results of UMF and U2Fusion are unable to successfully process object edges (see
the edge of the tree in orange boxes). In comparison, our method can achieve superior
fusion performance in both day and night conditions. The fusion results obtained by
our UNIFusion can effectively integrate the source information from infrared and visible
images, and it exhibits better performance on the edges of the target.
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Figure 10. Qualitative comparison of the fused images from various methods on the Road-
Scene dataset.
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Figure 11. Qualitative comparison of the color fused images from various methods on the Road-
Scene dataset.
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To assess the generalization of our method and its performance in low-light conditions,
we conducted experiments on the VTUAV dataset. Figure 12 displays our fusion results,
with Figure 12a showing the fusion results under normal-light conditions, and Figure 12b
showcasing the fusion results under low-light conditions. In the normal-light scene (see
the red boxes in Figure 12a), the infrared images display high thermal contrast, which our
algorithm effectively integrates with the visible spectrum images, known for their rich
contextual details. The resulting fusion images demonstrate the algorithm’s proficiency in
synthesizing the distinct attributes of each spectrum to enhance the overall image quality.
Under low-light conditions (see the red boxes in Figure 12b), where visible images suffer
from limited visibility, our algorithm leverages infrared imaging to accentuate thermal
details otherwise obscured by darkness. The fusion process yields images that not only
retain the luminance from visible light but also highlight thermal aspects, thus improving
the interpretability of the scene in suboptimal lighting.
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Figure 12. Fused images in normal and low-light scenes on the VTUAV dataset. The orange boxes
show our fusion results in very low-light areas.

We evaluate the performance of our method using remote sensing data that include
natural environments, urban landscapes, and beach scenes. Figure 13 shows our fused
images in these environments. Our fusion method effectively integrates valuable infor-
mation from the source images, achieving satisfactory results in terms of illumination,
detail, and structural integrity. The fused images across the first, second, and third columns
exhibit our method’s capability to successfully fuse infrared and visible data, enhancing the
clarity in details and structures, as highlighted in the red boxes. Moreover, our approach
excels at retaining essential features while disregarding irrelevant information, as seen
in the urban and beach scenes of the fourth and fifth columns, respectively. Despite the
visible images in the fourth and fifth columns being somewhat dark and containing some
details, our fusion outcome maintains these details without being affected by the abnormal
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illumination of the visible image. Our method is robust in preserving critical information
across diverse scenes and lighting conditions.
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Figure 13. Fusion results in remote sensing imagery. The red boxes are enlarged to highlight the
fusion performance on image details.

4.3.2. Qualitative Results

Figures 14 and 15 provide a quantitative comparison between our method and the state-
of-the-art (SOTA) methods on the TNO and RoadScene datasets, respectively. The average
metric values for these methods are summarized in Tables 1 and 2, respectively. Our
method stands out in terms of overall performance. On the TNO dataset, our UNIFusion
obtains better performance with the highest average values of SD and CC, indicating the
effective integration of information from the source images while preserving the rich details
in the fused images. Additionally, our method achieves the second-best results in AG and
MS-SSIM, coming close to the top performer. This demonstrates our method’s capability to
integrate detailed information from source images effectively. In the RoadScene dataset’s
results, our method obtains remarkably high scores in AG, SD, and CC, further confirming
its outstanding overall performance. While PFF achieves the best metrics in AG and
SF by incorporating the characteristics of the human visual system, it relies on complex
decomposition algorithms and faces challenges in preserving the rich information from the
source images.

Table 1. Quantitative analysis on the TNO dataset. The best results are highlighted in red, the second-
best in pink, and the third-best in orange.

Methods AG SD SF MS-SSIM CC

FusionGAN [26] 3.41 ± 1.27 30.73 ± 6.10 4.32 ± 1.26 0.754 ± 0.10 0.761 ± 0.10
MFEIF [48] 4.24 ± 1.90 34.85 ± 8.26 4.86 ± 1.39 0.914 ± 0.03 0.771 ± 0.13
PFF [47] 10.02 ± 4.40 40.52 ± 7.24 8.76 ± 1.61 0.782 ± 0.09 0.722 ± 0.13
PIAFusion [18] 6.69 ± 3.27 41.95 ± 11.48 6.77 ± 1.73 0.860 ± 0.06 0.752 ± 0.13
PMGI [29] 4.86 ± 1.43 39.12 ± 4.04 5.51 ± 1.30 0.912 ± 0.07 0.750 ± 0.13
RFN [50] 3.40 ± 1.11 43.89 ± 9.63 4.24 ± 1.16 0.896 ± 0.05 0.780 ± 0.15
SwinFusion [17] 6.52 ± 2.90 39.74 ± 10.88 6.72 ± 1.62 0.890 ± 0.06 0.758 ± 0.13
U2Fusion [15] 6.91 ± 2.20 40.06 ± 7.42 7.11 ± 1.42 0.931 ± 0.03 0.779 ± 0.14
UMF [49] 4.63 ± 1.87 32.60 ± 6.83 5.15 ± 1.41 0.896 ± 0.07 0.768 ± 0.14
Ours 8.24 ± 3.58 45.20 ± 4.70 7.06 ± 0.65 0.928 ± 0.03 0.795 ± 0.14



Remote Sens. 2024, 16, 969 17 of 22

  

   

 

0 2 4 6 8 10 12 14 16 18 20
Image pairs

0

5

10

15

20

25

30

Va
lu

es
 o

f t
he

 m
et

ric

AG

Ours : 8.24
FusionGAN : 3.41
MFEIF : 4.24
PFF : 10.02
PIAFusion : 6.69

PMGI : 4.86
RFN : 3.4
SwinFusion : 6.52
U2Fusion : 6.91
UMF : 4.63

0 2 4 6 8 10 12 14 16 18 20
Image pairs

10

20

30

40

50

60

70

80

90

100

Va
lu

es
 o

f t
he

 m
et

ric

SD

Ours : 45.2
FusionGAN : 30.73
MFEIF : 34.85
PFF : 40.52
PIAFusion : 41.95

PMGI : 39.12
RFN : 43.89
SwinFusion : 39.74
U2Fusion : 40.06
UMF : 32.6

0 2 4 6 8 10 12 14 16 18 20
Image pairs

2

4

6

8

10

12

14

16

Va
lu

es
 o

f t
he

 m
et

ric

SF

Ours : 7.06
FusionGAN : 4.32
MFEIF : 4.86
PFF : 8.76
PIAFusion : 6.77

PMGI : 5.51
RFN : 4.24
SwinFusion : 6.72
U2Fusion : 7.11
UMF : 5.15

0 2 4 6 8 10 12 14 16 18 20
Image pairs

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Va
lu

es
 o

f t
he

 m
et

ric

MS-SSIM

Ours : 0.93
FusionGAN : 0.75
MFEIF : 0.91
PFF : 0.78
PIAFusion : 0.86

PMGI : 0.91
RFN : 0.9
SwinFusion : 0.89
U2Fusion : 0.93
UMF : 0.9

Va
lu

es
 o

f t
he

 m
et

ric

Figure 14. Comparative analysis of nine state-of-the-art methods using five metrics on the
TNO dataset.
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Table 2. Quantitative analysis on the RoadScene dataset. The best results are highlighted in red,
the second-best in pink, and the third-best in orange.

Methods AG SD SF MS-SSIM CC

FusionGAN [26] 4.35 ± 1.41 37.81 ± 5.17 5.36 ± 1.11 0.731 ± 0.06 0.692 ± 0.07
MFEIF [48] 5.1 ± 1.58 34.91 ± 5.77 5.87 ± 1.24 0.864 ± 0.04 0.750 ± 0.06
PFF [47] 10.07 ± 2.86 48.85 ± 4.64 8.45 ± 1.13 0.770 ± 0.05 0.692 ± 0.06
PIAFusion [18] 6.48 ± 2.55 44.13 ± 6.70 6.60 ± 1.49 0.757 ± 0.08 0.701 ± 0.08
PMGI [29] 5.89 ± 1.58 46.22 ± 6.25 6.42 ± 1.14 0.911 ± 0.02 0.674 ± 0.07
RFN [50] 4.26 ± 1.18 42.84 ± 5.85 5.35 ± 1.02 0.867 ± 0.03 0.692 ± 0.08
SwinFusion [17] 6.43 ± 2.22 43.21 ± 5.88 6.67 ± 1.34 0.831 ± 0.05 0.718 ± 0.06
U2Fusion [15] 8.61 ± 2.39 39.19 ± 6.59 7.86 ± 1.23 0.923 ± 0.01 0.678 ± 0.08
UMF [49] 5.75 ± 1.72 33.10 ± 6.06 6.26 ± 1.24 0.883 ± 0.02 0.707 ± 0.07
Ours 8.92 ± 2.51 47.19 ± 3.24 7.31 ± 1.19 0.895 ± 0.02 0.752 ± 0.07

4.4. Ablation Study

We conducted experiments to analyze the effectiveness of the proposed method for
infrared and visible image fusion. The fusion results with and without the unified feature
space (UFS), non-local Gaussian filter (NGF), and dense attention (DA) were compared
in the experiments. Figure 16 shows the fused images with and without UFS. It can be
seen that the method without UFS generates blurred text on the signboard (see the red
boxes in the first row of Figure 16) and does not sufficiently retain the information from
the source images. In contrast, our method with UFS produces a detailed fusion result,
particularly with much clearer text. From the second row of Figure 16, it can be observed
that our method can retain more details of the car compared with the method without UFS.
Furthermore, the red boxes in the first row of Figure 16 show that our method generates
clearer edges on the signboard, indicating that the unified feature space (UFS) effectively
fuses information from different modalities, thereby achieving high fusion performance.
In the absence of NGF, there is an increase in noise within the fused image (see the red box
in Figure 17). Compared with the method without NGF, our method not only removes more
noise but also preserves image details and structures. We propose the dense attention-based
feature extraction module to obtain multi-scale features, which can learn the significant
features and relationships between different layers. Without dense attention, the extraction
of key features becomes challenging, resulting in fusion outcomes that are lacking in detail.
In Figure 18, without dense attention (DA), features such as the clouds in the sky and
people on the grass appear less prominent and blurred. In contrast, our fusion results are
richer in detail and clarity.

    

    

Infrared Visible W /O UFS Ours 

 
Figure 16. The fused images with and without the unified feauture space (UFS). The red boxes are
enlarged to highlight the fusion performance on image details.
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Figure 17. The fused images with and without the non-local Gaussian filter (NGF). The red boxes are
enlarged to highlight the fusion performance on image details.
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 Figure 18. The fused images with and without the dense attention (DA). The red boxes are enlarged
to highlight the fusion performance on image details.

We selected three representative metrics to demonstrate the effectiveness of each
module: AG, MS-SSIM, and CC. AG indicates that the image contains rich information,
while MS-SSIM and CC suggest that the fusion results retain substantial content from
the source images. Table 3 presents the comparison results, which demonstrate that each
component influences the overall performance. The removal of UFS lead to a marked
decrease in AG, indicating its vital role in the fusion process and in maintaining rich
information. The absence of NGF and DA leads to a decrease in MS-SSIM, as shown
in Table 3, which shows that our proposed NGF and DA are capable of retaining more
information from the source image. The absence of DA leading to a significant decrease in
MS-SSIM indicates that DA captures essential features, thereby enriching the fusion results
with more details from the source images. Both the qualitative and quantitative results
demonstrate that the UFS, NGF, and DA are effective in removing noise while maintaining
the information from the source images.

Table 3. The results of the ablation study on the TNO dataset. The best results are highlighted in red.

Methods AG MS-SSIM CC

W/O UFS 7.94 ± 3.24 0.927 ± 0.03 0.79 ± 0.14
W/O NGF 8.10 ± 3.30 0.920 ± 0.03 0.79 ± 0.13
W/O DA 8.05 ± 3.17 0.908 ± 0.04 0.79 ± 0.13
Ours 8.24 ± 3.58 0.930 ± 0.03 0.80 ± 0.14
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5. Conclusions

In this paper, we fuse infrared and visible images through feature-based decomposition
and domain normalization. This decomposition method separates infrared and visible
images into common and unique regions. We apply domain normalization to the common
regions within the unified feature space to reduce modal differences while retaining unique
information. The domain normalization is achieved by transforming the infrared features
into a pseudo-visible domain via the unified feature space based on dynamic instance
normalization (DIN). Thus, we create a consistent space for the fusion of information from
diverse source images, while eliminating modal differences that affect the fusion process.
To effectively extract essential features, we integrate a novel dense attention into the feature
extraction process. The dense attention ensures that the network can dynamically capture
key information across various layers, thereby improving the overall fusion performance
in comparison to existing CNN-based methods, autoencoder-based approaches, and others.
As the source images may contain noise, we propose a non-local Gaussian filter with
learnable filter kernels that depend on the image content. This approach filters out noise
while preserving the image details and structure. The experimental results indicate that
our method can achieve fusion results of higher quality.
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