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Abstract: The accurate estimation of forest aboveground biomass is of great significance for forest
management and carbon balance monitoring. Remote sensing instruments have been widely applied
in forest parameters inversion with wide coverage and high spatiotemporal resolution. In this paper,
the capability of different remote-sensed imagery was investigated, including multispectral images
(GaoFen-6, Sentinel-2 and Landsat-8) and various SAR (Synthetic Aperture Radar) data (GaoFen-3,
Sentinel-1, ALOS-2), in aboveground forest biomass estimation. In particular, based on the forest
inventory data of Hangzhou in China, the Random Forest (RF), Convolutional Neural Network
(CNN) and Convolutional Neural Networks Long Short-Term Memory Networks (CNN-LSTM)
algorithms were deployed to construct the forest biomass estimation models, respectively. The
estimate accuracies were evaluated under the different configurations of images and methods. The
results show that for the SAR data, ALOS-2 has a higher biomass estimation accuracy than the
GaoFen-3 and Sentinel-1. Moreover, the GaoFen-6 data is slightly worse than Sentinel-2 and Landsat-
8 optical data in biomass estimation. In contrast with the single source, integrating multisource data
can effectively enhance accuracy, with improvements ranging from 5% to 10%. The CNN-LSTM
generally performs better than CNN and RF, regardless of the data used. The combination of CNN-
LSTM and multisource data provided the best results in this case and can achieve the maximum R2

value of up to 0.74. It was found that the majority of the biomass values in the study area in 2018
ranged from 60 to 90 Mg/ha, with an average value of 64.20 Mg/ha.

Keywords: forest aboveground biomass; deep learning; multisource remote sensing

1. Introduction

Zhejiang Province, China, with a 61.15% forest cover, ranks among China’s top five
highest percentages of forested areas. The subtropical monsoon climate over this region
leads to rich forest resources [1]. As the mainstay of terrestrial ecosystems, forests regulate
the regional ecological environment and play a crucial role in maintaining the Earth’s
carbon balance, with their carbon sequestration capacity accounting for 76–98% of that
of global vegetation. Any changes in the carbon stocks of forests could cause changes in
global atmospheric CO2 concentrations. A rapid, accurate and macroscopic understanding
of the spatial distribution of forest resources, biomass and carbon stock values is important
for supporting efforts to balance the Earth’s carbon cycle, purify the ecosystem and reduce
the rate of global warming [2].
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As a key measure of forest carbon stocks, forest biomass is a prominent measure of the
carbon sequestration capacity of forests and the basis for assessing the regional forest carbon
balance [3]. The use of field measurements is one of the most effective methods to measure
forest biomass with in situ data and anisotropic growth equation. It is more accurate to
combine this data with multiple inventory results for better modeling [4]. However, the
high cost and low coverage of this method limit its application on regional and global
scales. Remote sensing instruments are regarded as a good compensation as they can
provide consistent data sources with high frequency and global coverage at the multiscale.
In particular, extensive overviews have demonstrated the value of using optical and SAR
sensors to assess the damage to forests and to investigate the distribution, structure and
dynamics of forest resources [5,6]. The spectral information in relation to surface features
in optical image and electromagnetic information (e.g., slope, shape and surface roughness)
in SAR images suggest the combination of both datasets for forest parameter estimation,
although heterogeneous data may also introduce errors [7,8].

From the technical viewpoint, multiple linear regression is commonly utilized to
estimate biomass [9]. For example, Zheng et al. [10] extracted vegetation indices from
ETM images and added forest age information that is highly correlated with biomass to
determine the biomass threshold for each forest age category. The multiple linear regression
was deployed to estimate the biomass of pine and broadleaf forests with a validated R2

value of 0.67. However, linear regression cannot represent nonlinear relationships well.
Therefore, machine learning is introduced to enhance the estimation accuracy. Yue et al. [11]
used RADARSAT-2 fully polarimetric SAR, GF1-WFV multispectral data and the biomass
of winter wheat to construct a biomass estimation model for winter wheat using Random
Forest (RF), and the results revealed that the model that combined the correlation coefficient
analysis with the forest data had the higher accuracy. Zhou et al. [12] extracted 34 features
from Landsat-8 imagery, together with in situ data, to build a biomass estimation model
using Support Vector Machine (SVM) and evaluated the estimation accuracy of the model
using 32 samples, with an R2 of 0.5858 after setting the optimal parameters. Aguirre-
Salado et al. associated satellite-derived, climatic, and topographic predictor variables with
national forest inventory data to map biomass along the northern border of Mexico by
means of the K-Nearest Neighbor (KNN) [13]. Hong et al. [14] utilized airborne LiDAR
data, ground-based monitoring and optical remote sensing techniques to investigate the
Larix olgensis plantation in Heilongjiang Province and proposed a set of methods, namely
rapid, universal, multiscale (single tree, stand, management unit, and region), and unit-
high-precision continuous monitoring methods for forest biomass components. Singh
et al. [15] proposed a framework to monitor aboveground biomass (AGB) at finer scales
using open-source satellite data. The framework integrated four machine learning (ML)
techniques with field surveys and satellite data. The application of this framework is
exemplified in a case study of a dry deciduous tropical forest in India. The results revealed
that for wet season Sentinel-2 satellite data, the Random Forest (adjusted R2 = 0.91) and
Artificial Neural Network (adjusted R2 = 0.77) ML models were better suited for estimating
AGB in the study area. Thus, researchers tend to apply machine learning methods that
are used more frequently and with better results, such as RF and SVM. More advanced
machine learning approaches (e.g., gradient boosting and convolutional neural networks
(CNNs)) are still being underutilized. Subsequent studies need to increase the exploration
and application of new methodologies.

From the data viewpoint, researchers typically combine multiple optical and SAR
images from different sensors. Guerra-Hernández et al. [16] combined recent The Ice, Cloud,
and Land Elevation Satellite-2 (ICESat-2), Sentinel-1, Sentinel-2 and ALOS2/PALSAR2
data for extrapolation of AGB estimates and AGB mapping. Nandy et al. [17] integrated
ICESat-2 and Sentinel-1 data for mapping forest canopy height, and used RF methods to
apply forest canopy height and Sentinel-2 derived variables to map the spatial distribution
of AGB. Shendryk [18] proposed a machine learning method that fuses open access Global
Ecosystem Dynamics Investigation (GEDI), Sentinel-1, Sentinel-2, elevation and land cover
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data for large-area AGBD mapping, and the model performs well. Currently, the important
data source for many related studies is the Sentinel satellites, and researchers lack research
and application of data from other satellites, such as China’s Gaofen series of satellites.
Many researchers have concluded that the fusion of multisource remote sensing data can
lead to a more accurate prediction of aboveground forest biomass. Can the accuracy of
predictions be further improved by adding more sources of remote sensing data to the
study? This is a question worth exploring.

In the past five years, few studies have demonstrated that deep learning brings
a significant opportunity for predicting the forest parameters [19–21]. The estimation
accuracy benefits significantly from the capability of deep learning to extract invariant
and abstract features automatically from remote-sensed imagery. The trained learning
models are also likely to be generalized to other forest scenarios with similar characteristics.
However, the complexity of models and the data requirements (e.g., the availability of forest
inventory data) limit the application of deep learning algorithms on biomass estimation. It
is therefore important to assess the advantages and disadvantages of such algorithms on
specific datasets and scenes carefully [22].

To this end, in response to the current state of data and methods, this experiment
decided to use advanced machine learning methods and more diverse remote sensing
data. This paper aims to explore the potential of different remote-sensed imagery and
deep learning algorithms on forest aboveground biomass estimation. Particularly, various
remote-sensed data, including optical data (GaoFen-6, Sentinel-2 and Landsat-8) and
SAR data (GaoFen-3, Sentinel-1 and ALOS-2), together with three algorithms such as RF,
the Convolutional Neural Networks (CNNs) and Long Short-Term Memory Networks
(CNN-LSTMs), are used. We first select the feature variables from individual sources
by maximizing the correlation between remote-sensed data and in situ data. Then, the
aboveground biomass of the forest is estimated using different configurations of methods
and feature variables. The best one was finally selected to map the spatial distribution of
forests over the Lin’an district of Hangzhou, northwestern Zhejiang Province, China.

2. Materials and Methods
2.1. Study Area

The study area shown in Figure 1 is located in the Lin’an district of Hangzhou, in
northwestern Zhejiang Province, with a longitude of 118◦51′ to 119◦52′ east and a latitude
of 29◦56′ to 30◦23′ north. The area has a subtropical monsoon climate with four distinct sea-
sons, an annual average temperature of 16.4 ◦C, annual precipitation of 1500.0~1628.6 mm,
1847.3 annual sunshine hours and a frost-free period of 237 days. The area has an al-
titude of 60~120 m, low hills, and a large area of forest coverage; the region is rich in
species, and its main forest types include mixed coniferous forests and mixed broad-leaved
forests, with the broad-leaved forests, with the dominant species being horsetail pine,
fir, etc.

2.2. Data Collection and Processing
2.2.1. Field Data

The National Forest Resources Continuous Inventory is a forest resource survey that
aims to understand the quantity, quality, and patterns of growth. It is an important part of
the comprehensive monitoring of China’s forest resources. Forest resource inventory data
are the most exhaustive and exact data reflecting the forest resources in China. The main
survey contents include forest type, accumulation, growth, and harvesting data [23].

The ground data used in this study are from the ninth forest inventory in 2018, and all
sample plots in the Lin’an district were plotted in Figure 2 to select those with forestland
and uniform forest stands; those with agricultural land, construction land and other non-
forest land types and zero storage volume were excluded [24]. The study area is rich in
forest resources, and the dominant tree species in the screened sample plots mainly include
four species: fir, horsetail pine, hard broad and soft broad. The data include the location,
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date, origin and species composition. For each sample plot, the main investigation includes
diameter at breast height, tree height and species.
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The aboveground data in Figure 2 is used to calculate forest aboveground biomass. In
this paper, the aboveground biomass of individual standing trees was estimated by species
using the growth models and parameters for each tree species or species group that have
been documented (Table 1), and each dominant tree species was classified as one of four
species categories, according to the species distribution of the forest: fir (Cunninghamia
lanceolata (Lamb.) Hook., belonging to the Cupressaceae), horsetail pine (Pinus massoniana
Lamb., belonging to the Pinaceae), hard broad and soft broad. ArcGIS was used to calculate
the extremes and standard deviations at each sample site, and sample sites with high data
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dispersion and abnormal data were deleted. Finally, 160 sample sites were obtained, of
which 130 were used for modeling, and 30 were used for testing.

Table 1. Anisotropic growth equations for major tree species in the study area.

Tree Species Model Expressions and Parameters

Fir (Cunninghamia lanceolata (Lamb.) Hook.,
belonging to the Cupressaceae) W = 0.0492D2.660

Horsetail pine (Pinus massoniana Lamb.
belonging to the Pinaceae) W = 0.1309D2.4367

Hard broad W = 0.0710
(

D2H
)0.9117

Soft broad W = 0.1351
(

D2H
)0.8020

2.2.2. Optical and SAR Data Processing

Successfully launched on 2 June 2018 as China’s first precise agricultural observation
satellite, the Gaofen-6 (GF-6) satellite is mainly used for agriculture-related monitoring of
crop growth, soil conditions observations and forestry [25]. This satellite has eight-band
Complementary Metal Oxide Semiconductor (CMOS) detectors, and it is the first domestic
satellite to carry the red-edge band that can effectively monitor the growth of vegetation.
According to the timing and area of the ground data sampling, a GF-6 WFV image with a
spatial resolution of 16 m from 5 September 2018 was acquired.

Sentinel-2 is a multispectral high-resolution imaging satellite that is primarily used
to provide monitoring information for agricultural and forestry crops [26]. The Sentinel-2
wide-field, high-resolution multispectral imager (MSI) covers 13 spectral bands (443 nm–
2190 nm) with a width of 290 km, encompassing the visible, near-infrared and shortwave
infrared bands, with spatial resolutions of 10 m, 20 m and 60 m. Two Level-1C Sentinel-2
multispectral images acquired on 29 October and 10 November 2018 were selected.

The Landsat-8 satellite has a total of 11 bands, and the OLI Land Imager has nine bands
with an imaging width of 185 km. The range of the panchromatic band has been adjusted
compared to that of the Landsat-7 ETM sensor, with a narrower range to better distinguish
vegetation areas from other areas. Two images covering the study area were downloaded
from the USGS website, and the image information is shown in Table 2. The L1T product
is the data product obtained after radiometric correction and geometric refinement using
ground control points and digital elevation models.

Table 2. Information on the optical data used in the study.

Optical Data Data Identification Collection Time Product Level Spatial Resolution

GF-6 GF6_WFV_E118.4_N29.1_20180905_
L1A1119836975 2018.9.5 L1A 16 m

Sentinel-2

S2B_MSIL1C_20181029T024819_N0206_
R132_T50RPU_20181029T052535 2018.10.29 Level-1C visible: 10 m

near-infrared: 20 m
shortwave

infrared: 60 m
S2A_MSIL1C_20181110T023921_N0207_

R089_T50RQU_20181110T042743 2018.11.10 Level-1C

Landsat-8
LC08_L1TP_120039_20181028_20181115_01_T1 2018.11.15 L1T Bands 1–7, 9–11: 30 m

band 8: 15 mLC08_L1TP_119039_20180911_20180920_01_T1 2018.9.11 L1T

The Gaofen-3 satellite (GF-3) launched on 10 August 2016 is the first C-band multi-
polarimetric synthetic aperture radar satellite (SAR) in China with a resolution of 1 m
and 12 imaging modes [27,28]. A dual-polarization data with Stripmap mode acquired on
17 November 2018 was selected according to the test site and the timing of ground data
acquisition. Two dual-polarimetric Sentinel-1 images were obtained in interferometric wide
(IW) imaging mode, with imaging dates of 1 October and 13 October 2018, as shown in
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Table 3. The L-band ALOS-2 SAR image acquired on 8 November 2018 with the Fine Beam
Dual Polarization (FBD) mode was selected.

Table 3. SAR data parameters used in the study.

Image Type Acquisition
Time

Product
Level Band Polarization Spatial Resolution

GF-3 17 November
2018 L1A C band HH + HV 1 m

Sentinel-1 1 October 2018
13 October 2018 Level-1 C band VV + VH IW: 5 × 20 m

ALOS-2
PALSAR-2

25 October 2018
8 November 2018 Level 1.5 L band HH + HV

Spotlight: 1–3 m
Stripmap: 3–10 m

ScanSAR: 25–100 m

During SAR data pre-processing, radiometric terrain correction and calibration were
carried out for all SAR images, followed by co-registering to the SRTM digital elevation
model (DEM) and geocoding into the geographic coordinate system (EPSG: 4326) by
using the ESA open-source software SNAP 9.0.0. Adaptive Lee filtering was deployed
to eliminate the speckle nature in SAR images. The polarization decomposition provides
a reasonable physical explanation of the scattering mechanism of the target, while the
incoherent polarization target decomposition can extract the scattering characteristics of
the feature more effectively according to different scattering mechanisms [29]. Because the
SAR data used in this study were all in dual-polarization mode, a dual-polarization Cloude
decomposition was used to extract the polarization decomposition parameters, including
entropy, anisotropy and the mean scattering angle.

For multispectral images, the meridian convergence angle (angle of true north and
coordinate north) was calculated for each pixel, and the UTM projection was transformed
into latitude and longitude coordinates. Before analyzing the optical images, all required
atmospheric corrections. ENVI (The Environment for Visualizing Images) is a complete
remote sensing image processing platform with better Flaash atmospheric correction. All
images were atmospherically corrected using the FLAASH tool of ENVI 5.3.

2.3. Characteristic Variable Selection

Multispectral images contain band information, vegetation indices and other physical
variables [30]; SAR images provide backward scattering features, interference information
and polarization decomposition features [31,32]. Several features related to aboveground
biomass were extracted, including the Normalized Difference Vegetation Index (NDVI),
Difference Vegetation Index (DVI), Green Normalized Difference Vegetation (GNDV),
Ratio Vegetation Index (RVI) and statistics. On the other hand, texture information and
polarization decomposition features in SAR images were also extracted. The details of the
feature are shown in Tables 4–6.

Table 4. Extraction of waveform information and vegetation indices from multispectral images.

Variable Type Name Description

Band Information
GF-6 B1, 2, 3, 4, 5, 6

Sentinel-2 B2, 3, 4, 5, 6, 7, 8, 8a, 11, 12
Landsat-8 B2, 3, 4, 5, 6, 7

Vegetation Index

NDVI NDVI = (NIR − R)/(NIR + R)
DVI DVI = NIR −R

GNDV GNDV = (NIR − G)/(NIR + G)
RVI RVI = NIR/R
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Table 5. Extraction of texture feature variables from multispectral images.

Number Texture Feature Name Introduction to the Formula

1 Mean ∑
i

∑
j

i × mij

2 Variance ∑
i

∑
j

mij ×
(

i − Mean)2

3 Entropy −∑
i

∑
j

mijlg
(

mij

)
4 Contrast ∑

i
∑
j

(
i − j)2mij

5 Homogeneity ∑
i

∑
j

mij

1+(i−j)2

6 Dissimilarity ∑
i

∑
j

∣∣∣i − j
∣∣∣mij

7 Correlation ∑i ∑j ijmij−µxµy

σxσy

8 Second Moment ∑
i

∑
j

(
mij)

2

Table 6. Predictors extracted based on SAR data.

Image Data Source Feature Type Remote Sensing Predictors

GF-3,
Sentinel-1,
ALOS-2

Backward scattering
coefficient

GF-3, ALOS-2 HH, HV

Sentinel-1 VV, VH

Texture features Mean, Variance, Entropy, Contrast, Homogeneity,
Dissimilarity, Correlation, Second Moment

Polarization
decomposition

features
H, A, α

2.4. Experimental Models

The flowchart of the research for this article is shown in Figure 3.

2.4.1. Random Forest

Random Forest (RF) is an algorithm that produces multiple trees by random sampling
and classifies them as one kind of forest. The random component refers to building the
model using random sampling, and the forest represents an integrated forest produced by
mutually independent decision trees [33]. The simplest principle behind the RF model is
the random selection of n training datasets from the initial data, followed by the random
selection of k features from every training set. Then, decision trees are built using these
k features. Each decision tree generates and saves a prediction. Finally, the classification
models are ranked based on each prediction, and the highest-ranked model is used as the
final choice. We used an ensemble of bagged decision trees in MATLAB to produce the
RF model. In the preparation process, the number of decision trees (n) and the number of
variables selected in advance by the tree nodes of each decision tree (m) are set as 500 and 5
to minimize errors.

2.4.2. Convolutional Neural Network (CNN)

The convolutional neural organization consists of the convolutional layer, pooling
layer and fully connected layer. The number of these parts is not fixed. The reason for
utilizing convolutional operations is to discover and extract features in the input. The
convolutional layer may only be able to extract such basic features as corners and edges.
Still, the network layer can traverse these basic features so that some more complex features
can be extracted. The role of the pooling layer is to subsample the feature maps created
by the convolutional layer as a result of learning. The convolutional layer, activation layer
and pooling layer can be seen as the feature learning/feature extraction layer of the CNN,



Remote Sens. 2024, 16, 1074 8 of 20

while the fully connected layer is the final application of the learned features (feature map)
to the model task.
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2.4.3. CNN-LSTM

CNN-LSTM is a hybrid neural network model based on CNN and LSTM (Long Short-
Term Memory). Combining CNN and LSTM is one of the more widespread approaches in
deep learning [34]. The unique convolutional kernel pooling operation of CNN can mine
abstract features among data and better extract high-dimensional features, and the LSTM
network has strong memory that works better for serialized data extraction.

Based on the features and advantages of the two models for data processing, a com-
posite of the two networks is considered in Figure 4 using CNN as an encoder to extract
local features of the data and build up a complete feature vector and LSTM as a decoder to
obtain the correlation between the data through the memory unit to obtain the prediction
value of the model.
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2.5. Model Accuracy Assessment

The model results in this study were evaluated using several indicators: pseudo
R-squared (pseudo-R2), root mean square error (RMSE), relative root mean square error
(rRMSE), Bias and rBias. Equations for the formulation of each of the indicators can be
expressed as follows:

pseudo R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − yi)

2 (1)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (2)

rRMSE =
RMSE

y
·100 (3)

Bias =
1
n

n

∑
i=1

(ŷi − yi) (4)

rBias =
Bias

y
·100 (5)

where yi is the actual biomass value, ŷi is the predicted biomass value and yi is the average
of the actual measured biomass.

3. Results
3.1. Predicted Variables

In Section 2.3, the backscatter coefficients of the two polarization methods were ex-
tracted based on GF-3, Sentinel-1 and ALOS-2 radar images, eight texture feature factors
were extracted for each polarization method, and the H/A/α dual polarization decomposi-
tion parameters were obtained. Twenty-one features were separately extracted for each
SAR dataset. Table 7 shows the Pearson correlation coefficients of the remotely sensed fea-
tures and biomass calculated based on GF-3, Sentinel-1 and ALOS-2 radar data to provide
support for the feature selection.

Based on the correlation analysis, we collected the features with higher correlation
for each SAR data, as shown in Table 8. The backscatter coefficients and texture features
of the L-band ALOS-2 data were more important for biomass inversion than those of the
C-band radar data. The cross-polarized backscatter coefficients, such as HV and VH, had a
greater degree of influence than did the co-polarized ones. Since cross-polarization is more
sensitive to vegetation moisture, canopy roughness, volume scattering of standing trees
and vertical structure, it has a greater potential for forest biomass inversion [35]. The sensi-
tivity to forest biomass after texture analysis was improved compared to both backscatter
coefficients, as texture analysis reduces the stochastic heterogeneity of backscatter and
improves the correlation with forest biomass [36]. Due to the physical significance of the
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decomposition parameters, the dual-polarization decomposition parameters showed the
highest correlation with biomass.

To assess the performance of GF-6, Sentinel-2 and Landsat-8 optical images, band
information, vegetation indices, texture features and principal components were considered.
Nineteen feature variables were extracted for each dataset.

Table 7. Pearson’s correlation coefficients for characteristic variables and biomass for GF-3, Sentinel-1
and ALOS-2 data.

Image Category Variables
Pearson’s

Correlation
Coefficient

Variables
Pearson’s

Correlation
Coefficient

GF-3

Backward
scattering
coefficient

HH 0.069 HV 0.074

Texture feature
factor

HH_Mean 0.051 HV_Mean 0.107
HH_Variance 0.052 HV_Variance 0.107
HH_Entropy 0.065 HV_Entropy 0.107
HH_Contrast 0.067 HV_Contrast 0.048

HH_Homogeneity −0.058 HV_Homogeneity −0.098
HH_Dissimilarity 0.066 HV_Dissimilarity 0.107
HH_Correlation 0.029 HV_Correlation −0.064

HH_Second moment −0.032 HV_Second moment −0.127

Polarization
decomposition

parameter

H 0.271 A −0.258

α 0.246

Sentinel-1

Backscattering
coefficient VV −0.002 VH 0.062

Texture
characteristic

factor

VV_Mean −0.028 VH_Mean −0.037
VV_Variance −0.039 VH_Variance −0.083
VV_Entropy −0.013 VH_Entropy −0.013
VV_Contrast 0.32 VH_Contrast −0.079

VV_Homogeneity −0.013 VH_Homogeneity −0.029
VV_Dissimilarity 0.021 VH_Dissimilarity −0.006
VV_Correlation −0.077 VH_Correlation −0.037

VV_Second moment 0.019 VH_Second moment −0.017

Polarization
decomposition

parameter

H 0.241 A −0.238

α 0.226

ALOS-2
PALSAR-2

Backscattering
coefficient HH −0.024 HV 0.079

Texture factor

HH_Mean −0.017 HV_Mean 0.082
HH_Variance −0.005 HV_Variance −0.034
HH_Entropy −0.013 HV_Entropy −0.077
HH_Contrast −0.005 HV_Contrast 0.015

HH_Homogeneity −0.013 HV_Homogeneity 0.040
HH_Dissimilarity −0.004 HV_Dissimilarity −0.007
HH_Correlation −0.045 HV_Correlation 0.006

HH_Second moment 0.031 HV_Second moment 0.053

Polarization
decomposition

parameter

H 0.312 A −0.319

α 0.235
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Table 8. Screening results for biomass predictors based on GF-3, Sentinel-1 and ALOS-2 data.

Image Selection of Characteristic Variables

GF-3 HH_dB, HV_dB, HH_Contrast, H
Sentinel-1 VH_dB, VH_Contrast, VH_Variance, A

ALOS-2 PALSAR-2 HV_dB, HV_Entropy, HV_Mean, H

Table 9 shows the Pearson correlation coefficients of features and biomass to provide
optical data support for feature selection. The feature variables with higher correlation in
individual sensors were collected, as shown in Table 10.

Table 9. Pearson’s correlation coefficients for characteristic variables and biomass for GF-6, Sentinel-2
and Landsat-8 data.

Image Category Feature Variable
Pearson’s

Correlation
Coefficient

Feature Variable
Pearson’s

Correlation
Coefficient

GF-6

Band information
B1 0.080 B2 0.036
B3 0.020 B4 −0.131
B5 −0.118 B6 −0.092

Vegetation index NDVI 0.091 DVI −0.128
GNDV 0.01 RVI 0.206

Texture factors

Mean 0.084 Variance 0.141
Entropy −0.048 Contrast 0.122

Homogeneity 0.006 Dissimilarity 0.041
Correlation 0.069 Second moment 0.083

Principal component
analysis

PCA1 0.090 PCA2 0.066
PCA3 0.343

Sentinel-2

Band information

B2 −0.291 B3 −0.332
B4 −0.374 B5 −0.377
B6 −0.225 B7 −0.12
B8 −0.157 B8a −0.138

B11 −0.330 B12 −0.422

Vegetation index NDVI 0.282 DVI 0.075
GNDV 0.117 RVI 0.249

Texture factors

Mean −0.405 Variance −0.111
Entropy −0.216 Contrast −0.180

Homogeneity Dissimilarity −0.182
Correlation −0.136 Second moment 0.155

Principal component
analysis

PCA1 −0.275 PCA2 −0.368
PCA3 0.420

Landsat-8

Band information
B2 −0.273 B3 −0.402
B4 −0.472 B5 −0.173
B6 B7 −0.464

Vegetation index NDVI 0.273 DVI −0.028
GNDV 0.273 RVI 0.396

Texture factors

Mean −0.348 Variance −0.260
Entropy −0.398 Contrast −0.211

Homogeneity 0.360 Dissimilarity −0.324
Correlation 0.064 Second moment 0.374

Principal component
analysis

PCA1 −0.381 PCA2 −0.371
PCA3 −0.406
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Table 10. Screening results for biomass predictors based on GF-6, Sentinel-2 and Landsat-8 data.

Image Selection of Characteristic Variables

GF-6 B4, B5, B6, Contrast, Variance, RVI, GNDV, PCA3
Sentinel-2 B3, B4, B5, B12, Entropy, Mean, NDVI, PCA3
Landsat-8 B3, B4, B7, Second, Entropy, NDVI, RVI, PCA3

During the correlation analysis, we found that the red-edge band, vegetation indexes
and principal components dominated the correlation. In particular, the band information
and vegetation index showed generally higher correlations with biomass compared to the
texture features.

3.2. Model Test Results

The backscatter coefficients, texture feature and polarization decomposition parame-
ters of the three SAR datasets were retained. The forest aboveground biomass was estimated
based on RF, CNN and CNN-LSTM, respectively.

Of the inverse biomass from the three SAR images in Table 11, the biomass estimation
from the ALOS-2 image had a higher R2 value and the lowest RMSE; the results from the
GF-3 image had the second-best accuracy, and the results from the Sentinel-1 image had the
lowest accuracy in all methods. As stated in previous studies, the L-band is more sensitive
to forest biomass inversion than the C-band because the wavelength is proportional to
the penetration of radar to the forest canopy [37,38]. The short wavelength of the C-band
cannot penetrate the dense canopy and basically reacts with the canopy, while the longer
wavelength of the L-band can penetrate the vegetation canopy and obtain more vertical
information. The better spatial resolutions of the GF-3 and ALOS-2 data may be the other
crucial factor that affects the estimate accuracy.

Table 11. Results of forest biomass estimation based on GF-3, Sentinel-1 and ALOS-2 data.

Remote Sensing Data Estimation Methods RMSE R2

GF-3
RF 32.9378 0.4088

CNN 36.5828 0.3073
CNN-LSTM 31.5704 0.4355

Sentinel-1
RF 32.9558 0.4058

CNN 35.0048 0.2933
CNN-LSTM 32.7193 0.4184

ALOS-2
RF 34.5347 0.3025

CNN 31.8198 0.4124
CNN-LSTM 31.7333 0.4285

Comparing the different estimation methods, the composite model (CNN-LSTM)
performed best, and the CNN model also performed better in inverting the deep learning
models. Overall, the two deep learning algorithms examined in the paper had better
inversion results compared to the machine learning models. Scatter plots of the prediction
results for different methods are shown in Figure 5, in which the RF worked well in this
case, probably because RF yields an importance ranking of the factors that provides a
better underlying nonparametric model. The composite CNN-LSTM model used the CNN
network to obtain deep information about the data and to mine the characteristics of
the data, while the LSTM network had a strong memory for obtaining data associations,
fully integrating the advantages of both networks in prediction and improving biomass
inversion accuracy.
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As shown in Figure 6, of the inversion biomass values among the three types of optical
images, the biomass estimation results of the Landsat-8 images had relatively high R2 and
low RMSE values, with the highest estimation accuracy. The Sentinel-2 images had the
second-highest accuracy, and the GF-6 images produced the lowest accuracy estimates.

The results demonstrate the better performance of the composite model (CNN-LSTM),
which combines the advantages of both networks, using the unique convolution operation
of the CNN network to obtain features from the data and LSTM to obtain the data asso-
ciations, thus improving the model estimation accuracy. Overall, the two deep learning
algorithms had better inversion results compared to the machine learning model.
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Figure 6. Scatter plot of biomass prediction results from the RF, CNN-LSTM and CNN algorithms
based on multispectral data. The horizontal coordinates indicate the observed biomass values, the
vertical coordinates are the predicted values, the dashed black line is the 1:1 straight line, and the red
line is the fitted line.

3.3. Mapping Spatial Distribution of Forest

There is a nonlinear relationship between forest biomass and remote sensing fea-
ture variables. Optical instruments can provide finer vegetation spectral spectrums, and
SAR sensors are sensitive to structural and electromagnetic information related to slope,
shape and surface roughness [39]. By combining optical and radar images, the advantages
of each image can be fully explored to achieve data complementarity, thus enhancing
the accuracy of the inversion of forest biomass. Considering that data redundancy re-
duces the accuracy of model inversion, the joint active-passive remote sensing inversion
of forest biomass needs to select variables with high correlations with biomass and to
fully utilize the individual strong points of different data. To do this, the variables in
Table 12 were used.
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Table 12. Results of the screening of biomass predictors from combined multisource remote sens-
ing data.

Image Selection of Feature Variables

GF-3 HV_dB, HH_Contrast, H
Sentinel-1 VH_dB, VH_Variance, A

ALOS-2 PALSAR-2 HV_dB, HV_Mean, H
GF-6 B5, Variance, RVI, PCA3

Sentinel-2 Mean, B12, B5, PCA3
Landsat-8 B4, Entropy, RVI, PCA3

Figure 7 shows the biomass inversion based on different models and data classes.
Compared with the single dataset, the combination of SAR and optical images generally
significantly improves estimation accuracy and model fit, regardless of the methods used.
The R2 of the CNN-LSTM prediction from the multisource data reached 0.7405, and the
RMSE reached 26.4314 Mg/ha, indicating the advantage of applying a combined dataset.
Second, for the estimation results of the three synergistic optical datasets, the CNN-LSTM
model estimated an R2 value of up to 0.7289 and an RMSE of up to 26.9166 Mg/ha. Finally,
the inversion results based on SAR datasets and the CNN-LSTM resulted in an R2 of 0.5882
and an RMSE of 30.0384 Mg/ha. The combination of the SAR data did not significantly
improve the biomass estimation accuracy, probably because the contrast of SAR features
was relatively low [8].

The composite algorithm (CNN-LSTM) had a better accuracy regardless of the combi-
nation of multisource data, showing a good-fitting trend to the data. The deep learning
estimation results with CNN-LSTM outperformed the RF approach, indicating that com-
bining multisource data with deep learning is feasible for predicting forest biomass.

Considering the best performance of the CNN-LSTM model and multisource datasets,
we further developed a biomass estimation model with in situ data. In Figure 8, the spatial
distribution of forest biomass was mapped, and the majority of the biomass values in the
study area in 2018 ranged from 60 to 90 Mg/ha, with an average value of 64.20 Mg/ha.
The low-value areas of biomass were mainly concentrated in the more densely populated
eastern and northern regions, while the high-value areas of biomass were mainly located
in the sparsely populated remote forest areas and the western regions far from the towns,
with a relatively scattered distribution.
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4. Discussion

This study explored the potential of multiple remotely sensed images and deep learn-
ing algorithms for forest aboveground biomass estimation. In addition to using data from
the more popular Sentinel series satellites, Landsat-8, ALOS-2, etc., the experiment also
incorporates data from the seldom-used Chinese Gaofen series satellites. The experiment
also uses the newly popular advanced CNN-LSTM method. To our surprise, the results
from the Gaofen series satellites are very beautiful. This experiment demonstrated the great
potential of China’s Gaofen series of satellites to assess the aboveground biomass of forests.
In addition, this work achieved good results with a small number of samples by integrating
multisource remote sensing data and using the CNN-LSTM method.

4.1. Variable Selection

As involving too many remotely sensed features in modeling can cause information
redundancy, correlation analysis between feature variables and forest biomass is needed,
and feature variables with strong correlations with biomass are screened. In this paper,
the Pearson correlation coefficient method was utilized to perform correlation analysis.
Among the feature variables obtained based on C-band GF-3, Sentinel-1 and L-band ALOS-
2 data, the dual-polarization decomposition parameters had the highest sensitivity to
forest biomass, followed by the texture feature of backscatter and the backscatter coeffi-
cient. The backscatter coefficient and texture feature of the L-band ALOS-2 were more
sensitive to biomass than those of the C-band due to the penetration capability of L-band
wavelengths. Among the features of the optical images, the red-edge band, vegetation
index and principal components were strongly correlated with biomass, and the band
information and vegetation index were overall more correlated with forest biomass than
were the texture features. The main reason for the significant quantitative and correlation
advantages over the feature variables of the radar data may be the finer spatial texture
information of the high-resolution imagery, while the vegetation red-edge band is very
favorable for monitoring plant growth conditions on the ground.

4.2. Comparison of Different Sensors

In Figure 5, the results of the SAR datasets demonstrated that the biomass estimate
accuracy of ALOS-2 in the L-band was slightly greater than that of GF-3 and Sentinel-
1 in the C-band. This difference was mainly attributed to the penetration and spatial
resolution. The L-band can obtain more vertical information due to its capacity to penetrate
the crown. The finer spatial resolution, on the other hand, provides more detail and,
therefore, has a positive effect. Meanwhile, the aboveground biomass estimation accuracies
of Gaofen-3 and Sentinel-1 performed similarly under each model, and even Gaofen-3
slightly outperformed Sentinel-1. However, in Figure 7a–c, it is worth noting that the
combination of the three sources of radar data did not significantly improve the accuracy of
aboveground biomass estimation. The model with the highest accuracy is the CNN-LSTM
model—the R2 was 0.5882, and the RMSE was 30.0384. This result has a large gap with
the aboveground biomass estimation results obtained from the combination of the three
optical data. This gap may occur because of the lower biomass saturation point of the radar
characterization factor.

In Figure 6, comparing the accuracy of aboveground biomass estimation results from
optical data, the performance of Gaofen-6 is relatively mediocre. The accuracy of Landsat-
8 is the best, with high R2 and low RMSE in both the RF and CNN-LSTM models. In
Figure 7d–f, in the CNN-LSTM model, the combination of the three optical data achieves
the best among optical data results; the R2 was 0.7289, and the RMSE was 26.9166.

In Figure 7g–i, the accuracy of aboveground biomass estimated by fusing all optical
and radar data is basically higher than the accuracy of aboveground biomass obtained
from a single data. Among the results, the CNN-LSTM model estimation has the highest
accuracy among the 27 results; the R2 was 0.7405, and the RMSE was 26.4314. In addition,
among the results of the CNN model, the precision of the results of the fused multisource
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remote sensing data was higher than the precision of the other data that also used the
CNN model. In the RF model, the accuracy of the results of fused multisource remote
sensing data was only lower than that of Landsat-8 data. This fully demonstrates the
advantage of fused multisource remote sensing data in estimating the accuracy of above-
ground biomass. It also demonstrates the potential of China’s Gaofen series of satellites in
estimating aboveground biomass.

4.3. Model Comparison

We deployed three methods, i.e., RF, CNN and CNN-LSTM, to estimate forest above-
ground biomass. Deep learning methods generally perform better than machine learning
methods. Particularly, CNN-LSTM combines the advantages of both the CNN and LSTM
algorithms, showing the best ability to fit complex relationships and reduce the misesti-
mation of biomass. In the results of estimating forest aboveground biomass using nine
types of data separately, the CNN-LSTM model achieved the best results in eight types of
data, and the accuracies were all better than those of the RF model and the CNN model.
Therefore, the potential of CNN-LSTM in estimating aboveground biomass is very great
and deserves follow-up research.

It should also be noted that the models constructed on the basis of different data and
methods generally have the phenomena of high underestimation and low overestimation.
As shown in Figures 5–7, when the measured forest aboveground biomass is greater than
80 Mg/ha, the aboveground biomass predicted by the model has a large difference from the
measured value and is smaller than the measured value, which is a high underestimation.
On the contrary, when the measured forest biomass is less than 30 Mg/ha, the aboveground
biomass predicted by the model is generally larger than the measured value, which is the
low-value overestimation. When the aboveground biomass was measured, it was in the
range of 30–80 Mg/ha, and there was less variation in the results of the various model
estimates. This may be because in areas with low aboveground biomass, the vegetation
cover is lower, and the surface is more exposed. More surface information is included in
the information recorded by remote sensing images, which results in a mixing of image
pixels and produces a low-value overestimation. In areas with high aboveground biomass,
the vegetation cover is higher. When the pixel information is recorded, the remote sensing
image tends to be saturated with information, which makes it impossible to estimate
excessive aboveground biomass, thus resulting in the phenomenon of underestimation of
high values.

5. Conclusions

In this paper, remote sensing modeling estimation of forest aboveground biomass was
carried out based on multisource remote sensing data, including mainstream multispectral
images (GF-6, Sentinel-2 and Landsat-8) and various SAR data (GF-3, Sentinel-1, ALOS-2
PALSAR-2) in China and abroad. Remote sensing features were extracted, and the Pearson
correlation coefficient method was used to select the modeling factors. Forest biomass
estimation models were constructed according to various machine learning and deep
learning methods, and the estimation accuracies of the different models were compared and
evaluated. The results revealed that for the SAR dataset, the biomass estimate accuracy of
the L-band ALOS-2 data was higher than that of the GF-3 and Sentinel-1 data in the C-band.
Comparing the biomass estimation modeling results of different optical data, the CNN-
LSTM model combined the advantages of both the CNN and LSTM algorithms and showed
a better ability to fit complicated relationships. Integrating data from different sources
to estimate biomass can fully take advantage of these characteristics, complementing the
advantages of individual sensors and thus improving the accuracy of the models.
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