remote sensing

Article

An Adaptive IMM Algorithm for a PD Radar with Improved
Maneuvering Target Tracking Performance

Wenwen Xu, Jiankang Xiao, Dalong Xu, Hao Wang *

check for
updates

Citation: Xu, W.; Xiao, J.; Xu, D.;
Wang, H.; Cao, ]. An Adaptive IMM
Algorithm for a PD Radar with
Improved Maneuvering Target
Tracking Performance. Remote Sens.
2024, 16, 1051. https:/ /doi.org/
10.3390/1s16061051

Academic Editor: Andrzej Stateczny

Received: 3 January 2024
Revised: 19 February 2024
Accepted: 13 March 2024
Published: 15 March 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Jianyin Cao

School of Electronic and Optical Engineering, Nanjing University of Science and Technology,
Nanjing 210094, China; wenwenxu@njust.edu.cn (W.X.); xudl1987@njust.edu.cn (D.X.);
jlanyin.cao@njust.edu.cn (J.C.)

* Correspondence: haowang@njust.edu.cn

Abstract: A pulse-Doppler (PD) radar has the advantage of strong anti-interference ability, and it
is often used as a solution for maneuvering target tracking. In the application of target monitoring
and tracking in PD radars, the interacting multiple model algorithm (IMM) has become the main
and preferred choice due to its flexibility and high accuracy. However, the probability transfer matrix
in classical IMM algorithms generally depends on constant prior knowledge, and if a PD radar
is tracking a strong maneuvering target, it is inevitable to encounter some limitations, such as the
possibility of target tracking trajectory deviation, and even a loss of the target. The Markov probability
transfer matrix is proposed with an adaptive modification ability in real time to overcome the above
problems in this paper. Additionally, for improving the speed of switching between the models, the
fuzzy control system for secondary updating of model probability is adopted. By this means, the
tracking accuracy of maneuvering targets is enhanced. Compared with the classical IMM algorithm,
the corresponding simulation results for the PD radar indicate that the overall tracking accuracy of the
proposed adaptive IMM algorithm is improved by 19.6%. In conclusion, the continuity and accuracy
of the target trajectory can be effectively improved with the proposed adaptive IMM algorithm in PD
radar cases.

Keywords: target tracking; interacting multiple model; probability transfer matrix; PD radar

1. Introduction

In the past 20 years, the rapid development of electronic communication technology
in civil aviation, national defense, and military industries has increased the maneuver-
ability of consumer-level unmanned aerial vehicles (UAVs) and military reconnaissance
aircrafts [1-3]. Significant challenges and difficulties have been posed for pulse-Doppler
(PD) radars by technological advancements and the increasing complexity of target envi-
ronments. In order to adapt to the emerging trend of enhanced maneuverability in the
target domain, it is necessary to enhance the tracking performance of PD radar systems
when dealing with highly maneuverable targets. The interacting multiple model (IMM)
algorithm has gradually become a mainstream maneuvering target tracking algorithm due
to its superior robustness, accuracy, flexibility, and scalability advantages compared with
other single-model tracking algorithms [4-8]. As a result, it has been widely applied in
various types of PD radars.

The switching between different models in the model set of the IMM algorithm can be
considered as a Markov process [9,10]. The probability of the model at the next moment is
not related to the probability of the model at the past moment, but only to the probability
of the model at the current moment and the probability transfer matrix [11,12]. Due to the
important role of the probability transfer matrix in model switching, many scholars have
carried out related optimization work on this concept, such as an error compression rate
of models is defined as prior information [1], and it is used for the real-time correction of
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the probability transfer matrix to improve the tracking accuracy of the IMM algorithm.
However, if the maneuverability of the target decreases, it will lead to an increase in tracking
errors. A special-structure IMM algorithm for the adaptive correction of probability transfer
matrix is proposed (ATPM-PIMM) [3]. An IMM algorithm is added to the ATPM-PIMM
algorithm that adaptively modifies the probability transfer matrix to the framework of the
classical IMM algorithm, as a parallel algorithm of the classical IMM algorithm. Based
on the designed selection strategy and threshold, the classic IMM algorithm and the
adaptive IMM algorithm are adaptively selected. The ATPM-PIMM algorithm is adaptive
in switching algorithms and modifies the probability transfer matrix in real time, and
is easier to implement. Due to the addition of parallel algorithms, the complexity of
the ATPM-PIMM algorithm has increased about twofold. Moreover, the setting of the
switching threshold in the ATPM-PIMM algorithm depends on reliable experience, and
effective testing is required for algorithm practice. In [13], a new IMM algorithm with a
model set design method, which utilized model likelihood function information to modify
the probability transfer matrix, was designed. But it mainly applied the model sets of
two models, which had significant limitations. In conclusion, the above IMM algorithms
have their own innovative optimization ideas, but at the same time, there are also some
significant limitations.

Therefore, in order to address the limitations of these algorithms, an adaptive IMM
algorithm (ATPFC-IMM) is proposed in this paper, which adds an adaptive modified prob-
ability transfer matrix module in the single-step iteration of the classical IMM algorithm. In
addition, a fuzzy control system is designed for the ATPFC-IMM algorithm to update the
model information after the probability is updated in the classical IMM algorithm, thus
addressing the aforementioned issues. Through subsequent simulations and applications,
it is demonstrated that the proposed ATPFC-IMM algorithm is effective in enhancing
the maneuvering target tracking performance, such as the reduction in trajectory errors
and improvement in trajectory continuity in PD radars compared with the classical IMM
(CIMM) algorithm and ATPM-PIMM [3] algorithm.

The subsequent sections of this paper are organized as follows. Section 2 provides a
concise overview of the processing steps involved in the IMM algorithm. Section 3 delves
into a comprehensive discussion of the principles and processing techniques of the ATPFC-
IMM algorithm, which is proposed in this study. Section 4 mainly includes a simulation
and analysis, where two sets of cases are designed to test the superior performance of the
ATPFC-IMM algorithm in model switching and position tracking errors. In Section 5, the
ATPFC-IMM algorithm is applied to specific PD radars, and the good tracking performance
of the ATPFC-IMM algorithm for maneuvering targets is verified.

2. Review of the Classical IMM Algorithm

The movement of maneuvering targets is complex and cannot be described by a
single-motion model; so, the multiple-model algorithm is often applied to maneuvering
target tracking for PD radars. As a special type of multiple-model tracking algorithm, the
interactive multiple model (IMM) algorithm has good tracking performance and flexibility.
The IMM algorithm considers the switching between motion models to adapt to the motion
state of maneuvering targets.

The classical interacting multiple model algorithm consists of the following four main
parts: (1) Model interaction; (2) The parallel filtering of models; (3) The updating of model
probability; and (4) Model estimation fusion [14]. The IMM algorithm assumes that the
true motion model of the target is obtained by summing the individual model sets of the
respective weights they occupy [15-17].

A concise overview of the processing procedure for the classical interactive multiple
model algorithm (CIMM) is provided in this paper for comparison. It primarily focuses on
the state estimation and model probabilities of each model involved in this procedure. The
process of this algorithm is summarized and categorized into four main parts, as shown in
the following sections.
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2.1. Model Interaction

First, a Markov probability transfer matrix, P}, is presented based on a priori informa-
tion or experience in Equation (1). In addition, P; remains constant throughout the cyclic
processing of the CIMM algorithm.

Pf11 Pflz T Ptlr
Py, Py, - P

p=|" "7 7 (1)
Ptrl PtrZ T Ptrr

where Py;; denotes the probability that model 7 switches to model j.

The model set at moment k — 1 is the model matching the target motion, refer to
Equation (2). the mixed-state estimate after the transfer of other models to the model is
calculated as X{;}(k — 1k —1); pyjj(k — 1|k — 1) denotes the probability of switching from
other models to matching model i.

M
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2.2. Parallel Filtering of Models

The Kalman filtering method [18-21] was used in this part; the state estimate obtained
in the previous step was used as the input to model i. The state estimate of model i at
moment k is X;(k), the covariance matrix is P;(k), the mean of error is V;(k), and the matrix
S;i(k) (corresponding to the covariance matrix about V;(k)) is obtained after predictive
filtering [22-25].

2.3. The Updates of Model Probability

Once the models are defined and initialized, the IMM algorithm predicts the future
state of each model independently based on their dynamics and system measurements.
These predictions are essential for generating reliable estimates and facilitating effective
model selection. The probability of model i is calculated from its corresponding model
likelihood function A;(k):

filk) = AK)e(K) /e(k) 6)
PSS SENE S
ME) = e (S Vi) ©)
M
(k) = Y. Adkye(k) )

2.4. Model Estimation Fusion

The information obtained through the aforementioned three steps can be utilized
for state information fusion and serve as the output of the algorithm [26-28]: the state
estimation, X (k|k), and the covariance of state estimation, P(k|k).
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As shown from the above steps, the classical IMM (CIMM) algorithm has the ad-
vantages of fewer steps and a clear overall processing approach. In order to adapt to
the motion transformation of maneuvering targets, multi-model algorithms have been
proposed and exhibit an excellent comprehensive performance. Different from traditional
multi-model algorithms, the model set of the IMM algorithm can be personalized according
to the applications. Moreover, the interaction and switching between models are taken
into consideration in this algorithm. Due to the good flexibility and scalability of the IMM
algorithm, the IMM algorithm becomes a good candidate for optimizing algorithm struc-
ture and adding adaptive modules. Therefore, the proposed ATPFC-IMM algorithm adds
the probability transfer matrix adaptive real-time correction and fuzzy control system for
re-updating the model’s probability on the basis of the classical IMM algorithm’s structure.

3. The Design of the ATPFC-IMM Algorithm

Due to the fact that the output of the CIMM algorithm comes from the interaction,
filtering, updating, and fusion between various models in the model set, the probability
transfer matrix plays an important role. And the probability transfer matrix in the CIMM
algorithm is mainly based on constant prior experience, even in tracking maneuvering
targets. Therefore, the ATPFC-IMM algorithm is proposed in this paper, to overcome the
disadvantage of the CIMM algorithm. And the proposed ATPFC-IMM algorithm can adapt
to the maneuvering motion of the target.

The proposed ATPFC-IMM algorithm is based on the structure of the classical IMM
algorithm. In order to achieve better matching of model probabilities, the model probability
information was used in two places on the basis of the classical IMM algorithm: 1. Correc-
tion of the probability transfer matrix in real time and 2. Combined with a fuzzy control
system to update the model probability again. The processing framework flowchart of the
ATPFC-IMM algorithm is shown in Figure 1.

XA(k=1),B4(k=1) -+ XAk=1),PA k1)

. Updating Markov Probability
Model Interaction Transfer Matrix

l l Ji(k)
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Figure 1. The processing framework flowchart of the ATPFC-IMM algorithm.



Remote Sens. 2024, 16, 1051

50f23

As shown in Algorithm 1, the processing procedure of the proposed ATPFC-IMM
algorithm in this study is primarily based on the classical IMM algorithm. Firstly, after
obtaining the preliminary probabilities (by the CIMM algorithm), 7;(k), f1;(k — 1), and
likelihood functions, Ay, of the models, the model with the highest proportion of likelihood
functions was determined based on the likelihood function ratio, Likeij, of each model. The
probability information of this model was then used to construct the correction function,
fi(k). And the probability transfer matrix, P’;(k), was modified and normalized. In the
subsequent time step (radar sampling period), the updated probability transfer matrix,
P;(k), was utilized. Next, the preliminary probabilities, fi;(k), f1;(k — 1), of the models
obtained earlier were inputted into the designed fuzzy control system to reallocate the
probabilities for each model. Once the probabilities, y(k), of all models were processed, the
resulting model probabilities, y;(k), are one of the outputs of the algorithm, which were
used for the subsequent state estimation fusion.

Algorithm 1: Implementation pseudocode for the proposed ATPFC-IMM algorithm in a
single cycle.

Background: The classical IMM algorithm.
Function: Accelerating model switching and updating model probabilities.
1: Input: The probability information of each model.
2: Computation:
(1) Likelihood function ratio:
for (i = 1to M)do
for(j = 1toM, i #j)do
Like;; = AL/
end for
end for
(2) Correction function: f;(k).
3: Correction of probability transfer matrix:
for (j = 1to M) do
BI(K) = f(K)-Bi(k);
end for
4: Normalization of probability transfer matrix: P/ (k) — Pi(k).
5: Re-Updating:
Inputting the model probability information into the fuzzy control system:
for (i = 1to M)do
fii(k), fii(k = 1) — pi(k);
end for
6: The currently obtained model probabilities are kept for the next moment of the algorithm
update: y;(k) (i = 1,2,--- ,M).
7: Output: (1). The re-updating probability of each model: y; (k).

M
(2). Model state estimation fusion: Xou¢(k) = Y. X2 (k)-p;(k).
i=1
8: Return p;(k), Xout (k);

3.1. The Correction of the Probability Transfer Matrix

In the classical IMM algorithm, the probability vector (likelihood function) of the
model can reflect the probability of the model, that is, the matching degree of a model and
the current motion state of the tracked target [29]. So, the likelihood function can be used
to find a model in a model set of the ATPFC-IMM algorithm that best matches the current
motion state of the target, and the probability information of this model can be used to
construct a correction function, which can be used to adaptively correct the probability
transfer matrix in real time [30].

If the ATPFC-IMM algorithm model set includes three models (M = 3), the model
likelihood function ratio can be expressed by Equation (10).

Likery = AL/AZ Likeys = AL/A}, Likess = AZ/AS (10)
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The model that best matches the target-motion state can be obtained by comparing
the likelihood functions between the models. By utilizing the three scenarios presented
in Equation (11), the values of a and j can be obtained and subsequently employed in
Equation (12). The calculation of that equation determines the correction function for the
real-time adjustment of the probability transfer matrix.

Like1p > 1 & Likeyz3 > 1 a=0j=1
min(Likelz, Lik€13, Lik€23) = Lik€12 a = 1,] =2 (11)
max(Likeu, Lik€13, Lik623) = Likelz a = Z,j = 3.

The determination of the correction function, f;(k), is defined as follows:

£iK) = 1/(1~ (6) — ik~ 1)))- W
(05(2—a)(1—a)+a(2—a)+0.5a(a—1))

In some scenarios, adaptivity may lead to the over-modification of the probability
transfer matrix, which can lead to anomalies. In order to be able to adjust the adaptivity of
the ATPFC-IMM algorithm to the real-time demand, a coefficient, A, was designed. The
closer the value of this coefficient, A, was set to 0, the weaker the adaptability of the ATPFC-
IMM algorithm. (In this paper, the value of A was set to 1). Combined with coefficient A,
the correction function, f] (k), is redefined in Equation (13).

fitk) = fi(k)* (A >0) (13)

The process of using the correction function to correct the probability transfer matrix
and normalization is as follows:

By ®) (14)

3.2. The Design of the Fuzzy Control System

In a PD radar, it is often necessary to track maneuvering targets. The maneuvering
transformation of the target requires the change in the tracking model of the algorithm
accordingly, and requires a high update speed [31]. Therefore, in order to meet this
requirement, the ATPFC-IMM algorithm introduces a fuzzy control system for reallocating
and updating model probabilities.

The fuzzy control system was a mappable system that fully utilized model information
in this paper. The current obtained model information was used as the system input, and
the updated model probability (system output) was used in the estimation fusion part
of the ATPFC-IMM algorithm. The processing of the fuzzy control system is shown in
Figure 2, and the design of the fuzzy control system is shown in Figure 3 and Table 1.

Fuzzy Control knowledge
System Processing base
) (rule list)
#,(k) ; I l
—» data | data data I
—p| calculation 1 fuzzification defuzzification A
ik -1

Figure 2. The processing of the fuzzy control system.
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Figure 3. The design of the input and output memberships.
Table 1. Rule table of the fuzzy control system.
Input-2
Output
A-in2 B-in2 C-in2 D-in2 E-in2
A-inl A-out A-out A-out B-out C-out
i
-é B-inl A-out A-out B-out C-out D-out
E C-inl A-out B-out C-out D-out D-out
D-in1 B-out C-out D-out D-out D-out
The fuzzy rules of a fuzzy control system are represented as:
if Input-1is [; and Input-2 is I;, THEN Output-1is O, (15)

where Input-1 and Input-2 are the input control variables of the fuzzy control system, I;
and I; are the corresponding fuzzy variables, Output-1 is the output control variable, and
O, is the output fuzzy variable.

The fuzzy control system is an inference synthesis algorithm; it can be expressed as:

(A* & B*)O(A&B — C) = (A* & B*)OR = C*

R =A"&B"—C"

(16)

(17)

where A* and B* are the fuzzy subsets, C* is the inference result, O denotes the inference
synthesis algorithm, and R denotes the fuzzy rule.
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Defuzzification is carried out by using the method of the centroid of the area of the
membership function, and its mathematical model can be represented as:

~ JuY(wudu
Ucen = W (18)

where 1., is the value of the horizontal coordinate of the centroid of the area; Y (u) is the
membership function of a fuzzy subset in the domain, U.

Equations (14)—(18) describe the fuzzification and defuzzification processes of the
fuzzy control system, and the inference results of the system can be obtained after per-
forming these two steps. In fact, the processing process of the fuzzy control system can
be understood as a special problem combining inference and geometry. It ingeniously
simplifies the complex mathematical operations and effectively reduces the computational
complexity of probability mapping updates.

In order to further describe the workflow and data processing of the fuzzy control
system, an example is presented in this paper. Assume that the current model probability is
0.4, and the previous model probability is 0.3 [30]. According to the membership function
of the system input and output in Figure 2, the input of the fuzzy control system can
be defined as B-inl and D-in2; so, the system output is C-out. Taking the minimum
membership degree (1 in this example), according to the centroid method, the updated
model probability can be obtained as the centroid abscissa of the geometric figure, C-out,
which is 0.6. All models in the model set of the ATPFC-IMM algorithm undergo probability
mapping updates through the above steps, and the obtained probabilities of each model
are used for the estimation fusion part of the ATPFC-IMM algorithm. The basis of the
aforementioned fuzzy control system and additional rules are shown in Table 1 (Table 1
contains 20 rules for fuzzy control systems corresponding to the design of the membership
function in Figure 3).

The ATPFC-IMM algorithm incorporates a correction function for the real-time cali-
bration of the probability transfer matrix. By updating the model probability again with the
fuzzy control system, the model probability of the ATPFC-IMM algorithm can be quickly
switched and the model probability of matching target motion can be increased. The two
cooperate with each other, and effectively improve the comprehensive performance of the
ATPFC-IMM algorithm.

4. Simulation and Analysis

In this section, three different sets of simulation experiments are included. In Exper-
iment 1, the effects of the classical IMM algorithm (CIMM), ATPM-PIMM [3] algorithm,
and the proposed ATPFC-IMM algorithm on the model switching speed and the tracking
error are analyzed. In Experiment 2, in order to explore the possible effects of different
maneuver modes or maneuver intensities of the simulated target on the CIMM algorithm,
ATPM-PIMM [3] algorithm, and the proposed ATPFC-IMM algorithm, the maneuvering
performance of the target is further improved. In Experiment 3, a set of complex maneu-
ver data in the PD radar are selected. Moreover, the CIMM, ATPM-PIMM [3], and the
proposed ATPFC-IMM algorithms are used to track maneuver targets in the PD radar to
demonstrate the effectiveness of the ATPFC-IMM algorithm. In the three experiments,
a real measurement process with the addition of random process noise is simulated to
analyze the robustness of the ATPFC-IMM algorithm. It has to be noted that, since the
threshold for algorithm switching is involved in the ATPM-PIMM [3] algorithm, in this
paper, the threshold value (0.8) with a good comprehensive performance was used during
the simulation.
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Additionally, the root mean square error (RMSE) was utilized to evaluate the effective-
ness of the algorithms [32]. It is defined as follows [33]:

1 M 1/2
RMSE'(n) = {M‘Zluxj(n)—aej(n)ug} (19)
i=

1 N
RMSE = — RMSE' (n 20
N L RMSE () (0)
where x;(1) denotes the true state of the target at moment j, n denotes the number of Monte
Carlo simulations, £;(1) denotes the target state estimated by filtering the target at moment
j, M denotes the total number of sampling cycles during the simulation, and N indicates
the number of iterations of the Monte Carlo simulation.

4.1. Experiment 1

Experiment 1 was set as follows: two-model set: (1) constant-velocity model (CV) and
(2) coordinated turning model (CT). The target performed coordinated turning motions
at 1-100 s and 201-300 s, and constant-velocity motions at 101-200 s and 301400 s. The
initial probability of the CV model and CT model was 0.5; in addition, the CT model
had a constant angular rate (w = 0.035 rad/s). The sampling time was T = 1 s, the total
sampling time was M = 400 s, and the iteration of the Monte Carlo simulation was 100. The
probability transfer matrix, P;, of the CIMM, ATPM-PIMM [3], and ATPFC-IMM algorithms

is set as:
09 0.1
P = {0.1 0.9} @)
The observation matrix, H, of the system is set as:
1 000
H = [O 01 0} (22)

The state transfer matrix, Fcy, and prediction-process noise matrix, G¢cy, of the CV
model are:

1 T 0 0 T2/2 0
010 0 T 0

Fev=1g 01 1/P%v =1 o T2/2|" (23)
00 0 1 0 T

The state transfer matrix, Fcr, and prediction-process noise matrix, G¢r, of the CT
model are:

1 sin(wT)/w 0 (cos(wT)—1)/w T2/2 0
|0 cos(wT) 0 —sin(wT) ) _ T 0

Fer =1 (1 —cos(wT))/w 1 sin(wT)/w |’ Cer = | T2/2| (24)
0 sin(wT) 0 cos(wT) 0 T

The influence of various noises on the radar system in the real environment was
simulated, which led to the error of the measurement of the radar system. The measurement
noise was added to the measurement model of the simulation process, as shown in the
following equation:

Z(k) = H(k)X(k)+ V(k) (25)
50 O] |randn 0
Vik) = {0 50}{ 0 randn} (26)

where randn denotes a random scalar obtained from a standard normal distribution.
In Figure 4, the switching and probability error distribution of each model probability
when the target-motion model is changed can be seen. The moments when the target-
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motion-state model switches are 100 s, 200 s, and 300 s, the fastest model switching is
achieved by the ATPFC-IMM algorithm, followed by the ATPM-PIMM [3] algorithm, then
the CIMM algorithm. And the most optimal distribution of the corresponding model
probability is achieved by the ATPFC-IMM algorithm, followed by the ATPM-PIMM [3]
algorithm, then the CIMM algorithm.

As shown in Table 2 and Figure 4, the ATPFC-IMM algorithm has the fastest model
switching speed, so the response time of the models is reduced by the ATPFC-IMM al-
gorithm. In addition, both the ATPM-PIMM [3] algorithm and the ATPFC-IMM algo-
rithm can improve the probability of the corresponding matching model relative to the
CIMM algorithm, but the ATPFC-IMM algorithm has a better enhancement effect than
the ATPM-PIMM [3] algorithm, making the probability of the corresponding model closer
to 1. Therefore, the tracking performance in this experiment is effectively improved by the
proposed ATPFC-IMM algorithm; the tracking error is reduced compared with the CIMM
algorithm and ATPM-PIMM [3] algorithm.
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Figure 4. Cont.
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Figure 4. Model probability and probability error distribution for Experiment 1. (a) Probability of
CV model without measurement noise; (b) probability of CT model without measurement noise;
(c) probability of CV model with measurement noise; (d) probability of CT model with measurement
noise; (e) probability error of models without measurement noise; (f) probability error of models with
measurement noise.

Table 2. RMSEs of position tracking in Experiment 1.

Algorithm Measul:ement RM.SE of RM?E of Rl.V[.SE of
Noise x-Axis/(m) y-Axis/(m) Position/(m)

CIMM 7.6171 11.9254 15.3929
ATPM-PIMM [3] Unadded 6.6795 10.6392 13.7303
ATPFC-IMM 6.4601 10.4568 13.3856
CIMM 16.5781 19.5356 26.2282
ATPM-PIMM [3] Added 15.9144 18.6876 25.2220
ATPFC-IMM 15.7616 18.5622 24.8715

The probability transfer matrix, P, is a very important factor in all types of IMM
algorithms, and the setting of P; often depends on a priori experience. Different P; values
may affect the tracking performance of IMM tracking algorithms. In order to investigate
the effect of this factor on such IMM algorithms, a control experiment is set up and P is
designed in Equation (27). The other experimental parameters were the same as in the
previous experiment. The model probability switching for the control experiment is shown
in Figure 5.

p = {0.99 0.01] 27)

0.01 0.99

As shown in Figure 5a—d, the new probability transfer matrix improves the probability
when the model matches the target’s motion state. The probability of matching the model is
closer to 1 compared to the previous experiment, even after the addition of the measurement
noise. In addition, as can be seen in Figure 5e,f, the probability error of the models are at a
lower level. Overall, the ATPFC-IMM algorithm still outperforms the ATPM-PIMM [3] and
CIMM algorithms.

The position error of the tracking process of the corresponding target in Figure 5 is
recorded in Table 3. Compared with Table 2, the tracking error of each algorithm decreases
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Probability of CV model

0.0

Probability of CV model

by a certain level, which is directly related to the improvement of the probability of the
matching model in Figure 5.

Table 3. RMSEs of position tracking in control trial.

Algorithm  MegiEnent el y-Axisim)  Positionim)
CIMM 5.3504 5.6552 8.6531
ATPM-PIMM [3] Unadded 4.7714 5.4412 8.0322
ATPFC-IMM 3.0197 3.1945 4.9433
CIMM 13.7502 14.2969 20.1896
ATPM-PIMM [3] Added 13.4140 14.0470 19.8215
ATPFC-IMM 9.0937 9.5531 13.3783
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Figure 5. Distribution of model probability and probability errors in control trial. (a) Probability of
CV model without measurement noise; (b) probability of CT model without measurement noise;
(c) probability of CV model with measurement noise; (d) probability of CT model with measurement

noise; (e) probability error of models without measurement noise; (f) probability error of models with
measurement noise.

4.2. Experiment 2

In this subsection, the target had a more complex maneuvering pattern than in Experi-
ment 1, first making a turning motion to the right that lasted 50 s, then making a turning
motion to the left that also lasted 50 s, making the two motions four times in a row for a
total of 400 s. The motion trajectory of the target is shown in Figure 6.

Target trajecto
7000 T T 9 ) T L

6000
5000
g 4000
3000

2000

1000 ' '

1 1 1 1 1 1
0 2000 4000 6000 8000 10000 12000 14000 16000 18000
x(m)

Figure 6. Maneuvering target-motion trajectory with two turning motions.

The model set was designed as follows: CT model with a constant angular rate
(w =0.035 rad/s; this parameter controlled turning to the right: CT-R) and CT model with
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a constant angular rate (w = —0.035 rad/s; this parameter controlled turning to the left:
CT-L). The configuration parameters of the algorithms were the same as in Experiment 1.

First, the probability transfer matrix was designed according to Equation (21) and
experiments without adding measurement noise versus adding measurement noise were
designed and recorded as Experiment 2-1; then, the probability transfer matrix was de-
signed according to Equation (27) and the same experiments were conducted and recorded
as Experiment 2-2.

In Figure 7, the model probability distribution and model probability error of the
tracking algorithms can be seen for each tracking algorithm when the maneuvering target-
motion state is switched. Figure 7 shows that the model probability in the ATPFC-IMM
algorithm better matches the real situation of the target, and the model probability error is
minimized accordingly. The three algorithms with good performance are the ATPFC-IMM
algorithm, ATPM-PIMM [3] algorithm, and CIMM algorithm in that order. In Table 4, the
ATPM-PIMM |[3] algorithm is able to slightly reduce the tracking error compared to the
CIMM algorithm, and the tracking error of ATPFC-IMM is further reduced.

For the sake of brevity of the experimental part, only the tracking error of Experiment
2-2 was counted in this paper. In Table 5, the tracking performances of the three algorithms
in this experiment perform the same as in Table 4. The ATPFC-IMM algorithm has the
lowest tracking error, followed by the ATPM-PIMM [3] algorithm and the CIMM algorithm.
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Figure 7. Distribution of model probability and probability errors in Experiment 2. (a) Probability
of CT-L model without measurement noise; (b) probability of CT-R model without measurement
noise; (c) probability of CT-L model with measurement noise; (d) probability of CT-R model with
measurement noise; (e) probability error of models without measurement noise; (f) probability error
of models with measurement noise.

Table 4. RMSEs of position tracking in Experiment 2-1.

Algorithm Measultement RM§E of RMsE of Rl}/I.SE of
Noise x-Axis/(m) y-Axis/(m) Position/(m)

CIMM 6.3057 12.7035 14.9693
ATPM-PIMM |[3] Unadded 6.1202 12.8428 14.8355
ATPFC-IMM 4.6364 9.5192 11.0814
CIMM 15.7992 23.9586 28.8754
ATPM-PIMM |[3] Added 15.8645 23.8320 28.8369
ATPFC-IMM 13.9693 21.0919 25.4698

Table 5. RMSEs of position tracking in Experiment 2-2.

Algorithm Measul:ement RM§E of RM?E of RI.VI.SE of
Noise x-Axis/(m) y-Axis/(m) Position/(m)
CIMM 4.7026 7.1481 9.2974
ATPM-PIMM [3] Unadded 4.4345 6.5464 8.5476
ATPFC-IMM 3.6148 4.7559 6.5612
CIMM 12.8534 19.4745 23.6441
ATPM-PIMM [3] Added 11.9888 18.4349 22.3480
ATPFC-IMM 11.6783 17.7896 21.5809

4.3. Experiment 3

In this scenario, a strong maneuvering target in real applications was simulated. A set
of complex maneuvering unmanned aerial vehicle (UAV) target trajectory data observed
by pulse-Doppler radar was used as the real target trajectory. The ATPFC-IMM algorithm,
ATPM-PIMM [3] algorithm, and CIMM algorithm were used to observe this UAV target.
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In this experiment, a CT model (w = —0.35 rad/s) was added; at this time, the model
set included a CV model, two CT models (w = +0.35 rad/s), and the sampling period
was 1 s; the transfer equation of the UAV target state and the measurement noise were
the same as in Experiment 1. This experiment mainly analyzed the tracking of complex
maneuvering targets by each target tracking algorithm, and the probability transfer matrix,
Py, is designed as follows:

08 0.1 0.1
P = |01 08 0.1 (28)
01 01 08

Based on the above simulation experimental conditions, the tracking results of the
ATPFC-IMM algorithm, ATPM-PIMM algorithm, and CIMM algorithm are shown in
Figure 8. In order to investigate the robustness of the ATPFC-IMM algorithm proposed
in this paper in tracking complex maneuvering targets, the same measurement noise as
in Experiment 1 was added to the measurement process tracked by each target tracking
algorithm. In the two zoomed-in areas marked, it can be seen that the tracked trajectories
of the ATPM-PIMM and CIMM algorithms slightly deviate from the true trajectory of the
target. In addition, the tracked trajectory of the ATPFC-IMM algorithm is closer to the true
trajectory of the maneuvering target with the UAV. The RMSE:s of the tracked trajectories of
the above three algorithms are shown in Table 6.

90 90
60 120 60
6000 6000
4000 30 150 4000 30
2000 2000
Real Track Real Track
— — — -CIMM Track — — — -CIMM Track
............. ATPM-P|MM Track O 180 - 0 ATPM-PlMM Track 0
ATPFC-IMM Track ATPFC-IMM Track

T (.%‘. : 330 ~ga | 330
R Y ":
300 240 300
270 270
(a) (b)

Figure 8. The tracking trajectory of three algorithms for the maneuvering target. (a) The tracking
trajectory of three algorithms without measurement noise. (b) The tracking trajectory of three
algorithms with measurement noise.

In Figure 8b, it can be seen that both the ATPM-PIMM [3] algorithm and the CIMM
algorithm are affected by the noise of the measurement process, the tracked trajectories
of the ATPM-PIMM [3] algorithm and the CIMM algorithm in Figure 8b deviate from the
target’s real trajectory to an increased extent, and the ATPFC-IMM algorithm exhibits a
better tracking performance. The RMSEs of the tracked trajectories for each algorithm with
measurement noise are also recorded in Table 6.

In Table 6, the tracking errors of all three algorithms increase after adding measurement
noise; the position tracking accuracy is improved by 5.7% in the ATPM-PIMM [3] algorithm
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compared with the CIMM algorithm, and improved by 19.6% in the ATPFC-IMM algorithm
compared with the CIMM algorithm.

Table 6. RMSEs of position tracking in Experiment 3.

Algorithm Measul:ement RM.SE of RM?E of RI.VI.SE of
Noise x-Axis/(m) y-Axis/(m) Position/(m)

CIMM 33.5938 37.0065 55.7760
ATPM-PIMM [3] Unadded 28.8964 33.7882 49.5958
ATPFC-IMM 20.9961 22.8124 33.8124
CIMM 58.1596 56.8049 82.7898
ATPM-PIMM [3] Added 54.6615 54.1209 78.0547
ATPFC-IMM 46.5514 46.9047 66.5357

5. Application and Analysis

This section mainly focuses on the application effectiveness of the ATPFC-IMM al-
gorithm. The CIMM algorithm and the ATPFC-IMM algorithm were applied to the data
processing of the actual PD radar, containing target-motion scenarios. The targets per-
formed circular maneuvers and continuous-turning maneuvers in the scenarios. The track
information on the radar terminal can reflect the tracking performance of both algorithms
for complex maneuvering targets in the real environment.

The PD radar utilized in this study worked at the frequency of 9.6-12 GHz. A trans-
mitting power of 320 W, a minimum detectable range of 150 m, a range resolution of 30 m,
both azimuth and elevation resolutions of 0.6°, a data rate of 6 s, a maximum detection
distance of 20 km, and a beam coverage of 360° were achieved. Furthermore, this PD radar
was capable of detecting and tracking target velocities in the range of 0.3 m/s to 100 m/s.
The physical diagram of the radar is shown in Figure 9, while more detailed parameters
are presented in Table 7.

Unmanned Aerial Vehicle

Figure 9. PD radar for UAV observation application scenarios.
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Table 7. Some important indicators and parameters of the PD radar in this application.
Indicators Specifications Indicators Specifications
Range >7 km Height >400 m
Ranging Accuracy <15m Azimuth <0.6°
Accuracy
Pitch Accuracy <0.6° D1stan.ce <30 m
Resolution

A model set of six models was configured, including two CV models, two CT models,
a CS model, and a CA model [14]. The probability transfer matrix, P;, is set as:

05 01 01 01 01 0.1
01 05 01 01 0.1 0.1
01 01 05 0.1 01 0.1

Pe="101 01 01 05 01 01 (29)
01 01 01 01 05 0.1

01 01 01 01 01 0.5

In this section, the maneuverable target of interest was replaced with the DJI Phantom
4 drone, it is displayed in the Figure 10. This drone has a maximum flight speed of 20 m/s,
ascent speed of up to 6 m/s, descent speed of up to 3 m/s, and a maximum flight altitude of
6000 m. The drone was launched in an air space approximately 5 km away from the radar.
The trajectory information of the UAV target observed by the PD radar was displayed on

the radar terminal in real time.
B |
A ‘ ) . .
o ‘}4( ALt

f
ey { o

i
° ;/ ® _‘!_ -

my :u- -!

Tl.ﬂ‘ \

(a) (b)

Figure 10. The UAV target in PD radar observation scenarios. (a) DJI Phantom 4 drone; (b) an
example of UAV flight form.

5.1. Case 1 (Circular Maneuvering)

In this case, the observation group included a target with complex maneuvers, primar-
ily performing a series of irregular curved movements, circular maneuvers, and related
maneuvers. The unmanned aerial vehicle (UAV) performed maneuvers in the airspace
approximately 5 km away from the radar installation site. Considering this specific UAV as
the target of observation, its initial flight speed at this position was estimated to be around
20 m/s. During maneuvering, the speed may decrease, and the direction vector of the
velocity can also undergo changes. The direction of velocity is defined as positive when
moving away from the radar and negative when moving towards the radar. The tracking
results are shown in Figure 11.
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No. 110
Point.Num 36
Distance(m) 6378
Speed(m/s) 23.2
Height(m) 449.348
Azimuth(°) 239.82
Amp(dB) 48.4976
SNR(dB) 27
UAV 0

No. 144
Point.Num 137
Distance(m) 6382
Speed(m/s) 23.2

Height(m) 446.297
Azimuth(®) 239.78
Amp(dB)  48.4976
SNR(dB) 27
UAV 0

No. 132
Point.Num 19
Distance(m) 4760
Speed(m/s) -7.5
Height(m) 601.531
Azimuth(°)  230.08
Amp(dB) 46.6083
SNR(dB) 34
UAV 1

No. 144
Point.Num 201
Distance(m) 4760
Speed(m/s) -7.5
Height(m) 600.707
Azimuth(®)  230.07
Amp(dB) 46.6083
SNR(dB) 34
0

No. 144
Point.Num 182
Distance(m) 6035
Speed(m/s) -23.1
Height(m) 509.194
Azimuth(®) 210.68
Amp(dB) 46.4029
SNR(dB) 24
UAV 0

Figure 11. Radar terminal displays of CIMM algorithm and ATPFC-IMM algorithm during circular
maneuvering of the target. (a) The first-half process in the CIMM algorithm; (b) the second-half
process in the CIMM algorithm; (c) the first-half process in the ATPFC-IMM algorithm; (d) the
second-half process in the ATPFC-IMM algorithm; (e) a circular maneuvering area of the CIMM
algorithm; (f) a circular maneuvering area of the ATPFC-IMM algorithm.

In Figure 11, the target trajectory information is presented, including the trajectory
number and the number of target points in the trajectory (trajectory length). This study pri-
marily focused on the number of target points in the trajectory (Point.Num). In Figure 11a,
the target performs a series of circular maneuvers, but no trajectory information is available
(target tracking lost). The target continues the circular maneuver, with a trajectory number
of 110 and 36 target points in the trajectory. In Figure 11b, it can be observed that the
trajectory number is no longer 110 but 132, with 19 target points in the trajectory, indicating
a trajectory interruption (target tracking lost). Additionally, no trajectory is generated in
the red elliptic region (target circular maneuver), as shown in Figure 11e, which indicates
severe target tracking loss in the CIMM algorithm in this case.
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The application of the ATPFC-IMM algorithm is demonstrated in Figure 11c,d f. In
Figure 11c, the target track number is 144 and the trajectory length is 137. After the
maneuver of the target, the observed trajectory is displayed in Figure 11d, with the track
index still being 144, and the track length (Point.Num) increasing to 201. (The white points
represent the original radar detections, while yellow points represent the target points
in the trajectory). Continuous tracking is also maintained in the maneuvering area in
Figure 11f. Therefore, compared to Figure 11a,b,e (the application of the CIMM algorithm),
at the same time instance, this trajectory has significantly more target points, enabling the
continuous tracking of the maneuvering target.

5.2. Case 2 (Continuous-Turning Maneuvers)

In case 2, the CIMM algorithm and ATPFC-IMM algorithm were applied to the PD
radar after observing a group of targets performing continuous-turning maneuvers. The
radar terminal displays corresponding to the CIMM algorithm and ATPFC-IMM algo-
rithm are shown in Figures 12 and 13, respectively. Similarly, the comparative anal-
ysis of relevant tracking information on the radar terminal enables the assessment of
algorithmic performance.

The target tracking

trajectory dropout.
No. 161

Point.Num 62

Distance(m) 3209
Speed(m/s) 46.3

Height(m) -10.6414
Azimuth(®)  290.47
Amp(dB) 99.381
SNR(dB) 17
UAV 1

® 00000 oo

Figure 12. The display of the CIMM algorithm on the radar terminal during continuous-turning
maneuvers of the target (throughout the entire maneuver cycle).

The tracking without

trajectory dropout.
NO. 155 'o° Yoo

Point.Num 77
Distance(m) 3159
Speed(m/s) 59.1

Height(m) -12.681
Azimuth(°) 288.7
Amp(dB) 116.919
SNR(dB) 32
UAV 1

Figure 13. The display of the ATPFC-IMM algorithm on the radar terminal during continuous-turning
maneuvers of the target (throughout the entire maneuver cycle).
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The application of the CIMM algorithm in case 2 is illustrated in Figure 12, where the
track number of the maneuvering target is identified as 161, encompassing 62 target points.
Additionally, it is observed that the tracking experiences point dropouts at locations with
four track losses in the vicinity of target maneuvers. The intermittent loss of target tracking
results in a certain level of sparsity in the overall track representation on the terminal and
leads to the failure of fully capturing the continuous-turning maneuvering target.

The application of the ATPFC-IMM algorithm in this particular case is shown in
Figure 13. To facilitate a more rigorous comparison between the tracking performance
of the ATPFC-IMM and CIMM algorithms for maneuvering targets, a snapshot of the
radar display terminal in Figure 13 is taken at the same moment as Figure 12. No target
points were detected at the marked positions in Figure 12, particularly at the fourth marked
position where five target points were lost. When setting the radar’s data working rate at
6 s, the CIMM algorithm effectively resulted in a target loss phenomenon lasting for 20 s to
30 s at the fourth marked position. Conversely, Figure 13 reveals the presence of points in
the regions marked throughout the target maneuvering area. In Figure 13, the track number
of the target is identified as 155, comprising 77 target points. Figure 12 (corresponding to
the CIMM algorithm) only includes 62 target points; it indicates a 24.2% improvement in
the track length (continuity of radar tracking) by the ATPFC-IMM algorithm. Furthermore,
at the four marked positions in Figure 13, the presence of yellow data points indicates
uninterrupted radar tracking, without the track dropout being observed. Thus, in terms of
target track length, the ATPFC-IMM algorithm has a better performance than the CIMM
algorithm and demonstrates superior overall tracking continuity.

6. Conclusions

In this paper, an adaptive maneuvering target tracking algorithm (ATPFC-IMM) appli-
cable to a PD radar was proposed. The ATPFC-IMM algorithm combines the method of the
adaptive correction of the probability transfer matrix and fuzzy control system. Especially,
the fuzzy control system was designed to optimize the allocation of probabilities to each
model. By employing two such approaches, the response time of model switching was
effectively decreased, and the tracking performance of the ATPFC-IMM algorithm for the
maneuvering target was enhanced. A comprehensive set of simulation and application
analyses was conducted, compared with the classical IMM algorithm. The tracking accu-
racy and continuity of maneuvering target tracking were improved by the ATPFC-IMM
algorithm. In the applications of specific PD radars, the ATPFC-IMM algorithm achieved
a considerably satisfactory performance in maneuvering target tracking. In addition, the
ATPFC-IMM algorithm exhibited sensitivity to measurement noise, as evidenced by the
fluctuation in model probabilities within a relatively small range; but, it could still improve
the tracking performance. In our future work, it is necessary to investigate strategies for
noise resistance of ATPFC-IMM algorithms and improve the adaptive tracking performance
of the algorithm when facing stronger maneuvering targets.
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