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Abstract: Recent climatic changes have profoundly impacted the urban microclimate, exposing city
dwellers to harsh living conditions. One effective approach to mitigating these events involves
incorporating more green infrastructure into the cityscape. The ecological services provided by urban
vegetation play a crucial role in enhancing the sustainability and livability of cities. However, moni-
toring urban vegetation and accurately estimating its status pose challenges due to the heterogeneous
nature of the urban environment. In response to this, the current study proposes utilizing a remote
sensing-based classification framework to enhance data availability, thereby improving practices
related to urban vegetation management. The aim of the current research is to explore the spatial
pattern of vegetation and enhance the classification of tree species within diverse and complex urban
environments. This study combines various remote sensing observations to enhance classification
capabilities. High-resolution colored rectified aerial photographs, LiDAR-derived products, and
hyperspectral data are merged and analyzed using advanced classifier methods, specifically partial
least squares-discriminant analysis (PLS-DA) and object-based image analysis (OBIA). The OBIA
method demonstrates an impressive overall accuracy of 95.30%, while the PLS-DA model excels
with a remarkable overall accuracy of 100%. The findings validate the efficacy of incorporating
OBIA, aerial photographs, LiDAR, and hyperspectral data in improving tree species classification
and mapping within the context of PLS-DA. This classification framework holds significant potential
for enhancing management practices and tools, thereby optimizing the ecological services provided
by urban vegetation and fostering the development of sustainable cities.

Keywords: vegetation; OBIA; PLS-DA; LiDAR; hyperspectral data; high-resolution orthophoto;
urban ecology; tree species discrimination; urban sustainability; remote sensing

1. Introduction

Green infrastructures (GIs) are pivotal in urban ecosystems, gaining heightened im-
portance amid current climatic changes [1–4]. Urban vegetation’s well-documented impact
on human well-being [5] and the environment underscores its significance. Urban microcli-
mates, shaped by various factors, prominently feature the influence of urban vegetation.
GIs emerge as powerful tools, notably mitigating the urban heat island (UHI) effect [6,7].
Leveraging evapotranspiration, GIs dissipate heat, effectively reducing the UHI effect [6,8].
Strategic urban planning mandates meticulous consideration of GIs, encompassing fac-
tors like vegetation composition, density, and climate conditions, to combat urban heat
effectively [9]. For instance, Marando et al. (2022) ascertain that achieving a 1 ◦C tempera-
ture decrease in European cities requires a minimum tree cover of 16% [7]. Such findings
offer invaluable insights for city planners and policymakers, guiding efforts toward culti-
vating cooler urban environments, a critical endeavor amid ongoing climate change.
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GIs also play a role in the urban CO2 flux balance, challenging the common perception
of vegetation solely acting as a net CO2 sink for cities. Contrarily, the entire urban GI
system may function as a net CO2 source, introducing complexity to its environmental
impact [10]. This intricate interplay is influenced by diverse factors, including climate
variations [11], vegetation types [12,13], soil characteristics [14], and management practices
(such as irrigation, pest control, and maintenance) [14]. Despite vegetation’s role as a
clear CO2 sink through photosynthesis [15], soil CO2 fluxes can counterbalance this effect,
potentially increasing overall CO2 emissions [14]. Recent studies exemplify this variability:
urban areas in Seoul, even with substantial vegetation cover, were identified as CO2
sources [15], while Warsaw, accounting for diverse urban areas, functions as a CO2 sink
due to its GIs [16]. Velasco et al. (2016) underline the contextual nature of GIs, acting as
either sinks or sources contingent on climate and seasonality [10]. Understanding these
dynamics is pivotal for effective urban carbon management strategies.

Urban GIs offer crucial benefits, including enhanced thermal comfort through
shading [17,18], decreased water runoff [19], and improved air quality [20,21]. Urban vege-
tation effectively reduces pollutants like particulate matter, nitrogen oxide, and ozone [22],
especially in pollution hotspots like urban street canyons [23]. Strategic urban vegetation
planning has the potential to mitigate air pollution and positively impact environmental
health. Recognizing and optimizing the ecological services of urban GIs demand improved
management practices, providing city planners and policymakers with valuable tools for
sustainable urban development.

Municipalities face the challenge of managing urban vegetation, including species
diversity and overall vegetation health [24,25]. The wide array of urban vegetation presents
difficulties in acquiring specific information, as different plant species exhibit varying
capacities to absorb airborne contaminants [26]. The selection of vegetation species carries
significant implications for the urban environment, as certain species may contribute to
ecological damage through emissions of volatile organic compounds and allergens [27,28].
Effectively gathering this essential information is crucial for maintaining the ecological
services provided by urban vegetation [26,29,30]. Improved data acquisition is vital for
informed decision-making in urban vegetation management.

The expenses and time associated with monitoring urban vegetation have prompted
the exploration of automated mapping approaches [31]. The intricacies of urban vegetation
mapping arise from the heterogeneous land cover in the urban environment, marked
by frequent land cover changes within small areas and high spectral variability [32,33].
Advances in remote sensing methods and the increased spatial resolution of satellite sensors
have improved the precision of urban vegetation mapping [29,34]. Drones, airplanes, and
satellites serve as key platforms for regional observations, each offering distinct spatial,
temporal, and spectral resolutions. Aerial passive sensor platforms typically provide
superior spatial resolutions, albeit with limited coverage and revisit times.

Light Detection and Ranging (LiDAR), an active remote sensing sensor often mounted
on airplanes or drones, employs pulsed laser light to gauge variable distances to the Earth’s
surface. LiDAR excels at capturing diverse structural properties among vegetation species,
allowing for the differentiation between lawns, bushes, and trees. In contrast, passive
spectral sensors measure the light reflected from objects, each possessing a unique spectral
signature. Integrating LiDAR with spectral sensors proves instrumental in distinguishing
various land covers, significantly enhancing mapping and classification accuracy in urban
environments [35–38]. Numerous studies have showcased LiDAR’s capability to differenti-
ate vegetation species and leverage tree morphology for species-specific identification in
vegetation mapping [39].

Enhancing the classification of tree species involves integrating LiDAR-derived height
data with hyperspectral optical information [29,40]. The hyperspectral technique, employed
for land cover classification, detects radiation across numerous narrow spectral bands
spanning the visible (400–700 nm), near-infrared (NIR, 700–1100 nm), and shortwave
infrared (SWIR, 400 and 2500 nm) ranges. This technique can be implemented using
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ground-based equipment, drones, airplanes, or, to a lesser extent, satellites. While LiDAR-
derived spatial features were deemed more crucial than optical data [41,42], integrating
LiDAR and hyperspectral images remains indispensable for accurately classifying a diverse
range of tree species [31].

Classifying tree species using hyperspectral data poses challenges, with various stud-
ies employing different methods, such as variants of linear discriminant analysis—canonical
or stepwise discriminant analyses—for classification [43]. The support vector machine
(SVM) algorithm, integrating terrestrial laser data with hyperspectral images, has also been
utilized [44]. Some studies have explored endmember spectra for vegetation species map-
ping through the spectral angle mapper (SAM) or spectral mixture analysis (SMA) [45–47].
Recently, deep learning approaches have emerged in urban vegetation discrimination and
classification [48–50].

Among these methods, partial least squares-discriminant analysis (PLS-DA) is an
effective supervised classifier for maximizing separation among predefined classes [51,52].
PLS-DA, a parametric method, identifies variables and directions in multivariate space, de-
termining available classes in a calibration set. By maximizing covariance between samples
of each class, PLS-DA sharpens their separation, producing latent variables suitable for
hyperspectral data classification. Providing understandable graphical representations, typi-
cally in 2D or 3D, PLS-DA reveals spectral regions and differences between classes and al-
lows statistical evaluation of their significance. Therefore, PLS-DA possesses highly sought-
after properties by spectral data users, particularly for urban vegetation classification.

The study explored various preprocessing transformations (PPTs) to optimize PLS-DA
outcomes, including averaging, centering, smoothing, standardizing, and normalizing [51].
Previous research has highlighted the effectiveness of different combinations of these
PPTs [53]. Auto-scaling (AS), a widely embraced PPT, involves dividing each variable by
its standard deviation after mean-centering each sample’s spectral signature. This normal-
ization ensures that each variable’s signal aligns equally with other variables’ signals [54].

Smoothing, implemented using the Savitzky–Golay technique, involves a convolution
of successive subsets of neighboring data points fitted to a low-degree polynomial through
a simplified least squares fit method. The Savitzky–Golay smoothing algorithm, applied to
the second derivatives of reflectance spectra (SG2D), utilizes a second-order polynomial
fit and a 15-band window. According to a related study, this low-pass filter minimizes
high-frequency noise without significantly impacting the signal of interest, making it an
ideal spectral PPT [55,56].

Given the geometric variability of features in urban areas, object-based image anal-
ysis (OBIA) provides a viable approach for assessing the spatial distribution of urban
features [36,57]. In contrast to pixel-based methods, OBIA breaks down images into objects
through segmentation, classifying them based on their texture, shape, contrast, size, spatial,
and spectral properties [58,59]. While some researchers still rely on manual demarcation
of vegetation features [29,60,61], eCognition Developer algorithms automate the segmen-
tation/classification processes [34,62,63]. Due to the complexity of urban environments
and mixed pixel issues, studies often favor OBIA for mapping urban vegetation [32,57,64].
Integrating LiDAR and high spatial resolution imagery with OBIA further enhances classi-
fication accuracy [40,65,66].

The present study posits that integrating multiple remote sensing observation systems
and employing advanced image processing methods will enhance the classification capabil-
ities of urban vegetation. The aim of the current research is to explore the spatial pattern of
vegetation and enhance the classification of tree species within diverse and complex urban
environments. This study has two specific objectives: (1) to employ object-based image
analysis (OBIA) with high-resolution orthophoto and LiDAR-derived features to scrutinize
the spatial distribution patterns within the study area and (2) to utilize the partial least
squares-discriminant analysis (PLS-DA) model with hyperspectral samples for discerning
and categorizing tree species within the study area. To achieve these objectives, the project
integrates high-resolution colored rectified aerial photographs, LiDAR-derived products,
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and hyperspectral data, subjecting them to advanced classifier methods, including PLS-
DA and OBIA. This proposed framework is demonstrated in an urban neighborhood
characterized by diverse tree species.

2. Materials and Methods
2.1. Study Area

This study was conducted in Modi’in, situated in the central region of Israel. Founded
in 1996, the city now boasts a population of nearly 100,000 people. Modi’in features a
Mediterranean climate, with an average annual precipitation of 525 mm and an elevation
averaging around 200 m above mean sea level, with hills reaching 300 m. The research
focused on a neighborhood spanning approximately 0.25 km2. Constructed between
2013 and 2018, the neighborhood primarily consists of low-rise buildings ranging from
2 to 5 stories. In situ measurements were carried out in a local open green space of about
4500 m2 at the neighborhood’s center (Figure 1).
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Figure 1. (A) Map of Israel’s location; (B) Municipal boundary of Modi’in (WorldView-2) (blue lines);
(C) Study area within the neighborhood of Modi’in city (WorldView-2) (blue lines). The images are
superimposed with a building layer provided by the Survey of Israel.

2.2. Methodology

This study integrated high-resolution geo-rectified aerial photographs (orthophoto),
airborne LiDAR imagery, and hyperspectral data. The LiDAR data collected in 2023
featured a raw point cloud density of two points per m2. The Digital Terrain Model
(DTM) (Figure 2A) and the Digital Surface Model (DSM) (Figure 2B) were obtained at
a 0.2 m resolution from Ofek Aerial Photography. Additionally, a high-resolution geo-



Remote Sens. 2024, 16, 1110 5 of 17

rectified orthophoto, acquired in 2021 at the same 0.2 m resolution from Ofek Aerial Pho-
tography, comprised four bands (Red, Green, Blue, and NIR). The hyperspectral data were
gathered using portable analytical spectral devices (ASD) spectrometers in the designated
open green space.
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Figure 2. (A) Digital Terrain Model (DTM); (B) Digital Surface Model (DSM) with a 0.2 m resolution,
depicting the examined neighborhood in Modi’in. The data were sourced from Ofek Aerial Photography.

The methodology, depicted in Figure 3, unfolds through distinct stages to fulfill the
study objective. Initiating with LiDAR data, the groundwork and surface elevations—termed
DTM and DSM, respectively—were derived. Applying object-based image analysis (OBIA)
to the orthophoto and LiDAR outputs yielded the spatial characteristics within the study
zone. A precision evaluation was conducted on the OBIA-classified image. Subsequently,
the partial least squares-discriminant analysis (PLS-DA) classifier processed collected the
hyperspectral samples to distinguish diverse tree species. Comprehensive insights into
each process are expounded in the ensuing subsections.

2.3. Object-Based Image Analysis (OBIA) and Accuracy Assessment

The eCognition Developer program, applying an object-oriented approach [67], played
a pivotal role in unraveling spatial intricacies within the available area. Object-based image
analysis (OBIA) commenced by treating a single pixel as an object, fostering amalgamation
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based on homogeneity factors like shape, color, texture, and size. Employing a multireso-
lution image segmentation algorithm, the orthophoto, digital DSM, and DTM coalesced
into distinct image objects. Table 1 illustrates input parameters for the multiresolution
segmentation algorithm at the pixel level.
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Table 1. Parameters used in the multiresolution segmentation algorithm.

Domain Image Layer Weights Scale Parameter Shape Factor Compactness

Pixel level R, G, B, NIR, DSM, DTM = 1 5 0.7 0.8

Object-based image classification was applied to the segmented image to discern
land use and land cover features. The segmentation facilitated a two-level classification
(Level I and Level II) (Figure 4), incorporating a normalized DSM (nDSM) (Figure 5A),
providing elevation insights derived from the DSM and DTM disparity. nDSM values
facilitated the delineation of three primary classes: Buildup area, Vegetation, and Roads.
Extracting urban vegetation involved computing the Normalized Difference Vegetation
Index (NDVI) [68] from the orthophoto’s red and NIR spectral values (Figure 5B):

NDVI =
(NIR − Red)
(NIR + Red)

(1)

The following decision rules were derived for Level-I classification:

1. Buildup area (1 < nDSM > 6)
2. Roads (nDSM < 0.4)
3. Vegetation (NDVI > 0.3)
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Finally, the Level-II classification (see Figure 6) hierarchy separates the “Vegetation”
class into four other classes, namely Grass, Bushes, Young trees, and Mature trees.

1. Grass (nDSM < 0.2)
2. Bushes (0.2 < nDSM ≤ 1)
3. Young trees (1 < nDSM ≤ 2)
4. Mature trees (2 < nDSM)
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The classification accuracy assessment utilized a high-resolution orthophoto overlaid
with a canopy layer from the Survey of Israel (Figure 7). A tree canopy map served
as a reference, and individual trees were precisely mapped using a real-time kinematic
global positioning system (RTK-GPS) with a 10 m accuracy. A total of 675 samples were
collected for the “Vegetation” class, while approximately 100 random reference samples
were generated for the “Buildup area” and “Roads” classes. OBIA provided feature statistics
(NDVI and nDSM), which were extracted as vector polygon features using eCognition
Developer. Spatial joining of two vector polygon features—random reference samples and
image objects—occurred in ArcGIS. The 873 reference samples underwent object-based
classification based on the decision rules outlined in Section 2.3. The comprehensive
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accuracy assessment procedure is illustrated in Figure 8, culminating in the comparison
of all reference sample polygon classes with the object-based classified image and the
calculation of a confusion matrix to estimate overall accuracy [69,70].
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Figure 8. Leaves of the selected tree species: (A) Platanus orientalis, (B) Ulmus parvifolia, (C) Cercis
siliquastrum, (D) Koelreuteria bipinnata, (E) Fraxinus uhdei, (F) Olea europaea, and (G) Ceratonia siliqua.

2.3.1. PLS-DA Classification Modeling and Accuracy Assessment
Field Data

During the growing season, a field campaign was conducted in May 2023 as part
of this study. The geographic coordinates of specific trees identified by the municipal
agronomist were assessed using an RTK-GPS. Fresh leaf samples were promptly collected
and scanned using a plant probe equipped with a leaf clip connected to portable analytical
spectral device (ASD) spectrometers. This instrument encompasses 2150 bands spanning
the 350–2500 nm range, covering the visible, near-infrared (NIR), and shortwave infrared
(SWIR) spectra, with a spectral resolution of approximately 1–2 nm.

Leaves from seven tree species—namely Platanus orientalis, Ulmus parvifolia, Cercis siliquastrum,
Koelreuteria bipinnata, Fraxinus uhdei, Olea europaea, and Ceratonia siliqua—were identified
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and sampled (Figure 8). These specific species were marked and cross-referenced with the
OBIA classification. Approximately 50 samples were collected from each species, and their
reflectance values were subsequently averaged.

Species Classification and Accuracy Assessment

The PPTs in this study were ordered as GSLW + SG2D + AS. To create the filter matrix
via generalized least squares weighting (GLSW), implemented in the PLS Toolbox (Eigen-
vector Research Incorporated) within MATLAB R2020a (Mathworks, Natick, MA, USA),
the variations between pairs or groups of samples that should be comparable were consid-
ered [54]. The α parameter, crucial for specifying how significantly GLSW reduces weight
interferences, was set to 0.02 after optimization. Smaller adjustments increase filtering,
while higher adjustments reduce it (usually below 0.001 and above 0.02).

In the post-PT application, the PLS-DA algorithm was executed using the PLS Toolbox.
The classification was performed for each tree species based on sampled leaves collected
near the urban open green space where most species were available. Only the “Mature
trees” class from the OBIA classification was considered for this analysis. The optimized
algorithms yielded multiple latent variables (LVs) [54]. Cross-validation employed the
Venetian blinds method with ten repetitive random subsets, maintaining a 70:30 split
ratio for calibration and validation sets [71,72]. Accuracy evaluation was performed it-
eratively across the same ten validation subgroups, and the outcomes for the ten classes
were averaged.

3. Results
3.1. Object-Based Classification and Accuracy Assessment

The multiresolution segmentation algorithm was employed to introduce objects
into the OBIA, and a two-level classification system (Level I and Level II) was applied.
Level I classified the map into three major categories: Buildup area, Vegetation, and
Roads (Figure 9A). The “Vegetation” class underwent further classification in Level II,
distinguishing Grass, Bushes, Young Trees, and Mature trees (Figure 9B).
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Figure 9. (A) Level-I classification delineates three primary classes: Buildup area (~110,000 m2),
Vegetation (~125,000 m2), and Roads (~20,000 m2). (B) Level-II classification further refines the
“Vegetation” class, identifying subcategories such as Grass (~59,000 m2), Bushes (~34,000 m2), Young
trees (~8000 m2), and Mature trees (~24,000 m2).
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For Level-I classification, an error confusion matrix was computed using the spatial
statistics of the objects. Cross-validation of selected reference samples was performed with
the final classified image. Achieving an overall accuracy of 95.30%, the study considered
some misclassification among the major classes (Buildup area, Vegetation, and Roads)
(Table 2). The User and Producer accuracy for the “Vegetation” class, the focal point of the
study, were 95.70% and 99.54%, respectively.

Table 2. Confusion matrix of object-based classification.

Reference Class

Classification Class Vegetation Buildup Area Roads Row Total Users Accuracy (%)

Vegetation 646 20 9 675 95.70

Buildup area 3 94 3 100 94.00

Roads 0 6 92 98 93.88

Column total 649 120 104

Producers Accuracy (%) 99.54 78.33 88.46

Overall accuracy 95.30

3.2. PLS-DA Classification Modeling and Accuracy Assessment

The PLS-DA cross-validation (CV) hyperspectral model for the identified seven species
was fine-tuned using six latent variables (LVs), representing the score coefficients of individ-
ual samples in a specific projection. Figure 10 displays the scores of each class for the three
potential combinations of LVs. Remarkably, a substantial enhancement in model accuracy
was observed with the adopted sequence of combinations of PPTs (GSLW + SG2D + AS).
The overall accuracy of species classification reached 100%.
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4. Discussion
4.1. The Developed Framework Performance

The presented study employs a method that integrates OBIA with high-resolution
orthophoto and LiDAR-derived features to analyze the spatial pattern distribution of the
study area. Additionally, the PLS-DA model is implemented with hyperspectral samples to
distinguish and categorize the tree species present in the area.

This study enhances previous efforts utilizing PLS-DA models for tree species classi-
fication [73]. Three remote sensing data sources were fused and preprocessed to prepare
for the PLS-DA model. Firstly, terrain features were derived using LiDAR. In contrast to
prior studies [74], where LiDAR data were employed to differentiate vegetation species,
the terrain features, such as DTM and DSM, were combined with aerial photographs to
identify the spatial distribution of significant features.

Secondly, a high-resolution orthophoto was utilized to extract and categorize more
vegetation classes based on the NDVI to enhance classification. OBIA was employed to
recognize and classify spatial features using LiDAR observations and multispectral aerial
photographs. This resulted in a group of homogeneous pixels classified into three major
categories: Buildup area, Vegetation, and Roads. Since Vegetation exhibits a diverse variety
but appears to have a similar NDVI value, the LiDAR elevation information, nDSM, assisted
in distinguishing four additional classes: Grass, Bushes, Young trees, and Mature trees.
Subsequently, hyperspectral samples were collected and utilized with the PLS-DA model
to differentiate between the identified tree species [52,53]. The primary intended benefit of
this OBIA procedure was to map various spatial features in the area and aid in geolocating
the mature trees, further classified into seven tree species using the PLS-DA model.

All the collected hyperspectral samples underwent PPTs before being integrated into
the PLS-DA model for training and testing. The study analysis demonstrated that when
subjected to preprocessing, spectral data were accurately classified with PLS-DA. The high-
est classification accuracy was attained through the application of specific preprocessing
steps, namely GSLW + SG2D + AS. Rozenstein et al. compared different preprocessing
transformations (PPTs) and found these three to be the most effective ones associated with
PLS-DA [51].

This study highlights the effectiveness of PLS-DA in accurately classifying tree-leaf
reflectance data. In the presented case study, two classifications were conducted. The
first aim was to map the vegetation in the area, further categorizing it into four classes:
Grass, Bushes, Young trees, and Mature trees. The second aim involved the optimal
application of PPTs to classify Mature tree species. In both instances, the classification
accuracy approached perfection. These findings underscore the importance of selecting
the appropriate PPT, as it can significantly enhance the accuracy of the classification
model when dealing with spectral data, particularly in scenarios where class separability
is minimal.

4.2. The Developed Framework Merits and Limitations

The methodology showcased in this study exhibited high performance in classifying
vegetation types. However, the presented decision rules may not prove as efficient in a
different, more complex environment with a greater variety of vegetation types and higher
structural density. For instance, local shrubs, being relatively small in this region, might
be inaccurately classified as trees in areas where they can grow higher than one meter.
Therefore, it is imperative to tailor the methodology to the specific characteristics of the
region of interest to ensure its optimal applicability.

This study revealed that the combination of GSLW + SG2D + AS was particularly ef-
fective in increasing the variance across tree species while reducing within-species variance.
These PPTs could prove suitable for applications requiring consistent spectral information
in the VIS-NIR-SWIR region. Although optimal preprocessing techniques may vary for
specific datasets, predicting a priori which strategy will be most effective poses a challenge.
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This paper elucidates the suitable PPTs for a specific dataset (leaf spectra, in the current
case). The same methodology can be applied to airborne or satellite hyperspectral data [75].

Creating a precise spectral model poses a significant challenge, and determining the
optimal preprocessing strategy is crucial for accurate classification. Parameters such as
spectrum variation across classes, noise effects, the total number of classes, and spectral res-
olution further influence classification accuracy. Environmental factors, including sunlight,
temperature, water content, humidity, and composition, impact leaf spectra, necessitating
standardized data preparation and assessment methods. Utilizing multiple PPTs may
be instrumental in developing a precise model, particularly when the input data exhibit
significant class separability [51]. PPTs might perform exceptionally well in achieving the
most accurate model when dealing with low spectral differences or a limited number of
samples for calibration. This complexity is heightened when transitioning from single-point
observations to hyperspectral image spectroscopy, introducing new challenges.

The tree canopy map facilitated locating the mature trees, which is crucial for sam-
pling and PLS-DA modeling through OBIA. However, the main challenge arose in species
classification due to insufficient feature information. Initially, the field-marked trees were
considered reliable ground-truth samples. Yet the primary difficulty arose from the vi-
sual similarity of leaves among some species. Hyperspectral sampling proved essen-
tial for effective discrimination in such instances. Combining LiDAR and hyperspectral
sensing was found to improve tree classification in a much-condensed environment [76].
Zhang et al. (2012) demonstrated the ability to use hyperspectral imaging only to classify
six urban tree species [77]. However, the examined trees had a much different morphology
from one another, which assisted in feature extraction.

The overall accuracy of the PLS-DA model reached an impressive 100%. However,
this high accuracy is expected when considering the measurement type—specifically, in
situ hyperspectral leaf measurements. Hyperspectral measurements encompass numerous
features, unlike the constrained information in airborne or satellite multispectral imagery.
Moreover, this method avoids atmospheric interference, distinguishing it from remotely
sensed reflectance. Nevertheless, there are significant testimonies of the ability to use
locally generated models using in situ measurements with remote sensing imagery, at least
for quantitative models [78,79].

4.3. Possible Contributions to Urban Vegetation Management and Ecological Services

The motivation behind developing such a classification framework is to enhance ur-
ban vegetation management, potentially replacing traditional, labor-intensive vegetation
surveys in the future [80]. Utilizing a similar framework based on remotely sensed obser-
vations can enable local municipalities to streamline survey procedures, saving human
resources. Knowing the specific vegetation species facilitates more efficient analysis of
remotely sensed observations, aiding in assessing their health status and enhancing urban
vegetation control.

Moreover, advanced, remotely sensed-based methods can benefit from this classifica-
tion framework for deeper insights. For instance, predictive methods for evapotranspiration
and photosynthesis achieve better accuracy when observing a known vegetation species.
Each species has unique transpiration and photosynthetic capacities [81,82], and employing
generic models might introduce significant biases. Generating species-specific models with
the aid of this classification framework is poised to reduce uncertainty levels.

Furthermore, the classification framework offers insights into understanding vegeta-
tion’s impact on UHI and urban air pollution. Cross-referencing the classified vegetation
maps with heat or air pollution maps helps discern the role of each vegetation type in
mitigating these issues [18,83]. Moreno et al. (2023) showed that there are tree species that
impact the UHI effect more significantly than others [83]. Some GIs reduce heat through
efficient transpiration and shading [9,82], while others excel at capturing air pollutants [21].
This knowledge empowers city planners to optimize the composition of urban GIs to create
more sustainable cities amid current climate uncertainties.
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5. Conclusions

In this study, OBIA was employed to delineate the spatial pattern distribution of a
neighborhood in Modi’in, Israel. The high-resolution orthophoto yielded more precise
spatial data, complemented by LiDAR, providing valuable terrain information and spatial
feature demarcations. OBIA facilitated the geolocation of mature trees and the mapping of
various spatial attributes in the area. The NDVI amplified the identification of vegetation
cover. Leveraging LiDAR elevation data, specifically the nDSM, allowed for a more detailed
sub-classification of vegetation. This study utilized a hyperspectral camera to measure
the spectra of seven distinct tree species, enabling their identification and categorization.
The results affirm the suitability of PLS-DA for highly accurate modeling of spectral
reflectance in tree leaves, with the combination of GSLW + SG2D + AS yielding the most
accurate results.

Identifying specific plant species enables the mapping and monitoring of their distri-
bution, offering a valuable tool for effective vegetation management in urban areas. This
classification framework not only aids in distinguishing vegetation species but also opens
avenues for utilizing various remote sensing applications to assess the ecological functions
of the vegetation, such as evapotranspiration and productivity estimations. Urban vegeta-
tion is crucial to enhancing the urban environment, yet human resource limitations often
constrain conventional monitoring practices. The development of remote sensing-based ap-
plications facilitates more efficient monitoring of vegetation, maximizing its contributions.
This advancement holds the potential to foster the creation of sustainable and people-
friendly cities. Future endeavors will involve tackling more challenging urban landscape
scenarios and incorporating time-lapse studies to effectively showcase the efficiency gains
in vegetation recording and mapping.
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