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Abstract: Dynamic monitoring of cropland using high spatial resolution remote sensing images is a
powerful means to protect cropland resources. However, when a change detection method based
on a convolutional neural network employs a large number of convolution and pooling operations
to mine the deep features of cropland, the accumulation of irrelevant features and the loss of key
features will lead to poor detection results. To effectively solve this problem, a novel cropland change
detection network (CroplandCDNet) is proposed in this paper; this network combines an adaptive
receptive field and multiscale feature transmission fusion to achieve accurate detection of cropland
change information. CroplandCDNet first effectively extracts the multiscale features of cropland
from bitemporal remote sensing images through the feature extraction module and subsequently
embeds the receptive field adaptive SK attention (SKA) module to emphasize cropland change.
Moreover, the SKA module effectively uses spatial context information for the dynamic adjustment
of the convolution kernel size of cropland features at different scales. Finally, multiscale features
and difference features are transmitted and fused layer by layer to obtain the content of cropland
change. In the experiments, the proposed method is compared with six advanced change detection
methods using the cropland change detection dataset (CLCD). The experimental results show that
CroplandCDNet achieves the best F1 and OA at 76.04% and 94.47%, respectively. Its precision and
recall are second best of all models at 76.46% and 75.63%, respectively. Moreover, a generalization
experiment was carried out using the Jilin-1 dataset, which effectively verified the reliability of
CroplandCDNet in cropland change detection.

Keywords: cropland change detection; high spatial resolution remote sensing images; adaptive
receptive field; deep learning; attention mechanism

1. Introduction

As the basis of food production, cropland quality is an important factor for ensuring
food security. At present, cropland protection is facing extremely serious problems, such
as “non-agriculturalization” [1], overdevelopment of cropland and pollution, resulting in
a sharp decline in the quantity and quality of cropland. To effectively protect cropland
resources, it is necessary to comprehensively and accurately measure real-time changes
in cropland. With the advantages of periodicity, large-scale synchronous observation and
rich detailed information from high spatial resolution remote sensing Earth observation
technology have been widely used in dynamic monitoring of croplands [2]. By utilizing
multitemporal high spatial resolution remote sensing images, cropland can be regularly
and precisely monitored, enabling timely and accurate detection of cropland changes. It is
crucially important for the preservation of cropland resources, effective natural resource
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management, and social development. The existing cropland change detection methods
mainly include traditional methods and methods based on deep learning.

(1) Traditional methods of cropland change detection mainly include two categories:
statistical analysis methods based on pixels [3,4] and post-classification comparison
methods based on machine learning. Statistical analysis methods based on pixels
mainly use medium and low spatial resolution remote sensing images as the data
source, apply the simple algebraic operations to the corresponding band of multitem-
poral remote sensing images, and obtain difference map; subsequently, an adaptive or
manually determined threshold is used for segmentation to obtain the final change
detection result [5]. However, the accuracy of these methods is largely limited by
the threshold, and it is difficult to meet the needs of fine cropland change extrac-
tion. Given the widespread utilization of machine learning techniques in remote
sensing image classification, employing post-classification comparison methods can
significantly enhance the accuracy of cropland change detection [6]. Various ma-
chine learning methods, including support vector machine (SVM) [7], decision tree
(DT) [8], random forest (RF) [9,10], maximum likelihood method [11], and artificial
neural networks [12], have been employed for this purpose. However, the utilization
of post-classification comparison methods often leads to accumulated errors [13],
thereby impacting the accuracy of change detection [5,14]. Additionally, the manual
construction of features required by machine learning methods poses limitations on
their applicability in cropland change detection.

(2) Methods based on deep learning. With their good self-learning ability for features,
deep learning methods have been widely used in the field of cropland change detec-
tion. The development of cropland change detection methods based on deep learning
has been closely related to improvements in the quality and quantity of remote sens-
ing data and computer computing abilities. Among them, network models based
on convolution neural networks (CNNs) have shown good performance in terms of
cropland change detection. Bhattad et al. [15] used a UNet-based encoder to extract
parameters and features of cropland from remote sensing images, employing the
decoder to accurately locate cropland changes. Some CNN-based methods perform
well in detecting other ground objects [16–18]. Bai et al. [19] integrated discriminative
information and edge structure prior information into a single CNN framework to
improve the results of change detection. Additionally, to enhance the performance
of change detection networks, an increasing number of scholars have begun adding
attention modules to these networks [20,21]. Xu et al. [22] and Zhang et al. [23] used a
cross-attention module and multilevel change-aware deformable attention module to
improve the detection performance, respectively. Although the CNN has good feature
extraction ability overall, its ability to extract features is proportional to the number
of layers in its own network, and the number of layers in the network determines the
operation speed of the network. Therefore, a convolution neural network with more
layers takes a long time in the task of accessing large datasets. Different from CNNs,
transformers can obtain global dependencies in computations because of the special
self-attention mechanism in their network. Moreover, transformer allows elements
at each location to calculate attention weights in parallel during network training,
so it is more efficient than CNN training in some tasks [24]. Liu et al. [25] proposed
a multiscale context aggregation module based on a transformer that can encode
and decode multiscale context information and realize the modeling and fusion of
cropland multiscale information in remote sensing images. Wu et al. [26] applied a
transformer-based union attention module to the decoding layer to extract global and
local context information and maintain the rich spatial details of croplands in remote
sensing images. In addition, the advantages of combining CNNs and transformers
have been demonstrated in the field of change detection to effectively improve net-
work detection performance [27,28]. Moreover, a generative adversarial network is
used to perform data augmentation on change detection samples, reducing the depen-
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dence of deep learning change detection methods on large labeled datasets [29,30].
The above research provides a good basis for the construction of cropland change
detection networks. In recent years, significant progress has been made in cropland
change detection based on deep learning, but the following challenges still exist: (1) At
present, to obtain the deep features of cropland in remote sensing images, mainstream
cropland change detection networks based on CNNs often use a large number of con-
volution and pooling operations, and the accumulation of irrelevant features affects
the detection accuracy in the process of mining deeper features. (2) Although the
method combining CNN and a transformer compensates for the limitations of the
small receptive field of CNNs, it has difficulty fully capturing multiscale features and
making effective use of spatial context information when the convolution kernel size
is fixed.

To effectively solve the above problems, a cropland change detection network (Crop-
landCDNet) based on an adaptive receptive field and multiscale feature transmission fusion
is proposed in this paper. First, CroplandCDNet extracts the multiscale features of cropland
from the bitemporal remote sensing images using the pretrained feature extraction module.
Subsequently, the change detection module transmits the bitemporal remote sensing images
layer by layer through two parallel feature transmission layers, thereby retaining the deep
semantic and shallow features of the images. Finally, the multiscale features and differential
features of the bitemporal remote sensing images are fused layer by layer to obtain the
change results. An SK attention (SKA) module [31] with a variable convolution kernel
is added to the parallel feature transmission layer to emphasize the change features of
cropland and suppress the transmission of irrelevant information. The main contributions
of this paper are as follows:

(1) A novel CroplandCDNet is proposed that combines an adaptive receptive field and
multiscale feature transmission fusion module. CroplandCDNet maximize the use
of the deep features of bitemporal remote sensing images, and the cropland change
results are effectively output.

(2) The adaptive attention module of the receptive field is introduced into the feature
transmission layer. This module enhances the representation of useful feature channels
and effectively extracts cropland change information while suppressing irrelevant
information. In addition, the module dynamically adjusts the size of the convolution
kernel according to the multiscale features of the cropland so that the network can
effectively use the spatial context information of the cropland in remote sensing
images and improve the accuracy of detection.

(3) Six advanced change detection networks were used to conduct comparative experi-
ments on the cropland change detection dataset (CLCD). Furthermore, the generaliza-
tion experiments were carried out with the Jilin-1 cropland change detection dataset.
The results show that the CroplandCDNet is optimally comprehensive.

The remainder of this paper is organized as follows: Section 2 describes the structure
and principle of the proposed method. Section 3 describes the experiment, which introduces
the parameter settings and experimental results in detail. Section 4 describes the ablation
experiment and generalization analysis. Finally, the conclusion is given in Section 5.

2. Methodology

Detecting complex changes using shallow features of cropland is extremely difficult
because a large number of convolution and pooling operations lead to the accumulation
of irrelevant features and the loss of information when mining deep features. Inspired
by the network DSIFN [32], this paper designs the CroplandCDNet for cropland change
detection. CroplandCDNet uses a feature extractor similar to a deeply supervised image
fusion network (DSIFN) and builds a novel change detection module, which includes
two main steps: (1) multiscale feature extraction of cropland from high spatial resolution
remote sensing images (images with rich details to identify small size ground object) and
(2) cropland change detection based on feature transmission and fusion. In the process of
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feature transmission fusion, the attention module with a variable convolution kernel will
make use of spatial context information and emphasize related changes. CroplandCDNet
contains two modules, a feature extraction module and a change detection module, as
shown in Figure 1. The change detection module includes two parallel feature transmission
layers and one feature fusion layer.
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Figure 1. The structure of CroplandCDNet.

2.1. Data Augmentation

To improve the reliability of cropland change detection results and prevent model over-
fitting, CroplandCDNet adopts a data augmentation strategy during the training process.
As shown in Figure 2, data augmentation includes operations such as rotation, horizontal
flip, vertical flip, cropping, translation, contrast change, brightness change, and addition
of Gaussian noise. Through data augmentation, the cropland change detection dataset is
expanded, the risk of overfitting is reduced, and the generalization of CroplandCDNet to
the dataset is effectively improved [33].
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2.2. Feature Extraction Module

In CNNs, the shallow features of croplands are usually texture features and detailed
information extracted after early convolution and pooling processing. Although it has high
spatial resolution, it lacks high-level semantic information and global information. The
deep features of cropland extracted from the deeper or higher level of the network help
the network understand the content of remote sensing images and improve the detection
performance in complex scenes.

The CNN backbone of CroplandCDNet comes from the first five layers of the pre-
trained network VGG16 [34], as shown in Figure 3. The T1 and T2 images of the mul-
titemporal remote sensing images underwent the same convolution pooling operation,
retaining as many original features of the bitemporal images as possible. To ensure that the
features extracted from bitemporal remote sensing images are in the same feature space,
the parameters are shared in the process of feature extraction. The whole feature extraction
module begins with an input of three-channel remote sensing images:

(1) Two identical convolution layers of 3 × 3 × 64 are used to learn the shallow features
of the cropland in the remote sensing image. After ReLU activation, the maximum
pooling layer is used, with the first pooling kernel of 2 × 2 and a stride of 2 to screen
the important features and reduce the number of parameters. At this time, the size of
the image is changed to 128 × 128 × 64;

(2) After two 3 × 3 × 128 convolution layers, the maximum pooling layer with a 2 × 2
kernel and stride of 2 is input after ReLU activation, and the size of the image is
changed to 64 × 64 × 128;

(3) After three 3 × 3 × 256 convolution layers, the maximum pooling layer with a third
pooling kernel of 2 × 2 and a stride of 2 is input after ReLU activation, and the size of
the image is changed to 32 × 32 × 256;

(4) After three 3 × 3 × 512 convolution layers, the maximum pooling layer with the last
pooling kernel of 2 × 2 and stride of 2 is input after ReLU activation, and the size of
the image is changed to 16 × 16 × 512;

(5) Finally, through three convolution layers of 3 × 3 × 512, a feature map of 16 × 16 × 512
is obtained. All the five-layer multiscale features are extracted and input into the
change detection module.
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2.3. Change Detection Module

The feature maps extracted from the feature extraction module are input into the
change detection module, and cropland binary change detection is carried out. The change
detection module includes two parallel feature transmission layers and a feature fusion
layer, as shown in Figure 4.
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t1_1, t1_2, . . ., t1_5 and t2_1, t2_2, . . ., t2_5 represent the shallow and deep features of
cropland in T1 and T2 temporal remote sensing images, respectively. All the feature maps
are input into two parallel feature transmission layers in the change detection module,
and each feature map passes through the SKA module to emphasize the change channel,
suppress irrelevant information, and improve the detection ability of the network. The
deepest original image features T1 and T2 are input into the feature fusion layer first
through the SKA module. First, the feature fusion layer combines the bitemporal features
of t1_5 and t2_5 and then convolutes them twice to obtain the image differential feature
map. To restore the original resolution, the feature fusion layer samples the differential
feature image, combines it with t1_4 and t2_4 to transmit features from deep to shallow,
and gradually obtains all the features.

Due to features such as t1_1 and t2_1 being closer to the original input data, they are
better able to capture local details and texture information in remote sensing images. Thus,
shallow features can help identify small-scale changes. However, features such as t1_5 and
t2_5 come from the deep layer of the network, which have richer semantic information
and abstraction, and can capture more global features in remote sensing images. Thus,
deep features can help identify more complex and larger scale changes, which can help
to understand the scene as a whole. The feature transmission layer combines the above
two to provide a more comprehensive and more abundant feature representation for the
cropland change detection network. Thus, the robustness of the network is improved, and
the change area under the influence of remote sensing can be accurately identified and
located. In CroplandCDNet, t1_5 and t2_5 first undergo fusion, difference recognition,
convolution, and upsampling operations. The difference maps obtained from t1_5 and t2_5
are fused with t1_4 and t2_4 before subsequent operations and so on until the last layer of
the network. This process facilitates the transmission of deep network features to shallow
network features. Each layer conveys distinct contextual information to the subsequent
layers, culminating in comprehensive features at the final layer. In the process, cropland
details are restored with increasing resolution. This module allows for better identification
of changes in cropland.

2.4. Selective Kernel Attention

SKA controls the receptive field by adaptively adjusting the convolution kernel size
of each neuron according to the scale difference of the input information. At present,
many studies have shown that SKA [31] can integrate feature maps from multiple receptive
fields [35] and can provide multiscale features from different convolutional units [36]. Many
scholars have introduced SKA into the change detection network to prove the effectiveness
of SKA for change detection tasks. For example, the networks with the introduction of
SKA can adaptively focus on discriminative information [37], adaptively aggregate global
and local features [38], and adaptively select change information between different levels
to improve feature representation [39]. Because the size of the receptive field affects the
extraction of global and local features, the SKA can better obtain the multiscale features of
cropland. Second, the features of the SKA aggregation depth make it easier for the network
to understand. Therefore, CroplandCDNet introduces SKA into the change detection
module, which effectively improves the performance of cropland change detection.

As shown in Figure 5, SKA contains three operations: split, fuse, and select. The split
operator generates multiple paths of different kernel sizes. In this section, and as shown in
Figure 5, two convolution kernels of different sizes are taken as examples. In fact, multiple
convolution kernels of multiple branches can be designed (the method proposed in this
paper uses convolution kernels of 1 × 1, 3 × 3, 5 × 5, and 7 × 7). The fuse operator merges
information from multiple branches to obtain a global representation for selecting weights.
The selection operator aggregates the feature maps of convolution kernels of different sizes
according to the selection weight.
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In the split operation, the input feature map is first transformed with different kernel
sizes, which are F1: feature map→U1∈ RH×W×C and F2: feature map→U2∈ RH×W×C. The
F1 and F2 processes include convolution, batch normalization, and the ReLU activation
function, aiming to extract features of different scales in the feature map.

In the fuse operation, the information from different branches is entered into the next
layer. First, the transformation results of the two branches are added:

U = U1 + U2. (1)

Then, the global information is embedded into the channel statistics through global
average pooling:

E = Fgap(U) =
1

H × W ∑H
i=1 ∑W

j=1 Uc(i, j). (2)

Moreover, to reduce computational consumption, the dimension of the channel sta-
tistical information is reduced through full connection, and the guidance features for the
adaptive selection of the kernel size for the SKA are obtained:

G = Ff c(E) = R(B(WE)). (3)

In Equation (3), R and B denote the ReLU activation function and batch normalization,
respectively, W ∈ Rk×C. k is the output size of the fully connected layer, which is calculated
as follows:

k = max(C/l, a), (4)

where l is the reduction ratio and defaults to 16, and a is the minimum value of k, which
defaults to 32.
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In the selection operation, a feature G used to guide the precise and adaptive selection
traverses each fully connected layer in Ff c to obtain the corresponding weight. The softmax
function is applied to the resulting weights, the channel dimension is normalized, and the
following is obtained:

pc =
ePc ·G

ePc ·G + eQc ·G , (5)

qc =
eQc ·G

ePc ·G + eQc ·G , (6)

where P, Q ∈ RC×k, their channels PC and QC ∈ R1×k, pc, and qc are the elements of p and
q in the channel dimension, respectively, and pc + qc = 1. The feature map transformed
on different kernels is multiplied by the attention weight and summed in the channel
dimension. The final feature map V is obtained as follows:

Vc = pc·U1c + qc·U2c, (7)

where V = [V1, V2, . . . Vc], Vc ∈ RH×W . When there are multiple kernels of different sizes
(that is, multiple branches), the calculation method is the same as that for the example of
two branches in this section.

2.5. Loss Function

Because of the spatial correlation between cropland pixels in remote sensing images,
the binary cross entropy (BCE) loss function [40] can be used to evaluate the similarity of
cropland in bitemporal remote sensing images in terms of spatial information. In addition,
due to the data imbalance in the cropland change detection datasets, balance adjustment
can be carried out using the dice coefficient (DICE) loss function [41]. For this reason,
CroplandCDNet adopts a mixed loss function combined with BCE loss and DICE loss, and
the calculation formula is as follows:

loss = lossBCE + lossDICE, (8)

Here, lossBCE and lossDICE are expressed as follows:

lossBCE =
1
T ∑T

t=1

[
Rgtlog Rt +

(
1 − Rgt

)
log(1 − Rt)

]
, (9)

lossDICE = 1 − 2

∣∣Rp ∩ Rpt
∣∣∣∣Rp

∣∣+ ∣∣Rpt
∣∣ , (10)

where T represents the total number of pixels of cropland in the remote sensing image, Rgt
represents the ground truth (GT) in t pixels, Rt represents the result of cropland change
detection in t pixels, RP represents the predicted value of cropland change detection results,
Rpt represents the true value of cropland change, and ∩ represents the intersection of RP
and Rpt.

3. Experiment
3.1. Dataset

To verify the effectiveness of the proposed method, the CLCD [25] dataset is used for
experimental verification in this paper. The CLCD dataset was collected by GF-2 and had
a spatial resolution of 0.5 m to 2 m. Many types of cropland conversion are contained in
CLCD, and the sample images in the CLCD dataset are shown in Figure 6.

3.2. Comparative Experiments

This paper selects six advanced change detection methods, CDNet [42], DSIFN [32],
SNUNet [43], BIT [27], L-UNet [44], and P2V-CD [45], to compare and verify cropland
change detection with the proposed method, of which BIT is based on the CNN-Transformer.
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3.3. Parameter Setting and Evaluation Metrics

The proposed method and the comparison methods are implemented in the PyTorch
framework by using PyCharm Community Edition 2023.1.3. The CPU used was an Intel
i7-13700KF, and the graphics card used was an NVIDIA GeForce RTX3090. The video
memory and memory used were 24 GB and 64 GB, respectively. In all the experiments,
the batch size was set to 8, and the number of epochs was 100. In the training process of
the method proposed in this paper, the initial learning rate is 0.001, and the optimizer is
Adam [46].

In this paper, the precision (Pre), recall (Rec), F1-score (F1) and overall accuracy (OA)
are used to quantitatively evaluate the experimental results. The calculation methods are
as follows:

Pre =
TP

TP + FP
, (11)

Rec =
TP

TP + FN
, (12)

F1 =
2 × TP

2 × TP + FP + FN
, (13)

OA =
TP + TN

TP + TN + FP + FN
(14)

where TP is a true positive, indicating that a change occurs and a change is detected; FP
is a false positive, meaning a change is detected but no change occurred; TN is a true
negative, meaning no change has occurred and no change has been detected; and FN is a
false-negative, indicating that a change has occurred but no change has been detected.

3.4. Experimental Results

Table 1 shows the test accuracy of the proposed method and all the comparison
methods on the CLCD dataset. Table 1 shows that the F1 and OA of the proposed method
are the best of all the methods and are 76.04% and 94.47%, respectively. Pre and Rec are the
second best at 76.46% and 75.63%, respectively. The F1s of the proposed method are 6.07%,
3.08%, 6.54%, 4.37%, 8.31%, and 4.64% greater than those of CDNet, DSIFN, SNUNet, BIT,
L-UNet, and P2V-CD, respectively. The OAs of the proposed method are 0.83%, 1.07%,
1.58%, 0.71%, 2.27%, and 0.59% greater than those of CDNet, DSIFN, SNUNet, BIT, L-UNet,
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and P2V-CD, respectively. Based on the analysis of all the evaluation metrics, it is proposed
that the comprehensive performance of the method is the best among all the methods.

Table 1. Quantitative evaluation results of comparative experiments and proposed methods on the
CLCD dataset.

Methods Pre (%) Rec (%) F1 (%) OA (%)

CDNet 77.24 63.95 69.97 93.64
DSIFN 69.47 76.81 72.96 93.40

SNUNet 69.14 69.87 69.50 92.89
BIT 75.65 68.09 71.67 93.76

L-UNet 65.10 70.57 67.73 92.20
P2V-CD 77.91 65.89 71.40 93.88

CroplandCDNet (ours) 76.46 75.63 76.04 94.47
Optimal results are shown in bold.

To further verify the detection effect of the proposed method in different scenes, four
types of changes are selected for analysis:

1. Scene 1: From cropland to buildings

Table 2 shows the quantitative evaluation metrics of the proposed method and the
comparative methods. As shown in Table 2, the detection results of all methods are good,
and the F1 and OA of the proposed method are the best among all methods, which are
96.50% and 97.47%, respectively. Pre and Rec are 99.32% and 93.84%, respectively. Figure 7
shows the visualization results of the conversion of cropland to buildings on the CLCD
dataset by the proposed method and the comparative methods. The visualization results
revealed a large number of missed detections in DSIFN and BIT, voids in the detection
results of CDNet and P2V-CD, poor edge detection results, and a large number of missed
detection results in SNUNet. The proposed method can accurately detect the edges of
large-scale building changes while maintaining the integrity of the interior. Based on
comprehensive quantitative evaluation metrics and visualization results, the proposed
method can be used to detect the conversion of cropland into buildings effectively.
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Table 2. Quantitative evaluation results for Scene 1.

Methods Pre (%) Rec (%) F1 (%) OA (%)

CDNet 99.49 74.64 85.29 90.41
DSIFN 98.39 80.40 88.49 92.21

SNUNet 93.63 95.74 94.67 95.99
BIT 99.27 78.59 87.73 91.81

L-UNet 94.54 97.84 96.16 97.09
P2V-CD 98.63 92.61 95.52 96.77

CroplandCDNet (ours) 99.32 93.84 96.50 97.47
Optimal results are shown in bold.

2. Scene 2: From cropland to roads

Table 3 and Figure 8 show the quantitative evaluation metrics and visualization
results of the proposed method and the comparative methods. Table 3 shows that other
comparative methods are not effective at detecting the conversion of cropland to roads. The
Pre, F1, and OA of the proposed method were the best of all methods at 89.86%, 79.56%,
and 98.35%, respectively, while its Rec, at 71.38%, was second only to that of L-UNet.
However, Figure 8h,j show a large number of misdetections in L-UNet, while the proposed
method has only local missed detections. Based on comprehensive quantitative evaluation
metrics and visualization results, the proposed method has the best effect on detecting the
conversion of cropland into roads.

Table 3. Quantitative evaluation results for Scene 2.

Methods Pre (%) Rec (%) F1 (%) OA (%)

CDNet 51.10 40.92 45.45 95.59
DSIFN 31.08 64.99 42.05 91.96

SNUNet 48.00 63.97 54.84 95.27
BIT 70.10 65.26 67.59 97.19

L-UNet 39.97 82.73 53.90 93.65
P2V-CD 42.68 44.70 43.67 94.82

CroplandCDNet (ours) 89.86 71.38 79.56 98.35
Optimal results are shown in bold.
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3. Scene 3: From cropland to bare land

Table 4 shows the detection accuracy of changing cropland into bare land. The Rec,
F1, and OA of the proposed method are the best of all methods at 94.04%, 94.16%, and
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97.86%, respectively, while its Pre, at 94.27%, is lower than that of P2V-CD and CDNet.
Figure 9 shows the visualization results of the proposed and comparison methods for Scene
3. Figure 9d,i,j show voids and inaccurate edges in the detection results of CDNet, and there
are a large number of missed detections in the detection results of P2V-CD. Meanwhile, the
proposed method retains the complete edge and interior while having low miss detection
and low error detection. After comprehensive quantitative evaluation and visualization,
the proposed method achieved the best detection effect.

Table 4. Quantitative evaluation results for Scene 3.

Methods Pre (%) Rec (%) F1 (%) OA (%)

CDNet 96.90 50.45 66.35 90.63
DSIFN 93.43 74.13 82.67 94.31

SNUNet 93.93 76.63 84.40 94.81
BIT 87.95 91.77 89.82 96.19

L-UNet 93.61 88.85 91.17 96.85
P2V-CD 99.67 10.21 15.53 83.55

CroplandCDNet (ours) 94.27 94.04 94.16 97.86
Optimal results are shown in bold.

Remote Sens. 2024, 16, 1061 13 of 20 
 

 

Figure 8. Visualization results for Scene 2. (a) T1. (b) T2. (c) Ground truth. (d) CDNet. (e) DSIFN. (f) 

SNUNet. (g) BIT. (h) L-UNet. (i) P2V-CD. (j) CroplandCDNet (ours). 

3. Scene 3: From cropland to bare land 

Table 4 shows the detection accuracy of changing cropland into bare land. The Rec, 

F1, and OA of the proposed method are the best of all methods at 94.04%, 94.16%, and 

97.86%, respectively, while its Pre, at 94.27%, is lower than that of P2V-CD and CDNet. 

Figure 9 shows the visualization results of the proposed and comparison methods for 

Scene 3. Figure 9d,i,j show voids and inaccurate edges in the detection results of CDNet, 

and there are a large number of missed detections in the detection results of P2V-CD. 

Meanwhile, the proposed method retains the complete edge and interior while having 

low miss detection and low error detection. After comprehensive quantitative evaluation 

and visualization, the proposed method achieved the best detection effect. 

Table 4. Quantitative evaluation results for Scene 3. 

Methods Pre (%) Rec (%) F1 (%) OA (%) 

CDNet 96.90 50.45 66.35 90.63 

DSIFN 93.43 74.13 82.67 94.31 

SNUNet 93.93 76.63 84.40 94.81 

BIT 87.95 91.77 89.82 96.19 

L-UNet 93.61 88.85 91.17 96.85 

P2V-CD 99.67 10.21 15.53 83.55 

CroplandCDNet (ours) 94.27 94.04 94.16 97.86 

Optimal results are shown in bold. 

 
(a) (b) (c) (d) (e) 

 
(f) (g) (h) (i) (j) 

Figure 9. Visualization results for Scene 3. (a) T1. (b) T2. (c) Ground truth. (d) CDNet. (e) DSIFN. (f) 

SNUNet. (g) BIT. (h) L-UNet. (i) P2V-CD. (j) CroplandCDNet (ours). 

4. Scene 4: From cropland to water body 

Table 5 shows the test results for the conversion of cropland into water body. The 

Rec, F1, and OA of the proposed method were the best of all the methods and were 98.75%, 

96.11%, and 99.59%, respectively, while its Pre was 93.61%, which was lower than those 

of L-UNet and P2V-CD. Figure 10 shows the visualization results of the proposed method 

and the comparison methods for Scene 4. Figure 10h–j show different degrees of error 

detection and missed detection in both L-UNet and P2V-CD, and there are only a small 

number of error detections in the proposed method. According to the comprehensive 

quantitative evaluation metrics and visualization results, the comprehensive performance 

of the proposed method is the best at detecting changes in cropland types into water bod-

ies. 

Figure 9. Visualization results for Scene 3. (a) T1. (b) T2. (c) Ground truth. (d) CDNet. (e) DSIFN.
(f) SNUNet. (g) BIT. (h) L-UNet. (i) P2V-CD. (j) CroplandCDNet (ours).

4. Scene 4: From cropland to water body

Table 5 shows the test results for the conversion of cropland into water body. The Rec,
F1, and OA of the proposed method were the best of all the methods and were 98.75%,
96.11%, and 99.59%, respectively, while its Pre was 93.61%, which was lower than those of
L-UNet and P2V-CD. Figure 10 shows the visualization results of the proposed method
and the comparison methods for Scene 4. Figure 10h–j show different degrees of error
detection and missed detection in both L-UNet and P2V-CD, and there are only a small
number of error detections in the proposed method. According to the comprehensive
quantitative evaluation metrics and visualization results, the comprehensive performance
of the proposed method is the best at detecting changes in cropland types into water bodies.
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Table 5. Quantitative evaluation results for Scene 4.

Methods Pre (%) Rec (%) F1 (%) OA (%)

CDNet 84.17 17.60 29.11 95.61
DSIFN 78.58 75.93 77.23 97.71

SNUNet 82.57 96.78 89.11 98.79
BIT 90.40 94.36 92.34 99.20

L-UNet 96.33 91.62 93.92 99.39
P2V-CD 95.55 65.94 78.03 98.10

CroplandCDNet (ours) 93.61 98.75 96.11 99.59
Optimal results are shown in bold.
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4. Discussion
4.1. Ablation Analysis

In this paper, multiscale feature transmission and fusion operations are used to retain
the features of cropland in remote sensing images to the greatest extent. To verify the
influence of each module of the proposed method on the experimental results, an ablation
experiment was performed in this section. In this paper, the network without feature
transmission is used as the baseline model, which does not include an attention mechanism.
Second, this paper regards the transmission and fusion of each additional layer as a separate
ablation experiment to emphasize the role of each layer of features in the network.

Table 6 and Figure 11 show the quantitative evaluation and visualization results of
ablation experiments based on the proposed method on the CLCD dataset. As shown in
Table 6, the F1 of the baseline model is 65.77%. After adding SKA, F1 increases to 69.08%,
and the feature transmission and fusion operation of each layer improves the detection
accuracy to a certain extent. Although the Pre of the proposed method is 1.38% lower than
that of the four-layer feature transmission fusion operation, the Rec, F1, and OA of the
proposed method are the best in the ablation experiment, which are 75.63%, 76.04%, and
94.41%, respectively. The results show that the introduction of SKA and the transmission
and fusion operation of each layer of features in the proposed method are effective for
cropland change detection.
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Table 6. The ablation experiments of the proposed method using the CLCD dataset quantitatively
evaluating the results.

Methods Pre (%) Rec (%) F1 (%) OA (%)

Base 68.85 62.96 65.77 92.40
+SKA 69.96 68.23 69.08 92.92

+SKA, +layer2 74.65 73.66 74.15 94.05
+SKA, +layer2,3 77.10 72.74 74.86 94.33

+layer2,3,4 77.04 72.14 74.51 94.28
+SKA, +layer2,3,4 77.84 72.53 75.09 94.42

CroplandCDNet (ours) 76.46 75.63 76.04 94.47
Optimal results are shown in bold.
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SKA, +layer2,3. (h) Base +layer2,3,4. (i) Base + SKA, +layer2,3,4. (j) CroplandCDNet (ours).

4.2. Generalization Analysis

To further verify the robustness of the proposed method, this paper employs a cropland
change detection dataset [47] (data source: Jilin-1) for experimental verification. The spatial
resolution of the dataset is better than 0.75 m, and the dataset contains 6000 sets of high
spatial resolution remote sensing images, each of which includes bitemporal remote sensing
images and one cropland change label. In this paper, 3600 sets of data were selected for
training, 1200 sets of data were used for verification, and 1200 sets of data were used for
testing. The evaluation metrics of the test results are shown in Table 7. The Pre, Rec, F1, and
OA of the proposed method are 89.03%, 85.22%, 87.08%, and 92.94%, respectively. A portion
of the experimental results are shown in Figure 12, which reveals that the network can
effectively detect changes in cropland. Therefore, the proposed method can still maintain
excellent cropland change detection performance on different datasets.
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Table 7. Quantitative evaluation results of the proposed method and the comparison methods on the
Jilin-1 cropland change detection dataset.

Methods Pre (%) Rec (%) F1 (%) OA (%)

CDNet 76.72 73.47 75.06 86.36
DSIFN 86.75 81.07 83.81 91.25

SNUNet 80.49 76.79 78.60 88.32
BIT 80.71 77.99 79.32 88.64

L-UNet 75.11 72.21 73.63 85.55
P2V-CD 85.79 78.25 81.85 90.31

CroplandCDNet (ours) 89.03 85.22 87.08 92.94
Optimal results are shown in bold.
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4.3. Potential and Planning

For areas with cloudy and rainy weather, especially in plateau mountainous regions,
it may lead to the absence of effective optical remote sensing images, which affects the
applicability of cropland change detection from multitemporal optical remote sensing
images. The problem of insufficient data can be effectively addressed by integrating
SAR and optical remote sensing images. However, due to significant differences in data
acquisition methods, spectral characteristics, and data resolution between SAR and optical
remote sensing images, there are distinct differences in feature representation between SAR
data and optical data [48]. Therefore, the proposed CroplandCDNet cannot be directly used
for cropland change detection using both optical and SAR images. In the future, we will
add an image domain transformation module or use a non-shared weight pseudo-siamese
feature extraction module at the front end of CroplandCDNet to make optical and SAR
images comparable.
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Multitemporal remote sensing images play an important role in monitoring cropland
change and land use change [49–51]. At present, multitemporal remote sensing image
change detection methods based on deep learning, such as long short-term memory (LSTM)
and recurrent neural network (RNN), have been widely used in the application of cropland
change detection [52,53]. Due to the rich temporal dimension contained in multitemporal
time series data, a multitemporal feature extraction module can be considered in deep
learning methods to extract features, such as time series vegetation indices or water indices,
and combine RNN or LSTM to model multitemporal data. However, the bitemporal remote
sensing images are weak in this aspect, so there are differences in technical methods between
them. In future research, how to combine the proposed method with the multitemporal
series change detection method to improve the applicability and robustness of the model is
a field worthy of research.

In addition, the method is mainly used to detect fine cropland changes in small scenes
based on high spatial resolution remote sensing images. In the past, middle and low spatial
resolution remote sensing images, such as Landsat and Sentinel, were mainly used to detect
large-scale cropland changes. However, due to the limitation of image spatial resolution, it
is difficult to obtain the detection of cropland changes at the field scale. CroplandCDNet,
as a deep learning-based cropland fine change detection method, can identify the cropland
changes at the field level, but it requires very high computational requirements to be used at
the municipal, provincial, or even national level. While large-scale cropland monitoring is
of great significance for food protection and sustainable development, how to optimize the
number of parameters of CroplandCDNet model and deploy it to the cloud platform so that
the model can be applied to large-scale cropland change detection is our next major work.

5. Conclusions

At present, the demand for refined cropland change detection is urgent, but the
cropland change detection method based on deep learning that extracts deep features
through a large number of convolutional pooling will lead to the introduction of irrelevant
features. In addition, the fixed size of the convolution kernel will cause the network
to ignore the spatial context information. To solve above challenges, CroplandCDNet
for cropland change detection is proposed in this paper. CroplandCDNet first extracts
the multiscale features of cropland from multitemporal remote sensing images through
the feature extraction module and then inputs the multiscale features into the change
detection module to identify cropland changes. In the change detection module, the feature
transmission and fusion operation strengthen the relationships between multilayer features
in the network. SKA with an adaptively receptive field emphasizes cropland change and
effectively utilizes spatial context information, and the ability of CroplandCDNet to detect
cropland change is effectively improved. To verify the effectiveness of the proposed method
for detecting cropland changes, an experimental verification is carried out using the CLCD
dataset in this paper. The F1 and OA obtained by CroplandCDNet are 76.04% and 94.47%,
respectively, which are the best results compared with the comparison methods. Its Pre and
Rec are 76.46% and 75.63%, respectively, which are the second best among all the methods.
Based on the quantitative evaluation and visualization results, CroplandCDNet has the best
overall performance. Moreover, a generalization experiment is carried out using the Jilin-1
cropland dataset. Compared with the comparison methods, CroplandCDNet achieves
the best results in terms of four evaluation metrics, which verifies the robustness of the
proposed method. However, the proposed method is based on the detection of cropland
change in small scenes, and its applicability to the detection of large-scale cropland change
needs further verification. In addition, how to comprehensively use optical and SAR data
or multitemporal time series data to detect cropland changes will also be the direction we
should consider in the next step.



Remote Sens. 2024, 16, 1061 18 of 20

Author Contributions: Q.W.: Feasibility study, network construction and testing, and manuscript
writing. L.H.: Manuscript advice and proofreading, and funding access. B.-H.T.: Project management
and supervision. J.C.: Experimental environment configuration. M.W.: Data preprocessing. Z.Z.:
Data preprocessing. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China (grant no.
42361054 and 42230109), Yunnan Fundamental Research Project (grant no. 202201AT070164), the Sci-
ence and Technology Program of Geological Institution of Hunan Province (grant no. HNGSTP202409),
“Xingdian” Talent Support Program Project (grant no. KKRD202221036) and Yunnan Province Key
Research and Development Program (grant no. 202202AD080010).

Data Availability Statement: The CLCD dataset in this paper is publicly available for download
from the following link https://github.com/liumency/CropLand-CD (accessed on 19 June 2023).
The Jilin-1 dataset is not yet publicly available and is only available for scientific research. If other
researchers need help, please contact the first author.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Han, H.; Peng, H.; Li, S.; Yang, J.; Yan, Z. The Non-Agriculturalization of Cultivated Land in Karst Mountainous Areas in China.

Land 2022, 11, 1727. [CrossRef]
2. Zhang, Y.; Shao, Z. Assessing of Urban Vegetation Biomass in Combination with LiDAR and High-resolution Remote Sensing

Images. Int. J. Remote Sens. 2020, 42, 964–985. [CrossRef]
3. Sharma, N.; Chawla, S. Digital Change Detection Analysis Criteria and Techniques used for Land Use and Land Cover Classifica-

tion in Agriculture. In Proceedings of the 2023 3rd International Conference on Advance Computing and Innovative Technologies
in Engineering (ICACITE), Greater Noida, India, 12–13 May 2023; pp. 331–335.

4. Useya, J.; Chen, S.; Murefu, M. Cropland Mapping and Change Detection: Toward Zimbabwean Cropland Inventory. IEEE Access
2019, 7, 53603–53620. [CrossRef]

5. Liu, B.; Song, W.; Meng, Z.; Liu, X. Review of Land Use Change Detection—A Method Combining Machine Learning and
Bibliometric Analysis. Land 2023, 12, 1050. [CrossRef]

6. Chughtai, A.H.; Abbasi, H.; Karas, I.R. A review on change detection method and accuracy assessment for land use land cover.
Remote Sens. Appl. Soc. Environ. 2021, 22, 100482. [CrossRef]

7. Xie, G.; Niculescu, S. Mapping and Monitoring of Land Cover/Land Use (LCLU) Changes in the Crozon Peninsula (Brittany,
France) from 2007 to 2018 by Machine Learning Algorithms (Support Vector Machine, Random Forest, and Convolutional Neural
Network) and by Post-classification Comparison (PCC). Remote Sens. 2021, 13, 3899. [CrossRef]

8. Sebbar, B.; Moumni, A.; Lahrouni, A. Decisional Tree Models for Land Cover Mapping and Change Detection Based on
Phenological Behaviors: Application Case: Localization of Non-Fully-Exploited Agricultural Surfaces in the Eastern Part of the
Haouz Plain in the Semi-Arid Central Morocco. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, XLIV-4/W3-2020, 365–373.
[CrossRef]
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