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Abstract: Monitoring salt marshes with remote sensing is necessary to evaluate their state and
restoration. Determining appropriate techniques for this can be overwhelming. Our study provides
insight into whether a pixel- or object-based Random Forest classification approach is best for
mapping vegetation in north temperate salt marshes. We used input variables from drone images
(raw reflectances, vegetation indices, and textural features) acquired in June, July, and August
2021 of a salt marsh restoration and reference site in Aulac, New Brunswick, Canada. We also
investigated the importance of input variables and whether using landcover classes representing
areas of change was a practical way to evaluate variation in the monthly images. Our results indicated
that (1) the classifiers achieved overall validation accuracies of 91.1–95.2%; (2) pixel-based classifiers
outperformed object-based classifiers by 1.3–2.0%; (3) input variables extracted from the August
images were more important than those extracted from the June and July images; (4) certain raw
reflectances, vegetation indices, and textural features were among the most important variables; and
(5) classes that changed temporally were mapped with user’s and producer’s validation accuracies of
86.7–100.0%. Knowledge gained during this study will inform assessments of salt marsh restoration
trajectories spanning multiple years.

Keywords: image classification; ecological restoration; wetland; pixel-based image analysis; object-
based image analysis; Random Forest; Bay of Fundy

1. Introduction

Although wetlands occupy approximately 2–6% of the earth’s surface, they fulfill
many ecological functions [1,2]. Wetlands provide carbon sequestration [3,4]; support soil
formation and stabilization [5,6]; supply food, water, and plant biomass [7–9]; and serve
as cultural and recreational areas [10,11]. The quality and quantity of ecosystem services
provided by wetlands varies depending on their type, hydrology, water chemistry, soils,
and plant species [12–15]. Unfortunately, global wetland loss has been extensive because of
anthropogenic activities, including agriculture, urbanization, aquaculture, and industry,
as well as climate change [16,17]. Major efforts are being made to restore wetlands and
the beneficial services they provide [18–21]. Understanding vegetation dynamics during
wetland restoration can aid in assessing and modeling the recovery trajectory, evaluating
ecosystem services, and planning future restoration projects [22,23].

The ecological importance of wetlands and their vegetation dynamics highlight the
need for reliable, accurate, and efficient methods to monitor vegetation changes. Remote
sensing offers practical ways to monitor vegetation distributions in areas that are difficult to
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access on foot, including wetlands. Indeed, many initiatives to create wetland classification
systems and inventories (maps displaying the extent and distribution of wetlands over a
geographical area) have been made at regional, national, and international scales [24,25].
The wetlands of interest in our study were coastal salt marshes in Atlantic Canada, which
have been part of the Canadian Wetland Classification System since its development in
2002 [24,25].

Aerial imagery acquired using sensors fixed to planes [26–28] and satellites, including
Sentinel [29], Landsat [30–33], Worldview [33], and others [34], has been successfully used
for mapping coastal wetlands. Very-high-spatial-resolution aerial imagery can be acquired
using sensors fixed to drones, which have recently (compared to planes and satellites)
become popular tools for environmental monitoring and have also been used to map
coastal wetland vegetation and its changes [35–41]. Prior to the development of very-high-
spatial-resolution drone and satellite imagery, which are especially valuable for assessing
differences in heterogeneous wetland communities with species composition differing
at the scale of centimeters [42], a prevalent challenge in mapping wetlands (including
salt marshes) was that the spatial resolution of images was too low to assess fine-scale
ecological dynamics [43]. Lower-resolution satellites (e.g., Landsat) have typically been
restricted to assessing regional extent and loss of marshes [30–33]. Despite the desire for
higher-spatial-resolution imagery for mapping coastal wetlands, such resolution does not
always equate to higher classification accuracy [44], especially as classifications become
more complicated with additional landcover classes that can now be detected. In addition
to achieving very high resolution, using drone imagery for environmental monitoring is
cost- and user-friendly compared to imagery acquired with conventional air- and spacecraft.
Drones operate beneath cloud cover and can be deployed whenever the weather permits,
making image acquisition at regular temporal intervals possible and facilitating analysis of
vegetation dynamics [45]. As additional images are added to a set of multi-temporal images,
however, the time associated with fieldwork, image acquisition, and image processing
increases the complexity and financial cost of a monitoring project. Overall, there are many
considerations when planning an environmental monitoring project using remote sensing
techniques, including which image classification methods are most appropriate.

Much effort has been made to develop image classification methods for vegetation
mapping and change analysis, including traditional pixel-based (PB) [46,47] and, more
recently, object-based (OB) methods [47,48]. Differences in these methods are attributed
to the fundamental unit of analysis. For PB techniques, this is an image pixel, while for
OB techniques, image objects (groups of pixels) are first created using image segmentation.
Selecting the appropriate method depends partially on the sizes of the features of interest
and the spatial resolution of the imagery. PB classification approaches have typically been
used for wetland mapping in Canada [25], but OB classification is preferred when objects
of interest are substantially larger than the spatial resolution of pixels, which is common
when using very-high-spatial-resolution drone imagery [48]. Image segmentation can,
however, introduce over- and under-segmentation errors by incorrectly grouping pixels
where segments do not represent the heterogeneity of plant communities [49,50]. Selecting
optimal segmentation settings for an entire wetland landscape can be challenging due to
the potential ranges of wetland vegetation sizes [51]. Among studies specifically inves-
tigating whether PB or OB methods are more suitable for classifying imagery acquired
over coastal wetlands [50,52], Martinez Prentice et al. [50] found that PB classification
slightly out-performed OB classification for wetlands in Estonia, while Zheng et al. [52]
found that OB outperformed PB for wetlands in China. When inspecting studies in other
wetland environments that use very-high-spatial-resolution multispectral images but do
not directly compare classification approaches, there is a preference for using OB meth-
ods [27,40,44,53] over PB methods [37]. Within a PB or OB framework (i.e., using either
pixels or objects as the base unit of image analysis), many commonly used classification
algorithms can be applied for mapping coastal wetland vegetation, such as machine learn-
ing algorithms, including Maximum Likelihood [32], Support Vector Machine [40], and



Remote Sens. 2024, 16, 1049 3 of 31

Random Forest (RF) [33,34,36,40,50,54]; deep learning algorithms, including Artificial Neu-
ral Networks [38,44,52]; K-Nearest Neighbours [27]; etc. In general, many studies have
investigated the suitability of the available classification algorithms for coastal wetlands
and obtained varying results. Among machine learning algorithms, Random Forest is often
one of the highest performing [25,52]. A lack of consensus indicates that more research
is needed to determine which classification approach, including the base unit of analysis
(pixel- or object-based) and algorithm (RF, etc.), is best for mapping vegetative communities
of coastal wetlands, including the salt marshes of Atlantic Canada.

Our study navigates the intricate task of selecting effective techniques for monitoring
salt marshes through remote sensing, aiming to streamline the process of choosing classifi-
cation methods tailored for salt marsh mapping in Atlantic Canada. Using drone imagery
captured during the growing season of June, July, and August 2021 at a salt marsh restora-
tion and reference site in Aulac, New Brunswick, we sought to identify the optimal Random
Forest classification approach—considering both pixel- and object-based methods—for
mapping the vegetation within these marshes. Our landcover classes included single and
mixed plant species, bare ground, water, various substratum types typical of salt marshes,
as well as specific classes to assess monthly image variations (change classes) [46,55,56]. We
delved into key input variables for classification, such as reflectance information, vegetation
indices, and textural features, and so incorporated a more extensive array of input image
variables compared to other remote sensing studies in salt marsh mapping. By evaluating
the importance of input variables from June, July, and August, our study provided insight
into the value of multi-temporal classification and the times of year that contribute most to
achieving high classification accuracy. Our ultimate goal is to guide future classification and
change-detection projects in the relatively understudied salt marshes of Atlantic Canada
(and other north temperate geographic locations), providing valuable insights for selecting
classifiers when using multispectral drone imagery to monitor them.

2. Materials and Methods
2.1. Study Area

The study area in Aulac is located at the head of the Cumberland Basin within the
Bay of Fundy (latitude: 45◦51′31′′N, longitude: 64◦18′15′′W; Figure 1). Semi-diurnal tidal
amplitudes in the Cumberland Basin reach more than 12 m [57]. A managed realignment
salt marsh restoration project began here in 2009 under the leadership of Ducks Unlimited
Canada (DUC) and partners [23,58–60]. The project consists of two restoration (B, C) and
two reference (A, D) sites; the study areas of focus for the present paper were the Western
reference and restoration sites (A and B, Figure 1). Among the plant taxa present in the sites,
we were particularly interested in mapping ecologically significant ones, namely, Spartina
alterniflora (saltwater cordgrass, syn. Sporobolus alterniflorus; [61,62]) and Spartina patens (salt
marsh hay, syn. Sporobolus pumilus), which are central during restoration [23,60]. We used
imagery from when the restoration was in its 11th year (2021) after dike breach, and the
low-elevation bioengineer species of salt marshes in eastern North America, S. alterniflora,
dominated the site. The reference site is mainly mid-elevation salt marsh dominated by
S. patens (typical of Bay of Fundy salt marshes [60]), with S. alterniflora restricted to creeks
and seaward edges. Other vegetation present in the sites were terrestrial species growing
on the high-elevation dike, and coastal species freshwater cordgrass (Spartina pectinata (syn.
Sporobolus michauxianus)) and seaside arrowgrass (Triglochin maritima). Species growing in
low densities and usually mixed with other vegetation included maritime orach (Atriplex
spp.), sea lavender (Limonium carolinianum), seaside alkali grass (Puccinellia maritima), sea-
blite (Suaeda spp.), sea milkwort (Lysimachia maritima), seaside plantain (Plantago maritima),
seaside goldenrod (Solidago sempervirens), and sea glasswort (Salicornia maritima) [59];
hereafter, we refer to these various plants by their genus names, except for the Spartina
grasses. The phenological growing period of vegetation in these marshes is from early June,
when above-ground biomass first emerges from below-ground roots and rhizomes, to late
September, when plants begin to senesce [23].
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Figure 1. Location of studied salt marshes in Aulac, New Brunswick, in a Google Earth™ image of
New Brunswick (insert); details include restoration sites (outlined in yellow) and reference sites (red).
The sites examined in our paper were A and B.

2.2. Field Data

Field data were collected on 11 June, 11 July, and 8–10 August 2021, using stratified
random sampling with quadrats (0.5 × 0.5 m) along three transects in the reference site
and four transects in the restoration site (15 quadrats transect−1 sampling round−1). In
addition, the perimeter of the sites was surveyed on foot to ensure that all landcover classes
were documented. Within each quadrat, the landcover class was recorded, and plant stems
were identified and counted. Photographs and GPS points were acquired for each quadrat
location. Between the two sites, a total of 30 classes were identified using field data and
mosaics of each month’s imagery displayed in true and false colour (Table 1).

Table 1. Names and descriptions of landcover classes used in the study. Corresponding class
number and colour codes included. Classes 1–15 were used in the classification of the restoration site
(Site B), and classes 1–9 and 16–30 were used in the classification of the reference site (Site A). See
Supplementary Table S1 for photographs of the vegetation classes and Supplementary Figures S1
and S2 for photographs of the other classes.

Class Number Class Color Code Name Description

1

Remote Sens. 2024, 16, x FOR PEER REVIEW 5 of 32 
 

 

Table 1. Names and descriptions of landcover classes used in the study. Corresponding class number 
and colour codes included. Classes 1–15 were used in the classification of the restoration site (Site B), 
and classes 1–9 and 16–30 were used in the classification of the reference site (Site A). See Supplemen-
tary Table S1 for photographs of the vegetation classes and Supplementary Figures S1 and S2 for 
photographs of the other classes. 

Class 
Number 

Class Color 
Code 

Name Description 

1 

 

 
 

Bare mud exposed to air Bay of Fundy mud beyond the seaward edges of the sites. 

2  Compacted soil (dark) Compacted soil along the seaward edges of the sites as a result of past dike con-
struction. 

3  Rocks/eroded shoreline pieces 
Rocks washed up on shore. Also includes large chunks of shoreline that eroded 
from the edge of the sites. 

4 
 

 
 

Wrack Dead grass and algae that accumulated into mats and washed onto the sites. 

5  Spartina alterniflora (muddy) 
Assemblage dominated by saltwater cordgrass (Spartina alterniflora), the low-eleva-
tion bioengineer species of salt marshes in the region, with blades covered with 
some tidal mud. 

6  Spartina alterniflora (clean, dense) 
Assemblage dominated by saltwater cordgrass (S. alterniflora) that is not muddy 
and is growing densely 

7  Spartina patens 
Assemblage dominated by salt marsh hay (Spartina patens), the mid-elevation bio-
engineer species of salt marshes in the region. 

8  Deep salt pool water 
Deep water contained in salt pools (depressions in the marsh that retain water at 
low tide). 

9  

Bare mud exposed to air (June) → clean 
S. alterniflora growing in dense assem-
blages (July, August) 

Bay of Fundy mud in the June imagery which is colonized by S. alterniflora in the 
July and August imagery. 

10  Compacted soil (light) 
Highly compacted soil that appears light in the imagery, likely due to high sand 
and/or salt content. 

11  Wood 
Woody debris that has been washed into the site or remnants of past dike construc-
tion. 

12  Spartina pectinata 
Freshwater cordgrass (Spartina pectinata) occupying high-elevation areas next to the 
dike. 

13  S. alterniflora (clean, sparse) 
Saltwater cordgrass (S. alterniflora) that is not muddy and is growing in sparse as-
semblages. 

14 
 

 
 

S. alterniflora → Wrack  Areas of S. alterniflora in June and July that became covered in wrack by August. 

15 
 

 
 

Dike vegetation Unidentified terrestrial plant species that grow on top of the high-elevation dike areas.  

16  Triglochin maritima 
Assemblage dominated by seaside arrowgrass (Triglochin maritima), a common salt 
marsh plant with fleshy dark-green stems. 

17  
Mixed mid-elevation vegetation (S. pa-
tens, Puccinellia, etc.) 

Mixed assemblages of vegetation, including S. patens, Puccinellia maritima, Lysim-
achia maritima, Plantago maritima, Solidago sempervirens, Argentina anserina, and Limo-
nium carolinianum. 

18 
 

 
 

Floating green algae Green algae (Chlorophyta) floating on top of salt pool water. 

19  
Emerged salt pool mud (June) → shal-
low salt pool water (July, August) 

Mud within salt pools that was exposed to the air in the June imagery and covered 
in water in the July and August imagery. Water level is variable in salt pools and 
controlled by evaporation, spring tides, and rain events. 

20 
 

 
 

Emerged salt pool mud (salty) Mud within salt pools that was exposed to the air in the imagery of each month. 

Bare mud exposed to air Bay of Fundy mud beyond the seaward edges of
the sites.

2

Remote Sens. 2024, 16, x FOR PEER REVIEW 5 of 32 
 

 

Table 1. Names and descriptions of landcover classes used in the study. Corresponding class number 
and colour codes included. Classes 1–15 were used in the classification of the restoration site (Site B), 
and classes 1–9 and 16–30 were used in the classification of the reference site (Site A). See Supplemen-
tary Table S1 for photographs of the vegetation classes and Supplementary Figures S1 and S2 for 
photographs of the other classes. 

Class 
Number 

Class Color 
Code 

Name Description 

1 

 

 
 

Bare mud exposed to air Bay of Fundy mud beyond the seaward edges of the sites. 

2  Compacted soil (dark) Compacted soil along the seaward edges of the sites as a result of past dike con-
struction. 

3  Rocks/eroded shoreline pieces 
Rocks washed up on shore. Also includes large chunks of shoreline that eroded 
from the edge of the sites. 

4 
 

 
 

Wrack Dead grass and algae that accumulated into mats and washed onto the sites. 

5  Spartina alterniflora (muddy) 
Assemblage dominated by saltwater cordgrass (Spartina alterniflora), the low-eleva-
tion bioengineer species of salt marshes in the region, with blades covered with 
some tidal mud. 

6  Spartina alterniflora (clean, dense) 
Assemblage dominated by saltwater cordgrass (S. alterniflora) that is not muddy 
and is growing densely 

7  Spartina patens 
Assemblage dominated by salt marsh hay (Spartina patens), the mid-elevation bio-
engineer species of salt marshes in the region. 

8  Deep salt pool water 
Deep water contained in salt pools (depressions in the marsh that retain water at 
low tide). 

9  

Bare mud exposed to air (June) → clean 
S. alterniflora growing in dense assem-
blages (July, August) 

Bay of Fundy mud in the June imagery which is colonized by S. alterniflora in the 
July and August imagery. 

10  Compacted soil (light) 
Highly compacted soil that appears light in the imagery, likely due to high sand 
and/or salt content. 

11  Wood 
Woody debris that has been washed into the site or remnants of past dike construc-
tion. 

12  Spartina pectinata 
Freshwater cordgrass (Spartina pectinata) occupying high-elevation areas next to the 
dike. 

13  S. alterniflora (clean, sparse) 
Saltwater cordgrass (S. alterniflora) that is not muddy and is growing in sparse as-
semblages. 

14 
 

 
 

S. alterniflora → Wrack  Areas of S. alterniflora in June and July that became covered in wrack by August. 

15 
 

 
 

Dike vegetation Unidentified terrestrial plant species that grow on top of the high-elevation dike areas.  

16  Triglochin maritima 
Assemblage dominated by seaside arrowgrass (Triglochin maritima), a common salt 
marsh plant with fleshy dark-green stems. 

17  
Mixed mid-elevation vegetation (S. pa-
tens, Puccinellia, etc.) 

Mixed assemblages of vegetation, including S. patens, Puccinellia maritima, Lysim-
achia maritima, Plantago maritima, Solidago sempervirens, Argentina anserina, and Limo-
nium carolinianum. 

18 
 

 
 

Floating green algae Green algae (Chlorophyta) floating on top of salt pool water. 

19  
Emerged salt pool mud (June) → shal-
low salt pool water (July, August) 

Mud within salt pools that was exposed to the air in the June imagery and covered 
in water in the July and August imagery. Water level is variable in salt pools and 
controlled by evaporation, spring tides, and rain events. 

20 
 

 
 

Emerged salt pool mud (salty) Mud within salt pools that was exposed to the air in the imagery of each month. 

Compacted soil (dark) Compacted soil along the seaward edges of the
sites as a result of past dike construction.

3

Remote Sens. 2024, 16, x FOR PEER REVIEW 5 of 32 
 

 

Table 1. Names and descriptions of landcover classes used in the study. Corresponding class number 
and colour codes included. Classes 1–15 were used in the classification of the restoration site (Site B), 
and classes 1–9 and 16–30 were used in the classification of the reference site (Site A). See Supplemen-
tary Table S1 for photographs of the vegetation classes and Supplementary Figures S1 and S2 for 
photographs of the other classes. 

Class 
Number 

Class Color 
Code 

Name Description 

1 

 

 
 

Bare mud exposed to air Bay of Fundy mud beyond the seaward edges of the sites. 

2  Compacted soil (dark) Compacted soil along the seaward edges of the sites as a result of past dike con-
struction. 

3  Rocks/eroded shoreline pieces 
Rocks washed up on shore. Also includes large chunks of shoreline that eroded 
from the edge of the sites. 

4 
 

 
 

Wrack Dead grass and algae that accumulated into mats and washed onto the sites. 

5  Spartina alterniflora (muddy) 
Assemblage dominated by saltwater cordgrass (Spartina alterniflora), the low-eleva-
tion bioengineer species of salt marshes in the region, with blades covered with 
some tidal mud. 

6  Spartina alterniflora (clean, dense) 
Assemblage dominated by saltwater cordgrass (S. alterniflora) that is not muddy 
and is growing densely 

7  Spartina patens 
Assemblage dominated by salt marsh hay (Spartina patens), the mid-elevation bio-
engineer species of salt marshes in the region. 

8  Deep salt pool water 
Deep water contained in salt pools (depressions in the marsh that retain water at 
low tide). 

9  

Bare mud exposed to air (June) → clean 
S. alterniflora growing in dense assem-
blages (July, August) 

Bay of Fundy mud in the June imagery which is colonized by S. alterniflora in the 
July and August imagery. 

10  Compacted soil (light) 
Highly compacted soil that appears light in the imagery, likely due to high sand 
and/or salt content. 

11  Wood 
Woody debris that has been washed into the site or remnants of past dike construc-
tion. 

12  Spartina pectinata 
Freshwater cordgrass (Spartina pectinata) occupying high-elevation areas next to the 
dike. 

13  S. alterniflora (clean, sparse) 
Saltwater cordgrass (S. alterniflora) that is not muddy and is growing in sparse as-
semblages. 

14 
 

 
 

S. alterniflora → Wrack  Areas of S. alterniflora in June and July that became covered in wrack by August. 

15 
 

 
 

Dike vegetation Unidentified terrestrial plant species that grow on top of the high-elevation dike areas.  

16  Triglochin maritima 
Assemblage dominated by seaside arrowgrass (Triglochin maritima), a common salt 
marsh plant with fleshy dark-green stems. 

17  
Mixed mid-elevation vegetation (S. pa-
tens, Puccinellia, etc.) 

Mixed assemblages of vegetation, including S. patens, Puccinellia maritima, Lysim-
achia maritima, Plantago maritima, Solidago sempervirens, Argentina anserina, and Limo-
nium carolinianum. 

18 
 

 
 

Floating green algae Green algae (Chlorophyta) floating on top of salt pool water. 

19  
Emerged salt pool mud (June) → shal-
low salt pool water (July, August) 

Mud within salt pools that was exposed to the air in the June imagery and covered 
in water in the July and August imagery. Water level is variable in salt pools and 
controlled by evaporation, spring tides, and rain events. 

20 
 

 
 

Emerged salt pool mud (salty) Mud within salt pools that was exposed to the air in the imagery of each month. 

Rocks/eroded shoreline pieces
Rocks washed up on shore. Also includes large
chunks of shoreline that eroded from the edge of
the sites.



Remote Sens. 2024, 16, 1049 5 of 31

Table 1. Cont.

Class Number Class Color Code Name Description

4

Remote Sens. 2024, 16, x FOR PEER REVIEW 5 of 32 
 

 

Table 1. Names and descriptions of landcover classes used in the study. Corresponding class number 
and colour codes included. Classes 1–15 were used in the classification of the restoration site (Site B), 
and classes 1–9 and 16–30 were used in the classification of the reference site (Site A). See Supplemen-
tary Table S1 for photographs of the vegetation classes and Supplementary Figures S1 and S2 for 
photographs of the other classes. 

Class 
Number 

Class Color 
Code 

Name Description 

1 

 

 
 

Bare mud exposed to air Bay of Fundy mud beyond the seaward edges of the sites. 

2  Compacted soil (dark) Compacted soil along the seaward edges of the sites as a result of past dike con-
struction. 

3  Rocks/eroded shoreline pieces 
Rocks washed up on shore. Also includes large chunks of shoreline that eroded 
from the edge of the sites. 

4 
 

 
 

Wrack Dead grass and algae that accumulated into mats and washed onto the sites. 

5  Spartina alterniflora (muddy) 
Assemblage dominated by saltwater cordgrass (Spartina alterniflora), the low-eleva-
tion bioengineer species of salt marshes in the region, with blades covered with 
some tidal mud. 

6  Spartina alterniflora (clean, dense) 
Assemblage dominated by saltwater cordgrass (S. alterniflora) that is not muddy 
and is growing densely 

7  Spartina patens 
Assemblage dominated by salt marsh hay (Spartina patens), the mid-elevation bio-
engineer species of salt marshes in the region. 

8  Deep salt pool water 
Deep water contained in salt pools (depressions in the marsh that retain water at 
low tide). 

9  

Bare mud exposed to air (June) → clean 
S. alterniflora growing in dense assem-
blages (July, August) 

Bay of Fundy mud in the June imagery which is colonized by S. alterniflora in the 
July and August imagery. 

10  Compacted soil (light) 
Highly compacted soil that appears light in the imagery, likely due to high sand 
and/or salt content. 

11  Wood 
Woody debris that has been washed into the site or remnants of past dike construc-
tion. 

12  Spartina pectinata 
Freshwater cordgrass (Spartina pectinata) occupying high-elevation areas next to the 
dike. 

13  S. alterniflora (clean, sparse) 
Saltwater cordgrass (S. alterniflora) that is not muddy and is growing in sparse as-
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S. alterniflora → Wrack  Areas of S. alterniflora in June and July that became covered in wrack by August. 

15 
 

 
 

Dike vegetation Unidentified terrestrial plant species that grow on top of the high-elevation dike areas.  

16  Triglochin maritima 
Assemblage dominated by seaside arrowgrass (Triglochin maritima), a common salt 
marsh plant with fleshy dark-green stems. 

17  
Mixed mid-elevation vegetation (S. pa-
tens, Puccinellia, etc.) 

Mixed assemblages of vegetation, including S. patens, Puccinellia maritima, Lysim-
achia maritima, Plantago maritima, Solidago sempervirens, Argentina anserina, and Limo-
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Floating green algae Green algae (Chlorophyta) floating on top of salt pool water. 
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Emerged salt pool mud (June) → shal-
low salt pool water (July, August) 

Mud within salt pools that was exposed to the air in the June imagery and covered 
in water in the July and August imagery. Water level is variable in salt pools and 
controlled by evaporation, spring tides, and rain events. 
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Emerged salt pool mud (salty) Mud within salt pools that was exposed to the air in the imagery of each month. 

Wrack Dead grass and algae that accumulated into mats
and washed onto the sites.
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Emerged salt pool mud (salty) Mud within salt pools that was exposed to the air in the imagery of each month. 

Spartina alterniflora (muddy)

Assemblage dominated by saltwater cordgrass
(Spartina alterniflora), the low-elevation
bioengineer species of salt marshes in the region,
with blades covered with some tidal mud.
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(S. alterniflora) that is not muddy and is growing
densely
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Spartina patens
Assemblage dominated by salt marsh hay
(Spartina patens), the mid-elevation bioengineer
species of salt marshes in the region.
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Bare mud exposed to air (June) →
clean S. alterniflora growing in
dense assemblages (July, August)

Bay of Fundy mud in the June imagery which is
colonized by S. alterniflora in the July and August
imagery.
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Highly compacted soil that appears light in the
imagery, likely due to high sand and/or salt
content.
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Wood Woody debris that has been washed into the site
or remnants of past dike construction.
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16  Triglochin maritima 
Assemblage dominated by seaside arrowgrass (Triglochin maritima), a common salt 
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17  
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Mixed assemblages of vegetation, including S. patens, Puccinellia maritima, Lysim-
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19  
Emerged salt pool mud (June) → shal-
low salt pool water (July, August) 

Mud within salt pools that was exposed to the air in the June imagery and covered 
in water in the July and August imagery. Water level is variable in salt pools and 
controlled by evaporation, spring tides, and rain events. 
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Emerged salt pool mud (salty) Mud within salt pools that was exposed to the air in the imagery of each month. 

Spartina pectinata Freshwater cordgrass (Spartina pectinata)
occupying high-elevation areas next to the dike.

13

Remote Sens. 2024, 16, x FOR PEER REVIEW 5 of 32 
 

 

Table 1. Names and descriptions of landcover classes used in the study. Corresponding class number 
and colour codes included. Classes 1–15 were used in the classification of the restoration site (Site B), 
and classes 1–9 and 16–30 were used in the classification of the reference site (Site A). See Supplemen-
tary Table S1 for photographs of the vegetation classes and Supplementary Figures S1 and S2 for 
photographs of the other classes. 

Class 
Number 

Class Color 
Code 

Name Description 

1 

 

 
 

Bare mud exposed to air Bay of Fundy mud beyond the seaward edges of the sites. 

2  Compacted soil (dark) Compacted soil along the seaward edges of the sites as a result of past dike con-
struction. 

3  Rocks/eroded shoreline pieces 
Rocks washed up on shore. Also includes large chunks of shoreline that eroded 
from the edge of the sites. 

4 
 

 
 

Wrack Dead grass and algae that accumulated into mats and washed onto the sites. 

5  Spartina alterniflora (muddy) 
Assemblage dominated by saltwater cordgrass (Spartina alterniflora), the low-eleva-
tion bioengineer species of salt marshes in the region, with blades covered with 
some tidal mud. 

6  Spartina alterniflora (clean, dense) 
Assemblage dominated by saltwater cordgrass (S. alterniflora) that is not muddy 
and is growing densely 

7  Spartina patens 
Assemblage dominated by salt marsh hay (Spartina patens), the mid-elevation bio-
engineer species of salt marshes in the region. 

8  Deep salt pool water 
Deep water contained in salt pools (depressions in the marsh that retain water at 
low tide). 

9  

Bare mud exposed to air (June) → clean 
S. alterniflora growing in dense assem-
blages (July, August) 
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Woody debris that has been washed into the site or remnants of past dike construc-
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Dike vegetation Unidentified terrestrial plant species that grow on top of the high-elevation dike areas.  

16  Triglochin maritima 
Assemblage dominated by seaside arrowgrass (Triglochin maritima), a common salt 
marsh plant with fleshy dark-green stems. 

17  
Mixed mid-elevation vegetation (S. pa-
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Floating green algae Green algae (Chlorophyta) floating on top of salt pool water. 

19  
Emerged salt pool mud (June) → shal-
low salt pool water (July, August) 

Mud within salt pools that was exposed to the air in the June imagery and covered 
in water in the July and August imagery. Water level is variable in salt pools and 
controlled by evaporation, spring tides, and rain events. 
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Emerged salt pool mud (salty) Mud within salt pools that was exposed to the air in the imagery of each month. 

S. alterniflora (clean, sparse) Saltwater cordgrass (S. alterniflora) that is not
muddy and is growing in sparse assemblages.
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Emerged salt pool mud (salty) Mud within salt pools that was exposed to the air in the imagery of each month. 

S. alterniflora → Wrack Areas of S. alterniflora in June and July that
became covered in wrack by August.
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Emerged salt pool mud (salty) Mud within salt pools that was exposed to the air in the imagery of each month. 

Dike vegetation Unidentified terrestrial plant species that grow
on top of the high-elevation dike areas.
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S. alterniflora → Wrack  Areas of S. alterniflora in June and July that became covered in wrack by August. 

15 
 

 
 

Dike vegetation Unidentified terrestrial plant species that grow on top of the high-elevation dike areas.  

16  Triglochin maritima 
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low salt pool water (July, August) 
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Emerged salt pool mud (salty) Mud within salt pools that was exposed to the air in the imagery of each month. 

Triglochin maritima
Assemblage dominated by seaside arrowgrass
(Triglochin maritima), a common salt marsh plant
with fleshy dark-green stems.
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Dike vegetation Unidentified terrestrial plant species that grow on top of the high-elevation dike areas.  

16  Triglochin maritima 
Assemblage dominated by seaside arrowgrass (Triglochin maritima), a common salt 
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17  
Mixed mid-elevation vegetation (S. pa-
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Emerged salt pool mud (June) → shal-
low salt pool water (July, August) 
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Emerged salt pool mud (salty) Mud within salt pools that was exposed to the air in the imagery of each month. 

Mixed mid-elevation vegetation
(S. patens, Puccinellia, etc.)

Mixed assemblages of vegetation, including S.
patens, Puccinellia maritima, Lysimachia maritima,
Plantago maritima, Solidago sempervirens, Argentina
anserina, and Limonium carolinianum.
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Emerged salt pool mud (salty) Mud within salt pools that was exposed to the air in the imagery of each month. 

Floating green algae Green algae (Chlorophyta) floating on top of salt
pool water.
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low tide). 

9  

Bare mud exposed to air (June) → clean 
S. alterniflora growing in dense assem-
blages (July, August) 

Bay of Fundy mud in the June imagery which is colonized by S. alterniflora in the 
July and August imagery. 

10  Compacted soil (light) 
Highly compacted soil that appears light in the imagery, likely due to high sand 
and/or salt content. 

11  Wood 
Woody debris that has been washed into the site or remnants of past dike construc-
tion. 

12  Spartina pectinata 
Freshwater cordgrass (Spartina pectinata) occupying high-elevation areas next to the 
dike. 

13  S. alterniflora (clean, sparse) 
Saltwater cordgrass (S. alterniflora) that is not muddy and is growing in sparse as-
semblages. 

14 
 

 
 

S. alterniflora → Wrack  Areas of S. alterniflora in June and July that became covered in wrack by August. 

15 
 

 
 

Dike vegetation Unidentified terrestrial plant species that grow on top of the high-elevation dike areas.  

16  Triglochin maritima 
Assemblage dominated by seaside arrowgrass (Triglochin maritima), a common salt 
marsh plant with fleshy dark-green stems. 

17  
Mixed mid-elevation vegetation (S. pa-
tens, Puccinellia, etc.) 

Mixed assemblages of vegetation, including S. patens, Puccinellia maritima, Lysim-
achia maritima, Plantago maritima, Solidago sempervirens, Argentina anserina, and Limo-
nium carolinianum. 

18 
 

 
 

Floating green algae Green algae (Chlorophyta) floating on top of salt pool water. 

19  
Emerged salt pool mud (June) → shal-
low salt pool water (July, August) 

Mud within salt pools that was exposed to the air in the June imagery and covered 
in water in the July and August imagery. Water level is variable in salt pools and 
controlled by evaporation, spring tides, and rain events. 

20 
 

 
 

Emerged salt pool mud (salty) Mud within salt pools that was exposed to the air in the imagery of each month. 

Emerged salt pool mud (June) →
shallow salt pool water
(July, August)

Mud within salt pools that was exposed to the
air in the June imagery and covered in water in
the July and August imagery. Water level is
variable in salt pools and controlled by
evaporation, spring tides, and rain events.
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Bare mud exposed to air Bay of Fundy mud beyond the seaward edges of the sites. 
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from the edge of the sites. 
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Wrack Dead grass and algae that accumulated into mats and washed onto the sites. 
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tion bioengineer species of salt marshes in the region, with blades covered with 
some tidal mud. 

6  Spartina alterniflora (clean, dense) 
Assemblage dominated by saltwater cordgrass (S. alterniflora) that is not muddy 
and is growing densely 

7  Spartina patens 
Assemblage dominated by salt marsh hay (Spartina patens), the mid-elevation bio-
engineer species of salt marshes in the region. 

8  Deep salt pool water 
Deep water contained in salt pools (depressions in the marsh that retain water at 
low tide). 
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Bare mud exposed to air (June) → clean 
S. alterniflora growing in dense assem-
blages (July, August) 

Bay of Fundy mud in the June imagery which is colonized by S. alterniflora in the 
July and August imagery. 

10  Compacted soil (light) 
Highly compacted soil that appears light in the imagery, likely due to high sand 
and/or salt content. 

11  Wood 
Woody debris that has been washed into the site or remnants of past dike construc-
tion. 

12  Spartina pectinata 
Freshwater cordgrass (Spartina pectinata) occupying high-elevation areas next to the 
dike. 

13  S. alterniflora (clean, sparse) 
Saltwater cordgrass (S. alterniflora) that is not muddy and is growing in sparse as-
semblages. 

14 
 

 
 

S. alterniflora → Wrack  Areas of S. alterniflora in June and July that became covered in wrack by August. 

15 
 

 
 

Dike vegetation Unidentified terrestrial plant species that grow on top of the high-elevation dike areas.  

16  Triglochin maritima 
Assemblage dominated by seaside arrowgrass (Triglochin maritima), a common salt 
marsh plant with fleshy dark-green stems. 

17  
Mixed mid-elevation vegetation (S. pa-
tens, Puccinellia, etc.) 

Mixed assemblages of vegetation, including S. patens, Puccinellia maritima, Lysim-
achia maritima, Plantago maritima, Solidago sempervirens, Argentina anserina, and Limo-
nium carolinianum. 

18 
 

 
 

Floating green algae Green algae (Chlorophyta) floating on top of salt pool water. 

19  
Emerged salt pool mud (June) → shal-
low salt pool water (July, August) 

Mud within salt pools that was exposed to the air in the June imagery and covered 
in water in the July and August imagery. Water level is variable in salt pools and 
controlled by evaporation, spring tides, and rain events. 

20 
 

 
 

Emerged salt pool mud (salty) Mud within salt pools that was exposed to the air in the imagery of each month. Emerged salt pool mud (salty) Mud within salt pools that was exposed to the
air in the imagery of each month.
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Submerged aquatic vegetation Underwater Ruppia maritima and Chlorophyta in salt pools. 

22  
Deep salt pool water (June) → floating 
green algae (July, August) 

Deep water contained in salt pools in the June imagery which becomes covered in 
floating green algae in the July and August imagery. 

23  

Deep salt pool water (June) → sub-
merged aquatic vegetation (July, Au-
gust) 

Deep water contained in salt pools in the June imagery which becomes submerged 
aquatic vegetation in the July and August imagery. 

24  
Deep salt pool water (June, July) → 
submerged aquatic vegetation (August) 

Deep water contained in salt pools in the June and July imagery which becomes 
submerged aquatic vegetation in the August imagery. 

25 
 

 
 

Shallow salt pool water Shallow water contained in salt pools where the unvegetated pool bottom is visible. 

26  

Shallow salt pool water (June) → sub-
merged aquatic vegetation (July, Au-
gust) 

Shallow water contained in salt pools in the June imagery which becomes sub-
merged aquatic vegetation in the July and August imagery. 

27  

Floating green algae (June) → sub-
merged aquatic vegetation (July) → 
shallow salt pool water (August) 

Floating green algae (Chlorophyta) in the June imagery which becomes submerged 
aquatic vegetation in the July imagery and shallow salt pool water in the August 
imagery. 

28  
Floating green algae (June) → deep salt 
pool water (July, August) 

Floating green algae (Chlorophyta) in the June imagery which becomes deep salt 
pool water in the July and August imagery. 

29  
Wrack (June) → vegetated areas of S. al-
terniflora and S. patens (July, August) 

Wrack in the June imagery which washes away or becomes colonized by vegetation and 
appears as S. alterniflora and S. patens in the July and August imagery. 

30  
Mixed vegetation: S. alterniflora and S. pat-
ens 

Mixed assemblages of S. alterniflora and S. patens. 

2.3. Image Acquisition 
A MicaSense Dual Camera System (MicaSense, Seattle, WA, USA) mounted on a DJI 

Matrice 200 V2 aerial drone (DJI, Nanshan District, Shenzhen, China) was used to acquire 
multispectral drone images of the sites on 13 June, 12 July, and 10 August 2021 (Table 2). 
The image acquisitions were planned from shortly after the above-ground biomass had 
emerged (June) until after the vegetation was fully grown and flowering (August) but be-
fore it began to senesce (September) [23]. 

Table 2. Characteristics of multispectral drone images used in the study acquired in Aulac salt marshes 
in 2021. 

Month Site Start 
Time 

Tidal Height 
(m) * 

Cloud 
Cover 

Solar Azimuth 
(°) 

Solar Altitude 
(°) 

Course Angle 
(°) 

No. of 
Images 

June 
Reference 12:00 6.7 

Cumulus 
139 63 230 8550 

Restoration 12:33 7.9 155 66 230 7730 

July 
Reference 12:38 8.9 

Stratus 
155 64 230 7380 

Restoration 13:05 9.9 170 66 230 7560 

August 
Reference 10:43 5.5 

Stratus 
119 45 218 8180 

Restoration 11:14 6.9 128 50 218 7940 
(*) Tidal height obtained from the nearby Pecks Point, New Brunswick, tidal station. 

The camera system consisted of two five-band multispectral cameras, with the ten bands 
covering visible and near-infrared spectra (Table 3). Images that had a spatial resolution close 
to 7 cm were acquired with 80% front and side overlap between them and along a grid pattern 
at 100 m altitude over the sites and a horizontal speed of 10 m s−1. The drone was controlled 
using DJI Pilot mission planner software v1.1.5, a DJI Cendence remote controller, and a DJI 
CrystalSky tablet (Figure 2). Images of the MicaSense Calibrated Reflectance Spectralon Panel 
(RP04-1949202-OB; Figure 2E) were acquired immediately before and after each flight. 

Table 3. Spectral characteristics of the ten bands acquired by the MicaSense Dual-Camera system. 

Band Number Band Name Center of Wavelength (μm) Bandwidth (μm) 

Submerged aquatic vegetation Underwater Ruppia maritima and Chlorophyta in
salt pools.
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Submerged aquatic vegetation Underwater Ruppia maritima and Chlorophyta in salt pools. 

22  
Deep salt pool water (June) → floating 
green algae (July, August) 

Deep water contained in salt pools in the June imagery which becomes covered in 
floating green algae in the July and August imagery. 

23  

Deep salt pool water (June) → sub-
merged aquatic vegetation (July, Au-
gust) 

Deep water contained in salt pools in the June imagery which becomes submerged 
aquatic vegetation in the July and August imagery. 

24  
Deep salt pool water (June, July) → 
submerged aquatic vegetation (August) 

Deep water contained in salt pools in the June and July imagery which becomes 
submerged aquatic vegetation in the August imagery. 

25 
 

 
 

Shallow salt pool water Shallow water contained in salt pools where the unvegetated pool bottom is visible. 

26  

Shallow salt pool water (June) → sub-
merged aquatic vegetation (July, Au-
gust) 

Shallow water contained in salt pools in the June imagery which becomes sub-
merged aquatic vegetation in the July and August imagery. 

27  

Floating green algae (June) → sub-
merged aquatic vegetation (July) → 
shallow salt pool water (August) 

Floating green algae (Chlorophyta) in the June imagery which becomes submerged 
aquatic vegetation in the July imagery and shallow salt pool water in the August 
imagery. 

28  
Floating green algae (June) → deep salt 
pool water (July, August) 

Floating green algae (Chlorophyta) in the June imagery which becomes deep salt 
pool water in the July and August imagery. 

29  
Wrack (June) → vegetated areas of S. al-
terniflora and S. patens (July, August) 

Wrack in the June imagery which washes away or becomes colonized by vegetation and 
appears as S. alterniflora and S. patens in the July and August imagery. 

30  
Mixed vegetation: S. alterniflora and S. pat-
ens 

Mixed assemblages of S. alterniflora and S. patens. 

2.3. Image Acquisition 
A MicaSense Dual Camera System (MicaSense, Seattle, WA, USA) mounted on a DJI 

Matrice 200 V2 aerial drone (DJI, Nanshan District, Shenzhen, China) was used to acquire 
multispectral drone images of the sites on 13 June, 12 July, and 10 August 2021 (Table 2). 
The image acquisitions were planned from shortly after the above-ground biomass had 
emerged (June) until after the vegetation was fully grown and flowering (August) but be-
fore it began to senesce (September) [23]. 

Table 2. Characteristics of multispectral drone images used in the study acquired in Aulac salt marshes 
in 2021. 

Month Site Start 
Time 

Tidal Height 
(m) * 

Cloud 
Cover 

Solar Azimuth 
(°) 

Solar Altitude 
(°) 

Course Angle 
(°) 

No. of 
Images 

June 
Reference 12:00 6.7 

Cumulus 
139 63 230 8550 

Restoration 12:33 7.9 155 66 230 7730 

July 
Reference 12:38 8.9 

Stratus 
155 64 230 7380 

Restoration 13:05 9.9 170 66 230 7560 

August 
Reference 10:43 5.5 

Stratus 
119 45 218 8180 

Restoration 11:14 6.9 128 50 218 7940 
(*) Tidal height obtained from the nearby Pecks Point, New Brunswick, tidal station. 

The camera system consisted of two five-band multispectral cameras, with the ten bands 
covering visible and near-infrared spectra (Table 3). Images that had a spatial resolution close 
to 7 cm were acquired with 80% front and side overlap between them and along a grid pattern 
at 100 m altitude over the sites and a horizontal speed of 10 m s−1. The drone was controlled 
using DJI Pilot mission planner software v1.1.5, a DJI Cendence remote controller, and a DJI 
CrystalSky tablet (Figure 2). Images of the MicaSense Calibrated Reflectance Spectralon Panel 
(RP04-1949202-OB; Figure 2E) were acquired immediately before and after each flight. 

Table 3. Spectral characteristics of the ten bands acquired by the MicaSense Dual-Camera system. 

Band Number Band Name Center of Wavelength (μm) Bandwidth (μm) 

Deep salt pool water (June) →
floating green algae (July, August)

Deep water contained in salt pools in the June
imagery which becomes covered in floating
green algae in the July and August imagery.
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Submerged aquatic vegetation Underwater Ruppia maritima and Chlorophyta in salt pools. 

22  
Deep salt pool water (June) → floating 
green algae (July, August) 

Deep water contained in salt pools in the June imagery which becomes covered in 
floating green algae in the July and August imagery. 

23  

Deep salt pool water (June) → sub-
merged aquatic vegetation (July, Au-
gust) 

Deep water contained in salt pools in the June imagery which becomes submerged 
aquatic vegetation in the July and August imagery. 

24  
Deep salt pool water (June, July) → 
submerged aquatic vegetation (August) 

Deep water contained in salt pools in the June and July imagery which becomes 
submerged aquatic vegetation in the August imagery. 

25 
 

 
 

Shallow salt pool water Shallow water contained in salt pools where the unvegetated pool bottom is visible. 

26  

Shallow salt pool water (June) → sub-
merged aquatic vegetation (July, Au-
gust) 

Shallow water contained in salt pools in the June imagery which becomes sub-
merged aquatic vegetation in the July and August imagery. 

27  

Floating green algae (June) → sub-
merged aquatic vegetation (July) → 
shallow salt pool water (August) 

Floating green algae (Chlorophyta) in the June imagery which becomes submerged 
aquatic vegetation in the July imagery and shallow salt pool water in the August 
imagery. 

28  
Floating green algae (June) → deep salt 
pool water (July, August) 

Floating green algae (Chlorophyta) in the June imagery which becomes deep salt 
pool water in the July and August imagery. 

29  
Wrack (June) → vegetated areas of S. al-
terniflora and S. patens (July, August) 

Wrack in the June imagery which washes away or becomes colonized by vegetation and 
appears as S. alterniflora and S. patens in the July and August imagery. 

30  
Mixed vegetation: S. alterniflora and S. pat-
ens 

Mixed assemblages of S. alterniflora and S. patens. 

2.3. Image Acquisition 
A MicaSense Dual Camera System (MicaSense, Seattle, WA, USA) mounted on a DJI 

Matrice 200 V2 aerial drone (DJI, Nanshan District, Shenzhen, China) was used to acquire 
multispectral drone images of the sites on 13 June, 12 July, and 10 August 2021 (Table 2). 
The image acquisitions were planned from shortly after the above-ground biomass had 
emerged (June) until after the vegetation was fully grown and flowering (August) but be-
fore it began to senesce (September) [23]. 

Table 2. Characteristics of multispectral drone images used in the study acquired in Aulac salt marshes 
in 2021. 

Month Site Start 
Time 

Tidal Height 
(m) * 

Cloud 
Cover 

Solar Azimuth 
(°) 

Solar Altitude 
(°) 

Course Angle 
(°) 

No. of 
Images 

June 
Reference 12:00 6.7 

Cumulus 
139 63 230 8550 

Restoration 12:33 7.9 155 66 230 7730 

July 
Reference 12:38 8.9 

Stratus 
155 64 230 7380 

Restoration 13:05 9.9 170 66 230 7560 

August 
Reference 10:43 5.5 

Stratus 
119 45 218 8180 

Restoration 11:14 6.9 128 50 218 7940 
(*) Tidal height obtained from the nearby Pecks Point, New Brunswick, tidal station. 

The camera system consisted of two five-band multispectral cameras, with the ten bands 
covering visible and near-infrared spectra (Table 3). Images that had a spatial resolution close 
to 7 cm were acquired with 80% front and side overlap between them and along a grid pattern 
at 100 m altitude over the sites and a horizontal speed of 10 m s−1. The drone was controlled 
using DJI Pilot mission planner software v1.1.5, a DJI Cendence remote controller, and a DJI 
CrystalSky tablet (Figure 2). Images of the MicaSense Calibrated Reflectance Spectralon Panel 
(RP04-1949202-OB; Figure 2E) were acquired immediately before and after each flight. 

Table 3. Spectral characteristics of the ten bands acquired by the MicaSense Dual-Camera system. 

Band Number Band Name Center of Wavelength (μm) Bandwidth (μm) 

Deep salt pool water (June) →
submerged aquatic vegetation
(July, August)

Deep water contained in salt pools in the June
imagery which becomes submerged aquatic
vegetation in the July and August imagery.
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Submerged aquatic vegetation Underwater Ruppia maritima and Chlorophyta in salt pools. 

22  
Deep salt pool water (June) → floating 
green algae (July, August) 

Deep water contained in salt pools in the June imagery which becomes covered in 
floating green algae in the July and August imagery. 

23  

Deep salt pool water (June) → sub-
merged aquatic vegetation (July, Au-
gust) 

Deep water contained in salt pools in the June imagery which becomes submerged 
aquatic vegetation in the July and August imagery. 

24  
Deep salt pool water (June, July) → 
submerged aquatic vegetation (August) 

Deep water contained in salt pools in the June and July imagery which becomes 
submerged aquatic vegetation in the August imagery. 
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Shallow salt pool water Shallow water contained in salt pools where the unvegetated pool bottom is visible. 

26  

Shallow salt pool water (June) → sub-
merged aquatic vegetation (July, Au-
gust) 

Shallow water contained in salt pools in the June imagery which becomes sub-
merged aquatic vegetation in the July and August imagery. 

27  

Floating green algae (June) → sub-
merged aquatic vegetation (July) → 
shallow salt pool water (August) 

Floating green algae (Chlorophyta) in the June imagery which becomes submerged 
aquatic vegetation in the July imagery and shallow salt pool water in the August 
imagery. 

28  
Floating green algae (June) → deep salt 
pool water (July, August) 

Floating green algae (Chlorophyta) in the June imagery which becomes deep salt 
pool water in the July and August imagery. 

29  
Wrack (June) → vegetated areas of S. al-
terniflora and S. patens (July, August) 

Wrack in the June imagery which washes away or becomes colonized by vegetation and 
appears as S. alterniflora and S. patens in the July and August imagery. 

30  
Mixed vegetation: S. alterniflora and S. pat-
ens 

Mixed assemblages of S. alterniflora and S. patens. 

2.3. Image Acquisition 
A MicaSense Dual Camera System (MicaSense, Seattle, WA, USA) mounted on a DJI 

Matrice 200 V2 aerial drone (DJI, Nanshan District, Shenzhen, China) was used to acquire 
multispectral drone images of the sites on 13 June, 12 July, and 10 August 2021 (Table 2). 
The image acquisitions were planned from shortly after the above-ground biomass had 
emerged (June) until after the vegetation was fully grown and flowering (August) but be-
fore it began to senesce (September) [23]. 

Table 2. Characteristics of multispectral drone images used in the study acquired in Aulac salt marshes 
in 2021. 

Month Site Start 
Time 

Tidal Height 
(m) * 

Cloud 
Cover 

Solar Azimuth 
(°) 

Solar Altitude 
(°) 

Course Angle 
(°) 

No. of 
Images 

June 
Reference 12:00 6.7 

Cumulus 
139 63 230 8550 

Restoration 12:33 7.9 155 66 230 7730 

July 
Reference 12:38 8.9 

Stratus 
155 64 230 7380 

Restoration 13:05 9.9 170 66 230 7560 

August 
Reference 10:43 5.5 

Stratus 
119 45 218 8180 

Restoration 11:14 6.9 128 50 218 7940 
(*) Tidal height obtained from the nearby Pecks Point, New Brunswick, tidal station. 

The camera system consisted of two five-band multispectral cameras, with the ten bands 
covering visible and near-infrared spectra (Table 3). Images that had a spatial resolution close 
to 7 cm were acquired with 80% front and side overlap between them and along a grid pattern 
at 100 m altitude over the sites and a horizontal speed of 10 m s−1. The drone was controlled 
using DJI Pilot mission planner software v1.1.5, a DJI Cendence remote controller, and a DJI 
CrystalSky tablet (Figure 2). Images of the MicaSense Calibrated Reflectance Spectralon Panel 
(RP04-1949202-OB; Figure 2E) were acquired immediately before and after each flight. 

Table 3. Spectral characteristics of the ten bands acquired by the MicaSense Dual-Camera system. 

Band Number Band Name Center of Wavelength (μm) Bandwidth (μm) 

Deep salt pool water (June, July) →
submerged aquatic vegetation
(August)

Deep water contained in salt pools in the June
and July imagery which becomes submerged
aquatic vegetation in the August imagery.
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Submerged aquatic vegetation Underwater Ruppia maritima and Chlorophyta in salt pools. 

22  
Deep salt pool water (June) → floating 
green algae (July, August) 

Deep water contained in salt pools in the June imagery which becomes covered in 
floating green algae in the July and August imagery. 

23  

Deep salt pool water (June) → sub-
merged aquatic vegetation (July, Au-
gust) 

Deep water contained in salt pools in the June imagery which becomes submerged 
aquatic vegetation in the July and August imagery. 

24  
Deep salt pool water (June, July) → 
submerged aquatic vegetation (August) 

Deep water contained in salt pools in the June and July imagery which becomes 
submerged aquatic vegetation in the August imagery. 
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Shallow salt pool water Shallow water contained in salt pools where the unvegetated pool bottom is visible. 

26  

Shallow salt pool water (June) → sub-
merged aquatic vegetation (July, Au-
gust) 

Shallow water contained in salt pools in the June imagery which becomes sub-
merged aquatic vegetation in the July and August imagery. 

27  

Floating green algae (June) → sub-
merged aquatic vegetation (July) → 
shallow salt pool water (August) 

Floating green algae (Chlorophyta) in the June imagery which becomes submerged 
aquatic vegetation in the July imagery and shallow salt pool water in the August 
imagery. 

28  
Floating green algae (June) → deep salt 
pool water (July, August) 

Floating green algae (Chlorophyta) in the June imagery which becomes deep salt 
pool water in the July and August imagery. 

29  
Wrack (June) → vegetated areas of S. al-
terniflora and S. patens (July, August) 

Wrack in the June imagery which washes away or becomes colonized by vegetation and 
appears as S. alterniflora and S. patens in the July and August imagery. 

30  
Mixed vegetation: S. alterniflora and S. pat-
ens 

Mixed assemblages of S. alterniflora and S. patens. 

2.3. Image Acquisition 
A MicaSense Dual Camera System (MicaSense, Seattle, WA, USA) mounted on a DJI 

Matrice 200 V2 aerial drone (DJI, Nanshan District, Shenzhen, China) was used to acquire 
multispectral drone images of the sites on 13 June, 12 July, and 10 August 2021 (Table 2). 
The image acquisitions were planned from shortly after the above-ground biomass had 
emerged (June) until after the vegetation was fully grown and flowering (August) but be-
fore it began to senesce (September) [23]. 

Table 2. Characteristics of multispectral drone images used in the study acquired in Aulac salt marshes 
in 2021. 

Month Site Start 
Time 

Tidal Height 
(m) * 

Cloud 
Cover 

Solar Azimuth 
(°) 

Solar Altitude 
(°) 

Course Angle 
(°) 

No. of 
Images 

June 
Reference 12:00 6.7 

Cumulus 
139 63 230 8550 

Restoration 12:33 7.9 155 66 230 7730 

July 
Reference 12:38 8.9 

Stratus 
155 64 230 7380 

Restoration 13:05 9.9 170 66 230 7560 

August 
Reference 10:43 5.5 

Stratus 
119 45 218 8180 

Restoration 11:14 6.9 128 50 218 7940 
(*) Tidal height obtained from the nearby Pecks Point, New Brunswick, tidal station. 

The camera system consisted of two five-band multispectral cameras, with the ten bands 
covering visible and near-infrared spectra (Table 3). Images that had a spatial resolution close 
to 7 cm were acquired with 80% front and side overlap between them and along a grid pattern 
at 100 m altitude over the sites and a horizontal speed of 10 m s−1. The drone was controlled 
using DJI Pilot mission planner software v1.1.5, a DJI Cendence remote controller, and a DJI 
CrystalSky tablet (Figure 2). Images of the MicaSense Calibrated Reflectance Spectralon Panel 
(RP04-1949202-OB; Figure 2E) were acquired immediately before and after each flight. 

Table 3. Spectral characteristics of the ten bands acquired by the MicaSense Dual-Camera system. 

Band Number Band Name Center of Wavelength (μm) Bandwidth (μm) 

Shallow salt pool water Shallow water contained in salt pools where the
unvegetated pool bottom is visible.
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Submerged aquatic vegetation Underwater Ruppia maritima and Chlorophyta in salt pools. 

22  
Deep salt pool water (June) → floating 
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Shallow salt pool water Shallow water contained in salt pools where the unvegetated pool bottom is visible. 

26  

Shallow salt pool water (June) → sub-
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gust) 
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27  
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Floating green algae (Chlorophyta) in the June imagery which becomes submerged 
aquatic vegetation in the July imagery and shallow salt pool water in the August 
imagery. 

28  
Floating green algae (June) → deep salt 
pool water (July, August) 

Floating green algae (Chlorophyta) in the June imagery which becomes deep salt 
pool water in the July and August imagery. 

29  
Wrack (June) → vegetated areas of S. al-
terniflora and S. patens (July, August) 

Wrack in the June imagery which washes away or becomes colonized by vegetation and 
appears as S. alterniflora and S. patens in the July and August imagery. 

30  
Mixed vegetation: S. alterniflora and S. pat-
ens 

Mixed assemblages of S. alterniflora and S. patens. 

2.3. Image Acquisition 
A MicaSense Dual Camera System (MicaSense, Seattle, WA, USA) mounted on a DJI 

Matrice 200 V2 aerial drone (DJI, Nanshan District, Shenzhen, China) was used to acquire 
multispectral drone images of the sites on 13 June, 12 July, and 10 August 2021 (Table 2). 
The image acquisitions were planned from shortly after the above-ground biomass had 
emerged (June) until after the vegetation was fully grown and flowering (August) but be-
fore it began to senesce (September) [23]. 

Table 2. Characteristics of multispectral drone images used in the study acquired in Aulac salt marshes 
in 2021. 

Month Site Start 
Time 

Tidal Height 
(m) * 

Cloud 
Cover 

Solar Azimuth 
(°) 

Solar Altitude 
(°) 

Course Angle 
(°) 

No. of 
Images 

June 
Reference 12:00 6.7 

Cumulus 
139 63 230 8550 

Restoration 12:33 7.9 155 66 230 7730 

July 
Reference 12:38 8.9 

Stratus 
155 64 230 7380 

Restoration 13:05 9.9 170 66 230 7560 

August 
Reference 10:43 5.5 

Stratus 
119 45 218 8180 

Restoration 11:14 6.9 128 50 218 7940 
(*) Tidal height obtained from the nearby Pecks Point, New Brunswick, tidal station. 

The camera system consisted of two five-band multispectral cameras, with the ten bands 
covering visible and near-infrared spectra (Table 3). Images that had a spatial resolution close 
to 7 cm were acquired with 80% front and side overlap between them and along a grid pattern 
at 100 m altitude over the sites and a horizontal speed of 10 m s−1. The drone was controlled 
using DJI Pilot mission planner software v1.1.5, a DJI Cendence remote controller, and a DJI 
CrystalSky tablet (Figure 2). Images of the MicaSense Calibrated Reflectance Spectralon Panel 
(RP04-1949202-OB; Figure 2E) were acquired immediately before and after each flight. 

Table 3. Spectral characteristics of the ten bands acquired by the MicaSense Dual-Camera system. 

Band Number Band Name Center of Wavelength (μm) Bandwidth (μm) 

Shallow salt pool water (June) →
submerged aquatic vegetation
(July, August)

Shallow water contained in salt pools in the June
imagery which becomes submerged aquatic
vegetation in the July and August imagery.
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A MicaSense Dual Camera System (MicaSense, Seattle, WA, USA) mounted on a DJI 

Matrice 200 V2 aerial drone (DJI, Nanshan District, Shenzhen, China) was used to acquire 
multispectral drone images of the sites on 13 June, 12 July, and 10 August 2021 (Table 2). 
The image acquisitions were planned from shortly after the above-ground biomass had 
emerged (June) until after the vegetation was fully grown and flowering (August) but be-
fore it began to senesce (September) [23]. 

Table 2. Characteristics of multispectral drone images used in the study acquired in Aulac salt marshes 
in 2021. 

Month Site Start 
Time 

Tidal Height 
(m) * 

Cloud 
Cover 

Solar Azimuth 
(°) 

Solar Altitude 
(°) 

Course Angle 
(°) 

No. of 
Images 

June 
Reference 12:00 6.7 

Cumulus 
139 63 230 8550 

Restoration 12:33 7.9 155 66 230 7730 

July 
Reference 12:38 8.9 

Stratus 
155 64 230 7380 

Restoration 13:05 9.9 170 66 230 7560 

August 
Reference 10:43 5.5 

Stratus 
119 45 218 8180 

Restoration 11:14 6.9 128 50 218 7940 
(*) Tidal height obtained from the nearby Pecks Point, New Brunswick, tidal station. 

The camera system consisted of two five-band multispectral cameras, with the ten bands 
covering visible and near-infrared spectra (Table 3). Images that had a spatial resolution close 
to 7 cm were acquired with 80% front and side overlap between them and along a grid pattern 
at 100 m altitude over the sites and a horizontal speed of 10 m s−1. The drone was controlled 
using DJI Pilot mission planner software v1.1.5, a DJI Cendence remote controller, and a DJI 
CrystalSky tablet (Figure 2). Images of the MicaSense Calibrated Reflectance Spectralon Panel 
(RP04-1949202-OB; Figure 2E) were acquired immediately before and after each flight. 

Table 3. Spectral characteristics of the ten bands acquired by the MicaSense Dual-Camera system. 

Band Number Band Name Center of Wavelength (μm) Bandwidth (μm) 

Floating green algae (June) →
submerged aquatic vegetation (July)
→ shallow salt pool water (August)

Floating green algae (Chlorophyta) in the June
imagery which becomes submerged aquatic
vegetation in the July imagery and shallow salt
pool water in the August imagery.
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appears as S. alterniflora and S. patens in the July and August imagery. 
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Mixed vegetation: S. alterniflora and S. pat-
ens 

Mixed assemblages of S. alterniflora and S. patens. 

2.3. Image Acquisition 
A MicaSense Dual Camera System (MicaSense, Seattle, WA, USA) mounted on a DJI 

Matrice 200 V2 aerial drone (DJI, Nanshan District, Shenzhen, China) was used to acquire 
multispectral drone images of the sites on 13 June, 12 July, and 10 August 2021 (Table 2). 
The image acquisitions were planned from shortly after the above-ground biomass had 
emerged (June) until after the vegetation was fully grown and flowering (August) but be-
fore it began to senesce (September) [23]. 

Table 2. Characteristics of multispectral drone images used in the study acquired in Aulac salt marshes 
in 2021. 

Month Site Start 
Time 

Tidal Height 
(m) * 

Cloud 
Cover 

Solar Azimuth 
(°) 

Solar Altitude 
(°) 

Course Angle 
(°) 

No. of 
Images 

June 
Reference 12:00 6.7 

Cumulus 
139 63 230 8550 

Restoration 12:33 7.9 155 66 230 7730 

July 
Reference 12:38 8.9 

Stratus 
155 64 230 7380 

Restoration 13:05 9.9 170 66 230 7560 

August 
Reference 10:43 5.5 

Stratus 
119 45 218 8180 

Restoration 11:14 6.9 128 50 218 7940 
(*) Tidal height obtained from the nearby Pecks Point, New Brunswick, tidal station. 

The camera system consisted of two five-band multispectral cameras, with the ten bands 
covering visible and near-infrared spectra (Table 3). Images that had a spatial resolution close 
to 7 cm were acquired with 80% front and side overlap between them and along a grid pattern 
at 100 m altitude over the sites and a horizontal speed of 10 m s−1. The drone was controlled 
using DJI Pilot mission planner software v1.1.5, a DJI Cendence remote controller, and a DJI 
CrystalSky tablet (Figure 2). Images of the MicaSense Calibrated Reflectance Spectralon Panel 
(RP04-1949202-OB; Figure 2E) were acquired immediately before and after each flight. 

Table 3. Spectral characteristics of the ten bands acquired by the MicaSense Dual-Camera system. 

Band Number Band Name Center of Wavelength (μm) Bandwidth (μm) 

Floating green algae (June) → deep
salt pool water (July, August)

Floating green algae (Chlorophyta) in the June
imagery which becomes deep salt pool water in
the July and August imagery.
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2.3. Image Acquisition 
A MicaSense Dual Camera System (MicaSense, Seattle, WA, USA) mounted on a DJI 

Matrice 200 V2 aerial drone (DJI, Nanshan District, Shenzhen, China) was used to acquire 
multispectral drone images of the sites on 13 June, 12 July, and 10 August 2021 (Table 2). 
The image acquisitions were planned from shortly after the above-ground biomass had 
emerged (June) until after the vegetation was fully grown and flowering (August) but be-
fore it began to senesce (September) [23]. 

Table 2. Characteristics of multispectral drone images used in the study acquired in Aulac salt marshes 
in 2021. 

Month Site Start 
Time 

Tidal Height 
(m) * 

Cloud 
Cover 

Solar Azimuth 
(°) 

Solar Altitude 
(°) 

Course Angle 
(°) 

No. of 
Images 

June 
Reference 12:00 6.7 

Cumulus 
139 63 230 8550 

Restoration 12:33 7.9 155 66 230 7730 

July 
Reference 12:38 8.9 

Stratus 
155 64 230 7380 

Restoration 13:05 9.9 170 66 230 7560 

August 
Reference 10:43 5.5 

Stratus 
119 45 218 8180 

Restoration 11:14 6.9 128 50 218 7940 
(*) Tidal height obtained from the nearby Pecks Point, New Brunswick, tidal station. 

The camera system consisted of two five-band multispectral cameras, with the ten bands 
covering visible and near-infrared spectra (Table 3). Images that had a spatial resolution close 
to 7 cm were acquired with 80% front and side overlap between them and along a grid pattern 
at 100 m altitude over the sites and a horizontal speed of 10 m s−1. The drone was controlled 
using DJI Pilot mission planner software v1.1.5, a DJI Cendence remote controller, and a DJI 
CrystalSky tablet (Figure 2). Images of the MicaSense Calibrated Reflectance Spectralon Panel 
(RP04-1949202-OB; Figure 2E) were acquired immediately before and after each flight. 

Table 3. Spectral characteristics of the ten bands acquired by the MicaSense Dual-Camera system. 

Band Number Band Name Center of Wavelength (μm) Bandwidth (μm) 

Wrack (June) → vegetated areas of
S. alterniflora and S. patens
(July, August)

Wrack in the June imagery which washes away
or becomes colonized by vegetation and appears
as S. alterniflora and S. patens in the July and
August imagery.
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Matrice 200 V2 aerial drone (DJI, Nanshan District, Shenzhen, China) was used to acquire 
multispectral drone images of the sites on 13 June, 12 July, and 10 August 2021 (Table 2). 
The image acquisitions were planned from shortly after the above-ground biomass had 
emerged (June) until after the vegetation was fully grown and flowering (August) but be-
fore it began to senesce (September) [23]. 

Table 2. Characteristics of multispectral drone images used in the study acquired in Aulac salt marshes 
in 2021. 

Month Site Start 
Time 

Tidal Height 
(m) * 

Cloud 
Cover 

Solar Azimuth 
(°) 

Solar Altitude 
(°) 

Course Angle 
(°) 

No. of 
Images 

June 
Reference 12:00 6.7 

Cumulus 
139 63 230 8550 

Restoration 12:33 7.9 155 66 230 7730 

July 
Reference 12:38 8.9 

Stratus 
155 64 230 7380 

Restoration 13:05 9.9 170 66 230 7560 

August 
Reference 10:43 5.5 

Stratus 
119 45 218 8180 

Restoration 11:14 6.9 128 50 218 7940 
(*) Tidal height obtained from the nearby Pecks Point, New Brunswick, tidal station. 

The camera system consisted of two five-band multispectral cameras, with the ten bands 
covering visible and near-infrared spectra (Table 3). Images that had a spatial resolution close 
to 7 cm were acquired with 80% front and side overlap between them and along a grid pattern 
at 100 m altitude over the sites and a horizontal speed of 10 m s−1. The drone was controlled 
using DJI Pilot mission planner software v1.1.5, a DJI Cendence remote controller, and a DJI 
CrystalSky tablet (Figure 2). Images of the MicaSense Calibrated Reflectance Spectralon Panel 
(RP04-1949202-OB; Figure 2E) were acquired immediately before and after each flight. 

Table 3. Spectral characteristics of the ten bands acquired by the MicaSense Dual-Camera system. 

Band Number Band Name Center of Wavelength (μm) Bandwidth (μm) 

Mixed vegetation: S. alterniflora and
S. patens Mixed assemblages of S. alterniflora and S. patens.

2.3. Image Acquisition

A MicaSense Dual Camera System (MicaSense, Seattle, WA, USA) mounted on a DJI
Matrice 200 V2 aerial drone (DJI, Nanshan District, Shenzhen, China) was used to acquire
multispectral drone images of the sites on 13 June, 12 July, and 10 August 2021 (Table 2).
The image acquisitions were planned from shortly after the above-ground biomass had
emerged (June) until after the vegetation was fully grown and flowering (August) but
before it began to senesce (September) [23].

Table 2. Characteristics of multispectral drone images used in the study acquired in Aulac salt
marshes in 2021.

Month Site Start Time Tidal Height
(m) * Cloud Cover Solar Azimuth

(◦)
Solar Altitude

(◦)
Course Angle

(◦)
No. of
Images

June Reference 12:00 6.7
Cumulus

139 63 230 8550
Restoration 12:33 7.9 155 66 230 7730

July Reference 12:38 8.9
Stratus

155 64 230 7380
Restoration 13:05 9.9 170 66 230 7560

August Reference 10:43 5.5
Stratus

119 45 218 8180
Restoration 11:14 6.9 128 50 218 7940

(*) Tidal height obtained from the nearby Pecks Point, New Brunswick, tidal station.

The camera system consisted of two five-band multispectral cameras, with the ten
bands covering visible and near-infrared spectra (Table 3). Images that had a spatial
resolution close to 7 cm were acquired with 80% front and side overlap between them and
along a grid pattern at 100 m altitude over the sites and a horizontal speed of 10 m s−1. The
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drone was controlled using DJI Pilot mission planner software v1.7.2 (the android version
compatible with the DJI CrystalSky Tablet), a DJI Cendence remote controller, and a DJI
CrystalSky tablet (Figure 2). Images of the MicaSense Calibrated Reflectance Spectralon
Panel (RP04-1949202-OB; Figure 2E) were acquired immediately before and after each
flight.

Table 3. Spectral characteristics of the ten bands acquired by the MicaSense Dual-Camera system.

Band Number Band Name Center of Wavelength (µm) Bandwidth (µm)

1 Coastal Blue 444 444 28
2 Blue 475 475 32
3 Green 531 531 14
4 Green 560 560 27
5 Red 650 650 16
6 Red 668 668 14
7 Red Edge 705 705 10
8 Red Edge 717 717 12
9 Red Edge 740 740 18
10 NIR 842 842 57
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Figure 2. Photographs of (A) DJI Matrice V2 aerial drone and MicaSense Downwelling Light Sensor 
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for mosaicking was Advanced Multispectral. Different settings were attempted to create the 
best mosaic, and the final processing options used were as follows. In the initial processing 
step, the key points image scale was set to full, defining that tie points were automatically 
extracted from the full size of the imagery. Tie points were features that could be detected 
in more than one overlapping image and formed the three-dimensional point cloud that was 
used to photogrammetrically orthorectify the image mosaics. Additional points were com-
puted for every 4th pixel (densification), and every point was re-projected in a minimum of 
three overlapping images. Orthomosaics (photogrammetrically orthorectified image mo-
saics) were output in GeoTiff file format and calibrated in reflectance for each MicaSense 
band using images of the calibrated Spectralon panel. 

Figure 2. Photographs of (A) DJI Matrice V2 aerial drone and MicaSense Downwelling Light Sensor
(DLS), (B) airborne drone showing the MicaSense Dual Camera System, (C) DJI Cendence remote con-
troller, (D) DJI CrystalSky tablet with DJI Pilot software, and (E) Spectralon panel (RP04-1949202-OB).



Remote Sens. 2024, 16, 1049 8 of 31

2.4. Pre-Classification Image Processing

The image processing workflow (Figure 3) first included georeferencing and mosaick-
ing together individual drone images corresponding to each multispectral band using
Pix4Dmapper software v.4.6.4 (Pix4D, Prilly, Switzerland). In the processing options, the
template used for mosaicking was Advanced Multispectral. Different settings were at-
tempted to create the best mosaic, and the final processing options used were as follows. In
the initial processing step, the key points image scale was set to full, defining that tie points
were automatically extracted from the full size of the imagery. Tie points were features that
could be detected in more than one overlapping image and formed the three-dimensional
point cloud that was used to photogrammetrically orthorectify the image mosaics. Ad-
ditional points were computed for every 4th pixel (densification), and every point was
re-projected in a minimum of three overlapping images. Orthomosaics (photogrammet-
rically orthorectified image mosaics) were output in GeoTiff file format and calibrated in
reflectance for each MicaSense band using images of the calibrated Spectralon panel.
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Figure 3. Flowchart of method used for processing multispectral drone images.

Among the possible processing options, many of those selected required the greatest
amount of computational random-access memory (RAM), and we chose them with the goal
of maximizing the quality of our calibrated reflectance mosaics. Lower-quality orthomosaics
could include gaps or result in lower spatial resolutions, which we wanted to avoid as this
could have reduced our ability to assess small-scale differences that are common in salt
marsh vegetation communities. For future projects, constructing less dense point clouds
would reduce the computational burden, but tests should be conducted to determine how
this affects classification accuracy.

For our project, a 3D textured mesh was not generated because the three-dimensional
aspects of the sites were not necessary to create high-quality two-dimensional maps. A
3D textured mesh represents the surface geometry of an object/scene and is created by
connecting points within the 3D point cloud. Digital Surface Models (DSMs) and Digi-
tal Terrain Models (DTMs) were also not generated for our project because we did not
have appropriate elevation data to evaluate their accuracy. We conducted preliminary
assessments of DSM and DTM accuracies by subtracting them, creating a canopy height
model (CHM), and comparing this to field measurements of plant height. Unfortunately,
the CHMs included many negative values and did not correlate with plant heights, which
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is why we excluded the DSMs and DTMs. Overall, among the many processing options
available in Pix4D, project managers must assess their needs and computational resources
when determining which to use.

To ensure that the reflectance mosaics generated from the imagery acquired each
month were properly aligned, they were orthorectified using OrthoEngine in the PCI
Catalyst software (PCI Geomatics Group Inc., Richmond Hill, ON, Canada). Orthorectified
reflectance mosaics were clipped using the Clip function in PCI Catalyst Focus to isolate
areas of interest, which were then used to compute vegetation indices and textual features
using an EASI script in Catalyst. Many vegetation indices have been developed in various
contexts, and the 28 vegetation indices we selected were valuable in previous studies of
vegetation mapping (Table 4).

Table 4. Vegetation indices calculated from the ten-band MicaSense imagery.

Vegetation Index (VI) Abbreviation Formula Reference

Normalized Difference VI
NDVI-1 (NIR842 − Red650)/(NIR842 + Red650)

[63]NDVI-2 (NIR842 − Red668)/(NIR842 + Red668)

Normalized Difference Aquatic VI NDAVI-1 (NIR842 − Blue444)/(NIR842 + Blue444)
[64]NDAVI-2 (NIR842 − Blue475)/(NIR842 + Blue475)

Green Normalized Difference VI
GNDVI-1 (NIR842 − Green531)/(NIR842 + Green531)

[65]GNDVI-2 (NIR842 − Green560)/(NIR842 + Green560)

Normalized Difference Red Edge VI
NDRE-1 (NIR842 − RedEdge705)/(NIR842 + RedEdge705)

[66]NDRE-2 (NIR842 − RedEdge717)/(NIR842 + RedEdge717)
NDRE-3 (NIR842 − RedEdge740)/(NIR842 + RedEdge740)

Normalized Green VI
NG-1 Green531/(NIR842 + Red650 + Green531)

[67]NG-2 Green560/(NIR842 + Red668 + Green560)

Difference VI
DVI-1 NIR842 − Red650

[68]DVI-2 NIR842 − Red668

Green Difference VI
GDVI-1 NIR842 − Green531

[69]GDVI-2 NIR842 − Green560

Normalized Red VI
NR-1 Red650/(NIR842 + Red650 + Green531)

[67]NR-2 Red668/(NIR842 + Red668 + Green560)

Normalized Near Infrared VI
NNIR-1 NIR842/(NIR842 + Red650 + Green531)

[67]NNIR-2 NIR842/(NIR842 + Red668 + Green560)

Green Ratio VI
GRVI-1 NIR842/Green531

[70]GRVI-2 NIR842/Green560

Red Ratio VI
RVI-1 NIR842/Red650

[71]RVI-2 NIR842/Red668

Red Edge Ratio VI
RERVI-1 NIR842/RedEdge705

[72]RERVI-2 NIR842/RedEdge717
RERVI-3 NIR842/RedEdge740

Water Adjusted VI WAVI-1 (1.5(NIR842 − Blue444))/((NIR842 + Blue444) + 0.5)
[64]WAVI-2 (1.5(NIR842 − Blue475))/((NIR842 + Blue475) + 0.5)

Textural features contain information about the spatial distribution of tonal variations
within an image. Textural features were calculated using the gray-level co-occurrence
matrix (GLCM) method [73]. GLCM examines the spatial relationship among pixels within
a defined kernel size, which was set to 9 in our study. For each of the 10 MicaSense band
reflectance images, we calculated 10 textural features (Table 5), for a total of 100 per month.

OB classification was conducted using Object Analyst in PCI Catalyst and required
pre-processing steps, including image segmentation and attribute calculation. Images were
segmented using the 10 raw reflectance bands from each month as the source channels. The
parameters used for image segmentation were as follows: scale value of 5, shape value of
0.5, and compactness value of 0.5. We tested the effect that different scale values had on
classification accuracy and determined that, in general, classification accuracy decreased
as the scale value increased (results not published). Following this assessment, we used
the smallest scale value to ensure that image objects represented as much of the site’s
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heterogeneity as possible. Shape and compactness parameters ranged from 0 to 1.0, and
default values in Object Analyst were used, but these parameters do not have a large effect
on segmentation results for imagery of wetlands [53]. The shape parameter controls how
much the segmentation is based on spectral information versus object shape information,
and the compactness parameter controls how much the object shape tends to be spatially
compact versus spectrally homogeneous (but less compact). After image objects were
created, attributes (including raw reflectances, vegetation indices, and textural features)
were calculated using average values of all pixels within each image object.

Table 5. Textural features calculated for each of the ten MicaSense bands (adapted from [73]).

Textural Feature Formula (*)

Homogeneity N−1
∑

i=0

N−1
∑

j=0

P(i,j)
1+(i−j)2

Contrast N−1
∑

i=0

N−1
∑

j=0
P(i, j)(i − j)2

Dissimilarity N−1
∑

i=0

N−1
∑

j=0
P(i, j)|i − j|

Mean N−1
∑

i=0

N−1
∑

j=0
iP(i, j)

Standard deviation
[

N−1
∑

i=0

N−1
∑

j=0
P(i, j)(i − µi)

2

]1/2

Entropy N−1
∑

i=0

N−1
∑

j=0
–P(i, j)loge(P(i, j))

Angular second moment N−1
∑

i=0

N−1
∑

j=0
P(i, j)2

Angular correlation N−1
∑

i=0

N−1
∑

j=0

P(i,j)(i−µi)(j−µj)
σi*σj

GLDV angular second moment N−1
∑

i=0
v(k)2

GLDV entropy N−1
∑

i=0
(−v(k))loge(v(k))

(*) N = number of grey levels, P(i, j) = probability of grey tonal values i and j occurring in adjacent pixels in the
original image within the window defining the neighborhood, i = digital number value of a target pixel, j = digital
number value of its immediate neighbor, µ = mean tonal value, and σ = standard deviation of tonal values. v(k) is
a vector of the normalized gray level differences, and k = |i − j|.

2.5. Image Classification and Accuracy Assessment

Images were classified using a supervised algorithm applied to pixels or objects. The
algorithm required the delineation of training areas or objects for each landcover class. We
considered a total of 30 classes (Table 1), which included 6 monocultures of vegetation
dominated by singular species; 3 mixed assemblages of vegetation; 6 abiotic landscape
features, including rocks, driftwood, bare muddy areas, etc.; 5 classes associated with
water features of the sites; and 10 classes that changed from month to month. Separate
classifications were conducted for the restoration and reference sites, and some classes were
observed in only one site. In total, 15 classes were used for the restoration site and 24 for
the reference site, with 9 used for both sites.

For PB classification, training areas were primarily delineated as 5-pixel-by-5-pixel
square polygons, although smaller and more irregularly shaped polygons were sometimes
used in heterogeneous areas. Training areas were used to compute the Jeffries–Matusita
(JM) distance between class pairs, which is a measure of class spectral separability. JM
distances range from 0 to 2, with values of 2 representing class pairs that are completely
separated [74]. JM distances were computed for each month using 10 band reflectance
images. For OB classification, training objects were identified using the centroid of training
polygons prepared for PB classifications. In total, the classification of the reference site used
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539 training polygons and 535 validation polygons for 24 classes, and the classification
of the restoration site used 440 training polygons and validation polygons for 15 classes
(Figure 4). We used JM distance values from each month to assess how acquisition time
affected the spectral separability of the classes used in our study, which, in turn, affected
the classification accuracies.
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cations of western (A) reference (Site A) and (B) restoration (Site B) sites in Aulac. See Supplementary
Figures S3 and S4 for maps showing spatial distributions of training and validation data.

The mixed-pixel problem occurs when, at the scale of observation, several classes
contribute to the observed spectral response of a pixel. For our project, the scale of observa-
tion was ~7 cm, and salt marsh vegetation communities commonly have multiple species
growing amongst one another within that scale, which contributes to the mixed-pixel
problem. We addressed this problem by including classes of mixed vegetation in areas
where multiple species grew together in an area of less than ~49 cm2 (area of a pixel).
Many of our mixed classes occurred in the reference site (Site A), as is typical in established
salt marshes in the region. In the restoration site (Site B), the plant community primarily
consists of monocultures which produce pure, unmixed pixels; still, mixed pixels can occur
in boundary areas where one monoculture transitions to another. A limitation of our study
was that we did not have landcover classes to represent every type of mixed pixel.

We used Random Forest (RF), a non-parametric decision tree-type supervised clas-
sification algorithm. RF can be executed in R (script written by Ned Horning using the
packages maptools, sp, randomForest, raster, and rgal), which we used for the PB clas-
sifications. We used the “all-polygon” version of the algorithm, which considers all the
pixels within training area polygons and does not use average values. For OB classification,
we used the Random Trees classifier in PCI Catalyst Object Analyst, which uses the same
method as the RF algorithm we used for PB classifications. We applied PB and OB classi-
fications to raw reflectances, vegetation indices, and textural features extracted from the
multi-temporal drone imagery acquired in June, July, and August over the reference and
restoration sites.

RF classification algorithms randomly sampled all pixels or objects as candidates at
each node in the forest, which included 500 independent decision trees with the default mtry
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variable. The value of the default mtry variable is the square root of p, where p is the number
of variables in x (i.e., the matrix of predictors for the classification). Within each decision
tree, two-thirds of the training data were randomly selected (“in-bag” data; IB) to develop it.
This tree was validated using the remaining third of the data (“out-of-bag” data; OOB). This
process was repeated for 500 decision trees and produced 500 independent classifications
which, once combined, produced the final classification map. Finally, RF ranked the degree
of importance of each image variable (consisting of reflectances of individual MicaSense
bands, vegetation indices, and textural features) in the classification [75]. Rankings were
based on the mean decrease in accuracy of each input variable. Mean decrease in accuracy
expresses how much OOB accuracy (described below) the model loses by excluding a
variable; the more the accuracy suffers, the more important the variable.

Classification accuracy was assessed in two ways. First, OOB training data were
compared to classified images. This was carried out using a confusion matrix, where each
cell expressed the number of pixels in each class defined by OOB data with the number
classified to it. The confusion matrix allowed for computing average and overall accuracies,
kappa coefficients, as well as individual user’s and producer’s accuracies (UAs and PAs)
for each class. The second accuracy assessment was conducted by comparing the classified
image to validation field data. For each validation data point, classes were extracted from
the classified image using the Extract Values to Points tool of ArcMap®. Confusion matrices
and associated accuracies were then computed.

3. Results
3.1. Class Spectral Separability

Reflectance values of landcover classes’ training areas (used for PB classification) were
well separated from one another, as indicated by a mean JM distance ranging from 1.94 to
1.97 (Table 6). Because separability values were calculated using data from singular months,
we could use these results to assess temporal variability in the landcover class spectral
signatures and determine the best month for differentiating certain class pairs. For the
reference site, July imagery achieved the lowest average JM distance. For the restoration site,
class pairs achieved, on average, higher JM distance values when using July and August
imagery compared to using June imagery. Despite adequate average JM distance values,
many pairs had low values (<1.90), indicating that they were not well separated. While low
JM distances must be considered, our classifications were completed using additional input
features of vegetation indices and textures that have improved classification accuracies in
the past [36,76] but were not included in the JM distance calculations. In addition, many
of our classes represented areas that changed from month to month, and it was expected
that these classes would have low separability values when analyzed one month at a time.
This is why we used multi-temporal images for producing the final map and why we
did not include low JM distance values generated using the change classes during our
interpretation of separability results.

Landcover class pairs with low inter-class separability values largely included the
vegetation classes (Table 6). These class pairs were expected to achieve the lowest JM
distance values because the variation in reflectance between types of vegetation is much
smaller than it is between more spectrally contrasting class pairs (e.g., vegetation classes
when paired with deep water). In the reference site, the classes most prevalently included
in pairs with low separability were mixed vegetation ones (Classes 17 and 30). In addition,
low separability values were generated between Triglochin (Class 16) and S. alterniflora
classes, likely resulting from their having similar morphologies and because they often
both grew in mixed assemblages with S. patens. For imagery of the restoration site, class
pairs with low separability values in each month were S. alterniflora (clean, dense) and S.
alterniflora (clean, sparse) (Classes 6 and 13); S. pectinata and dike vegetation (Classes 12
and 15); and rocks and compacted soil (light) (Classes 3 and 10). We found that differences
in S. alterniflora density did not affect reflectance characteristics to a degree that resulted in
good separability. Also, the reflectance characteristics of S. pectinata and other vegetation
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growing in high-elevation areas lining the perimeter of the site were not distinct enough to
produce high JM distance values. Despite having relatively low separability in all three
months, S. alterniflora (clean, dense) and S. alterniflora (clean, sparse) class pairs were most
spectrally distinct in August, while S. pectinata and dike vegetation were least spectrally
distinct in August.

Table 6. JM distances computed using reflectance values of PB training areas extracted from original
reflectance images for 10 MicaSense bands acquired for Aulac reference (Site A) and restoration
(Site B) sites in June, July, and August 2021. Landcover class pairs < 1.90 for each set of images listed
in ascending order. Class pairs, including change classes, omitted from this table. See Supplementary
Tables S2 and S3 for values of all class pairs.

Site Month Average JM
Distance Value

Minimum JM
Distance Value Class Pairs with JM Distance Values < 1.90

Reference
(Site A)

June 1.96 1.21
7 and 17 (mixed mid-elevation vegetation), 16 (Triglochin)
and 30 (mixed S. alterniflora and S. patens), 17 and 30, 6 and
7, 6 and 17, 5 and 16, 7 and 30, 6 and 30, 5 and 30

July 1.95 1.07
7 and 17, 6 and 7, 16 and 30, 17 and 30, 5 and 30, 7 and 30,
18 (floating green algae) and 21 (submerged aquatic
vegetation), 6 and 17, 6 and 30, 5 and 16, 16 and 17

August 1.96 1.21 7 and17, 16 and 30, 17 and 30, 6 and 7, 5 and 17, 5 and 16, 7
and 30, 6 and 30, 5 and 30

Restoration
(Site B)

June 1.94 1.15

6 (S. alterniflora clean, dense) and 13 (S. alterniflora clean,
sparse), 5 (S. alterniflora muddy) and 13, 5 and 6, 12 (S.
pectinata) and 15 (dike vegetation), 3 (rocks) and 10
(compacted soil light)
2 (compacted soil dark) and 3, 6 and 7 (S. patens), 7 and 13

July 1.97 1.58 7 and 12, 5 and 6, 12 and 15, 3 and 10, 6 and 13
August 1.97 1.72 12 and 15, 3 and 10, 7 and 12, 7 and 15, 6 and 13, 2 and 3

3.2. Classification

Overall OOB accuracies were >99% when using multi-temporal image sets for both
PB and OB methods (Tables 7 and 8). It is common for RF classifiers to achieve very high
out-of-bag accuracy when working with many input variables [33,36,40], and many studies
that use RF choose to not present OOB accuracy assessments. We have presented these
values because they display how effective the RF classifiers were at assigning training
area pixels to the correct classes, and it is valuable to understand how high these values
can be when using hundreds of input variables, as we did (we used 414). PB multi-
temporal classifications of the reference and restoration sites achieved 0.1–0.2% higher OOB
classification accuracy than OB classification did. High individual OOB UA and PA were
achieved during both classifications for both methods. The relatively low UAs and PAs
achieved during PB and OB classification of the reference site were a result of confusion
between S. alterniflora (muddy) (Class 5) and mixed S. alterniflora and S. patens (Class
30) during OB classification, but no confusion occurred during PB classification. For the
restoration site, OOB classification error was primarily the result of confusion between S.
pectinata (Class 12) and dike vegetation (Class 15). PB classification also showed confusion
between classes 1 and 2, 3 and 10, and 4 and 11. It should be remembered that more data
were used in the calculation of PB OOB accuracies, because the classifier considered all
pixels within training areas rather than singular objects (i.e., groups of pixels), and so one
misclassification during OB classification resulted in a greater loss of accuracy than a few
misclassifications during PB classification.
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Table 7. The reference site (Site A) out-of-bag classification accuracies (in %) computed by PB and OB
Random Forest classifiers when applied to the 2021 multi-temporal image sets. See Supplementary
Table S4 for full confusion matrices.

Class
Number Class Name

OOB Accuracy

PB OB

UA PA UA PA

1 Bare mud exposed to air 100 100 100 100

2 Compacted soil (dark) 100 100 100 100

3 Rocks/eroded shoreline pieces 100 100 100 100

4 Wrack 100 100 100 100

5 Spartina alterniflora (muddy) 100 100 100 98.3

6 Spartina alterniflora (clean, dense) 100 100 100 100

7 Spartina patens 100 100 100 100

8 Deep salt pool water 100 100 100 100

9 Bare mud exposed to air → clean, dense S. alterniflora 100 100 100 100

16 Triglochin maritima 100 100 100 100

17 Mixed mid-elevation vegetation (S. patens, Puccinellia, etc.) 100 100 100 100

18 Floating green algae (Chlorophyta) 100 100 100 100

19 Emerged salt pool mud → shallow salt pool water 100 100 100 100

20 Emerged salt pool mud (salty) 100 100 100 100

21 Submerged aquatic vegetation 100 100 100 100

22 Deep salt pool water → floating green algae 100 100 100 100

23 Deep salt pool water (June) → submerged aquatic vegetation (July, August) 100 100 100 100

24 Deep salt pool water (June, July) → submerged aquatic vegetation (August) 100 100 100 100

25 Shallow salt pool water 100 100 100 100

26 Shallow salt pool water → submerged aquatic vegetation 100 100 100 100

27 Floating green algae → submerged aquatic vegetation → shallow salt pool water 100 100 100 100

28 Floating green algae → deep salt pool water 100 100 100 100

29 Wrack → vegetated areas of S. alterniflora and S. patens 100 100 100 100

30 Mixed vegetation: S. alterniflora and S. patens 100 100 98.1 100

Average accuracy 100 99.8

Overall accuracy 100 99.8

Kappa coefficient 100 99.8
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Table 8. The restoration site (Site B) out-of-bag classification accuracies (in %) computed by PB and OB
Random Forest classifiers when applied to the 2021 multi-temporal image sets. See Supplementary
Table S5 for full confusion matrices.

Class
Number Class Name

OOB Accuracy

PB OB

UA PA UA PA

1 Bare mud exposed to air 99.9 100 100 100

2 Compacted soil (dark) 100 99.9 100 100

3 Rocks/eroded shoreline pieces 99.7 100 100 100

4 Wrack 100 99.9 100 100

5 Spartina alterniflora (muddy) 100 100 100 100

6 Spartina alterniflora (clean, dense) 100 100 100 100

7 Spartina patens 100 100 100 100

8 Deep salt pool water 100 100 100 100

9 Bare mud → S. alterniflora (clean, dense) 100 100 100 100

10 Compacted soil (light) 100 99.8 100 100

11 Wood 99.6 100 100 100

12 Spartina pectinata 99.6 100 100 95.0

13 S. alterniflora (clean, sparse) 100 100 100 100

14 S. alterniflora → wrack 100 100 100 100

15 Dike vegetation 100 99.8 97.2 100

Average accuracy 99.9 99.7

Overall accuracy 99.9 99.8

Kappa coefficient 99.9 99.8

The resulting classified maps produced by PB and OB classifications of multi-temporal
images showed the distribution of classes in the sites (Figure 5 for the reference site (A) and
Figure 6 for the restoration site (B)).

3.3. Variable Importance

The RF classifier provided a ranking of input variables based on their relative mean
decrease in accuracy when omitted. We used 414 total input variables, with 138 generated
per image acquisition. For multi-temporal PB classification of the reference site, 8 (32%),
6 (24%), and 11 (44%) of the top 25 input variables were from imagery acquired in June,
July, and August, respectively, with 3 (12%), 9 (36%), and 13 (52%) for the OB classifications
(Tables 9 and 10). For the restoration site, 4 (16%), 10 (40%), and 11 (44%) of the top 25
input variables were from imagery acquired in June, July, and August, respectively, for the
PB classifications, with 5 (20%), 4 (16%), and 16 (64%) for the OB classifications. For each
classification, input variables from August were most prevalent in the top 25. The input
variables from July greatly outnumbered the ones from June during the PB classification
of the restoration site and the OB classification of the reference site but were slightly
outnumbered by those from June during the PB classification of the reference site and OB
classification of the restoration site. Overall, the imagery acquired in August consistently
provided more than a third of the top 25 ranked variables in the classifications.
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Table 9. Top 25 input variables of the reference site (Site A) ranked according to the mean decrease in
accuracy computed by PB and OB Random Forest classifications applied to the 2021 multi-temporal
images. See Supplementary Table S6 for full rankings.

Rank PB OB

1 RedEdge717_TextureMean_August RedEdge740_TextureMean_July

2 Green560_TextureMean_July Red668_August

3 Red668_TextureMean_August Red668_TextureMean_August

4 RedEdge705_TextureMean_August Green531_August

5 Green560_TextureMean_August NIR842_July

6 Green560_TextureAngCorrelation_August NNIR-1_July

7 Green531_TextureMean_August Red650_TextureMean_August

8 Green531_TextureAngCorrelation_August RedEdge705_TextureMean_August

9 Red650_TextureMean_August RedEdge717_TextureMean_August

10 RedEdge717_August Green560_August

11 NDVI.2_June RedeEdge717_August

12 RedEdge717_TextureAngCorrelation_June NIR842_TextureMean_July

13 NR.2_June Green560_TextureMean_August

14 RedEdge705_August GNDVI-2_July

15 Green531_July NG-2_July

16 Blue444_TextureMean_June RedEdge705_August

17 NDAVI.1_June RedEdge740_July

18 Red668_TextureMean_June NDVI-2_June

19 RVI.2_June Green531_TextureMean_August

20 Red668_August Red668_July

21 Green531_TextureMean_July RERVI-1_June

22 Green531_TextureAngCorrelation_July NG-1_July

23 RedEdge740_TextureMean_July Red650_August

24 Blue475_TextureMean_June Blue475_August

25 RedEdge717_TextureAngCorrelation_July NR-2_June

Among the 138 total input variables extracted from each month’s imagery, 10 (7%)
were raw reflectance bands, 28 (20%) were vegetation indices, and 100 (73%) were textural
features. For each site, the same 414 input variables were used for both classification
approaches. The most important raw reflectance bands for both approaches were the Green,
RedEdge, and Red bands. The Blue band was also ranked high for the OB classification of
the reference site. Raw reflectance bands were overrepresented in the top 25 variables of
each classification compared to their representation in the dataset. For the PB classifications,
raw reflectance bands made up 4 (16%) and 3 (12%) of the top 25 variables for the reference
and restoration sites, respectively, and 9 (36%) and 5 (20%) for the OB classifications.
Vegetation indices that appeared in the top 25 variables of at least two of our classifications
were Normalized Red (NR), Normalized Difference (NDVI), Normalized Near Infrared
(NNIR), Green Ratio (GRVI), Red Ratio (RVI), and Normalized Difference Aquatic (NDAVI).
The only vegetation index that was not among the top variables of any of our classifications
was the Water Adjusted Vegetation Index (WAVI). Only 4 (16%) and 2 (8%) of the 25 top
input variables for our PB classifications of the reference and restoration sites, respectively,
were vegetation indices. Conversely, vegetation indices comprised 8 (32%) and 15 (56%) of
the top 25 ranking variables for the OB classifications. The tonal mean calculation was the
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most common highly ranked measure of texture during all our classifications, and textures
calculated using the reflectance bands Red, Green, Blue, RedEdge, and NIR were all among
the top 25 most important variables. For the PB classifications, 17 (68%) and 20 (80%) of
the top 25 input variables for the classification of images over the reference and restoration
sites, respectively, were textural features (Tables 9 and 10). OB classifications had fewer
textural features in the top 25 variables (8 and 5, for the reference and restoration sites,
respectively), but the tonal mean calculation was again the most important.

Table 10. Top 25 input variables of the restoration site (Site B) ranked according to the mean decrease
in accuracy computed by PB and OB Random Forest classifications applied to the 2021 multi-temporal
images. See Supplementary Table S7 for full rankings.

Rank PB OB

1 RedEdge740_TextureAngCorrelation_August NR-2_August

2 Green531_TextureMean_July Blue475_August

3 Green531_July NDAVI-1_August

4 Green560TextureMean_August NR-1_August

5 NIR842_TextureMean_June NIR842_TextureMean_June

6 GRVI.2_June Red668_August

7 Red668_TextureMean_July GNDVI-2_July

8 RedEdge717_TextureMean_August RedeEdge717_August

9 NIR842_TextureMean_August NNIR-1_June

10 Blue444_TextureMean_August Green560_TextureMean_August

11 Red650_TextureMean_June NDRE-1_July

12 Blue444_TextureMean_July GNDVI-1_August

13 RedEdge740_TextureMean_August Blue475_TextureMean_August

14 NIR842_TextureMean_July Green560_August

15 Green560_July DVI-2_June

16 Red650_TextureMean_July NDVI-1_August

17 NNIR.1_June NNIR-2_August

18 Green531_TextureMean_August Red650_August

19 Green531_TextureContrast_August Green560_TextureMean_June

20 RedEdge717_August Green531_TextureMean_August

21 Blue444_TextureAngCorrelation_August GNDVI-2_August

22 RedEdge717_TextureSt.Dev_August GRVI-1_July

23 Blue475_TextureMean_July GDVI-1_August

24 Blue444_TextureAngCorrelation_July RVI-1_June

25 RedEdge717_TextureDissimilarity_July NDAVI-2_July

3.4. Validation Accuracy

Validation accuracy is a more reliable measure of classification accuracy than OOB
accuracy because it compares the classified image with an independent set of validation
data (Tables 11 and 12). For the reference site, classification using multi-temporal imagery
achieved overall validation accuracies of 92.4% and 91.1% for PB and OB classifications,
respectively. The vegetation community was dominated by S. patens, which was often
found growing in mixed assemblages with other salt marsh species, including S. alterniflora,
Triglochin, Puccinellia, Lysimachia, Plantago, Solidago, Argentina, and Limonium. The S. patens
class covered more area than any other and had reductions in accuracy due to confusion
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with S. alterniflora (clean, dense) (Class 6), mixed mid-elevation vegetation (Class 17), mixed
S. alterniflora and S. patens (Class 30), and the change class bare mud to S. alterniflora (Class
9). Spartina alterniflora covered less area in the reference site than in the restoration site.
Spartina alterniflora (dense, muddy) (Class 5) had a UA and PA >93.0% for both classification
methods, but confusions with Triglochin (Class 16) and mixed S. alterniflora and S. patens
(Class 30) were responsible for classification errors. Spartina. alterniflora (clean, dense)
(Class 6) was mapped with more error than the previous class because of confusion with
two mixed vegetation classes (Classes 17 and 30). Triglochin (Class 16) was mapped with
greater error of commission during PB classification but greater error of omission during
OB classification. Mixed vegetation classes were often misclassified as one another and
as the other vegetation types. Multi-temporal RF classifiers performed well at identifying
landcover classes that changed in the reference site. The average UA and PA of the change
classes (Classes 9, 19, 22, 23, 24, 26, 27, 28, and 29) were 97.4% and 95.6%, respectively, for
PB classification and 96.5% and 94.3% for OB classification. Most of these classes were
associated with the large salt pool (depression that holds water at low tide) in the site.

Table 11. Reference site (Site A) validation class accuracies (in %) computed by PB and OB Random
Forest classifiers when applied to 2021 multi-temporal image sets. See Supplementary Table S4 for
full confusion matrices.

Class Number Class Name

OOB Accuracy

PB OB

UA PA UA PA

1 Bare mud exposed to air 86.7 97.5 88.1 92.5

2 Compacted soil (dark) 100 86.7 100 80.0

3 Rocks/eroded shoreline pieces 80.0 80.0 75.0 90.0

4 Wrack 100 96.7 96.7 96.7

5 Spartina alterniflora (muddy) 98.2 93.3 96.6 95.0

6 Spartina alterniflora (clean, dense) 87.5 93.3 80.0 93.3

7 Spartina patens 93.2 91.7 94.6 88.3

8 Deep salt pool water 100 100 100 100

9 Bare mud exposed to air → clean, dense S. alterniflora 100 100 100 90.0

16 Triglochin maritima 75.7 93.3 83.9 86.7

17 Mixed mid-elevation vegetation (S. patens, Puccinellia, etc.) 96.2 83.3 92.3 80.0

18 Floating green algae (Chlorophyta) 95.0 95.0 95.0 95.0

19 Emerged salt pool mud → shallow salt pool water 100 93.3 100 93.3

20 Emerged salt pool mud (salty) 100 86.7 85.7 80.0

21 Submerged aquatic vegetation 93.3 93.3 92.9 86.7

22 Deep salt pool water → floating green algae 92.9 86.7 93.3 93.3

23 Deep salt pool water (June) → submerged aquatic vegetation (July, August) 100 100 93.8 100

24 Deep salt pool water (June, July) → submerged aquatic vegetation (August) 100 100 90.9 100

25 Shallow salt pool water 100 100 100 100

26 Shallow salt pool water → submerged aquatic vegetation 100 90.0 100 90.0

27 Floating green algae → submerged aquatic vegetation → shallow salt pool water 100 90.0 100 90.0

28 Floating green algae → deep salt pool water 90.0 100 90.9 100

29 Wrack → vegetated areas of S. alterniflora and S. patens 93.8 100 100 93.3

30 Mixed vegetation: S. alterniflora and S. patens 89.4 84.0 83.0 88.0

Average accuracy 93.9 92.4

Overall accuracy 92.4 91.1

Kappa coefficient 91.9 90.5
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Table 12. Restoration site (Site B) validation class accuracies (in %) computed by PB and OB Random
Forest classifiers when applied to 2021 multi-temporal image sets. See Supplementary Table S5 for
full confusion matrices.

Class Number Class Name

Validation Accuracy

PB OB

UA PA UA PA

1 Bare mud exposed to air 100 100 96.8 100

2 Compacted soil (dark) 100 96.7 100 86.7

3 Rocks/eroded shoreline pieces 100 100 100 100

4 Wrack 96.6 93.3 96.6 93.3

5 Spartina alterniflora (muddy) 100 100 90.9 100

6 Spartina alterniflora (clean, dense) 100 95.0 86.8 82.5

7 Spartina patens 97.0 91.4 93.9 88.6

8 Deep salt pool water 100 100 100 100

9 Bare mud → S. alterniflora (clean, dense) 100 86.7 92.9 86.7

10 Compacted soil (light) 92.7 95.0 97.4 95.0

11 Wood 95.2 100 100 100

12 Spartina pectinata 93.8 75.0 94.1 80.0

13 S. alterniflora (clean, sparse) 93.0 100 90.5 95.0

14 S. alterniflora → wrack 100 100 93.8 100

15 Dike vegetation 84.2 94.1 86.5 91.4

Average accuracy 95.5 94.0

Overall accuracy 95.2 93.2

Kappa coefficient 94.8 92.6

For the restoration site, multi-temporal image classification achieved overall validation
accuracies of 95.5% and 94.0% for PB and OB classifications, respectively. Most of the
restoration site was covered by a monoculture of S. alterniflora with varying appearance
based on its density, the soil moisture content, and the amount of mud on plant leaves
(Classes 5, 6, and 13). When using the multi-temporal image set, the average UA and
PA of these classes were 95.2% and 98.3%, respectively, for PB classification and 89.4%
and 92.5% for OB classification. For PB classification, lower validation accuracies were a
result of confusion between S. alterniflora (clean, dense) (Class 6), S. patens (Class 7), and
dike vegetation (Class 15) and between S. alterniflora (clean, sparse) (Class 13), S. patens
(Class 7), and change class bare mud to S. alterniflora (Class 9). For OB classification, lower
validation accuracies resulted from confusion between the classes mentioned above and
with one another. Spartina patens was mapped with a UA and PA of 97.0% and 91.4%,
respectively, for PB classification and 93.9% and 88.6% for OB classification. Reductions
in the validation accuracy for this class (S. patens) were due to confusion with Class 6
(S. alterniflora (clean, dense)), Class 13 (S. alterniflora (clean, sparse)), and Class 15 (dike
vegetation). Spartina pectinata (Class 12) has been important during restoration dynamics in
our sites, but at the time of image acquisition, it was only found growing in a low density
along the high-elevation dike areas and showed some confusion with the dike vegetation
class (Class 15). Both PB and OB classifiers were able to accurately identify change classes,
although there was some confusion in OB classification between the S. alterniflora to wrack
(Class 14) and wrack classes (Class 4) and in both classifications between bare mud to S.
alterniflora (Class 9) and S. alterniflora (clean, dense) (Class 6) and S. alterniflora (clean sparse)
(Class 13) classes.
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4. Discussion

Our primary goal was to determine which classification method, pixel- or object-based,
was higher performing and more suitable for monitoring coastal vegetation, using an
11-year-old restoring salt marsh and an established (reference) salt marsh in the upper Bay
of Fundy as a case study. A secondary goal was to evaluate the relative importance of
input variables (raw reflectances, vegetation indices, and textural features) in our multi-
temporal classifications and determine which month(s) of the growing season (June, July,
or August) provided the most important variables. We also took the opportunity to test the
effectiveness of landcover classes representing areas on the ground that changed throughout
our multi-temporal image sets; such change classes may be useful to assess longer time-
scale changes, including year-to-year ones, occurring during restoration. Achieving our
goals will help to optimize the methodology for remote sensing recovery trajectories of
salt marshes in the future. Below, we discuss how and why the PB classifier may have
outperformed the OB classifier; how the RF classifier generally compares to other commonly
used approaches; how the most important input variables varied among the months and
classification approaches; considerations related to classifying environments with strong
seasonal and annual variation; how using many landcover classes, including those that
focus on change in a multi-temporal image set, affect classification results; challenges
associated with remote sensing studies, including ours; and recommendations for future
classifications assessing annual salt marsh recovery patterns.

4.1. Comparison of Classification Approaches

In our study, PB RF classifiers outperformed OB RF classifiers in overall validation
accuracy (92.4% and 95.2% vs. 91.1% and 93.2%). With very-high-spatial-resolution imagery,
it is usually recommended to use OB classification methods to reduce “salt-and-pepper”
effects in classified maps that can result from PB classification [27]. A methodological
contributor to our comparative result may be that the OB classification was conducted on
an inadequately segmented image; a poor-quality segmentation directly leads to a low-
quality classification [77]. Furthermore, we used an unsupervised segmentation method
that could have incorrectly grouped pixels into too many (over-segmentation) or too few
(under-segmentation) objects that did not represent single homogenous classes [49]. As has
been mentioned, achieving optimal segmentation is difficult in wetlands with relatively
small plants and highly spatial heterogenous vegetation communities [51]. Upon selecting
the most suitable method, parameters (including shape, compactness, and size), and input
variables for segmentation can be difficult to optimize because of the high spatial variation
and low spectral variation in coastal wetland plant communities [53]. PB classification
methods are typically more user-friendly than OB methods because they do not require
selection and optimization of segmentation parameters. Further work is needed to optimize
the segmentation method to improve the accuracy of OB image classification in the case of
our salt marsh sites.

Despite the recent popularity of OB classification methods, which many studies have
shown a preference for in mapping coastal wetlands [27,40,53], our study found that
the PB RF classification approach achieved a higher validation accuracy. Among the
studies directly comparing PB and OB methods and mapping coastal wetlands with drone
imagery [50,52], our results aligned with those of Martinez-Prentice et al. [50], who found
that PB classifiers performed better. Differing results between studies are likely influenced
by the nature of the coastal wetland under investigation. The Zheng et al. [52] study,
where OB methods outperformed PB methods, was conducted in a sub-tropical (31 degrees
latitude) salt and brackish marsh at the mouth of an estuary along the Yellow Sea, which
had plant communities consisting of Phragmites sp., Scirpus triqueter, Carex scabrifolia, and
Imperata cylindrica [78] (reeds, bulrushes, and cogon grasses, respectively); these plants
are larger, with more showy inflorescences, than the plants of the Aulac marshes. On
the other hand, Martinez Prentice et al.’s [50] study was conducted in a north temperate
coastal wetland (58 degrees latitude) along the Baltic Sea, where the plant communities
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include moor grasses (Molinia caerulea) and rushes (Carex panicea) [79]. These Baltic coastal
meadows include vegetation that resembles the grasses of the Aulac marshes in size and
inflorescence. The physical sizes of plants in the type of coastal wetland investigated
could be a large contributor to whether a PB or OB classification technique better maps
vegetation patterns.

Many classification algorithms are widely available and selecting the appropriate one
can be difficult. For our study, we used RF-supervised classification approaches. Ran-
dom Forest, which has been used to achieve high classification accuracies for mapping
salt marshes and other coastal wetlands [33,34,36,40,50,54], is considered easily accessible
(including within the free software R v4.2.3) and requires relatively few pre-defined param-
eters. In addition, the structure of the RF classifier is more easily understood than those of
deep learning classifiers, including Artificial Neural Networks, which use hidden layers.
Despite this, more research investigating deep learning classifiers should be conducted
because they can outperform machine learning classifiers, including RF [38,52], although
another study found the opposite [54]. Deep learning networks require more intensive com-
putational power and longer training times than RF but have the potential to achieve higher
validation accuracies, even with fewer input variables [35]. Many other classification ap-
proaches have shown potential for accurate mapping of coastal wetlands [27,32,40,60], and
additional approaches are continually being developed. Overall, environmental monitoring
project managers need to assess their needs and resources when selecting a classification
algorithm for accurate mapping, but the results of our and other studies have shown that
RF is a user-friendly option that can achieve very high classification accuracies that compare
with other, more complex classifiers.

4.2. Similarities and Differences in Variable Importance between Classification Approaches

In our multi-temporal RF classifications, the most highly ranked variables differed
for the PB and OB classifications but were a combination of raw reflectances, vegetation
indices, and textural features from each month for both classifier types. Raw reflectance
bands were more prevalent among the top 25 input variables for the OB classifications than
for the PB classifications; nonetheless, all our classifications had a larger representation
of raw reflectance bands among the top variables above that among the total number
of input variables. The first studies using remote sensing to monitor coastal wetlands
typically relied on raw reflectance alone [80] and achieved accuracies ranging from ~70
to 90% [26,31,81,82]. As expected, none of the raw reflectances extracted from the June
images was among the top variables in our classifications because above-ground vegetative
biomass had just started to emerge and likely showed less variation in reflectance compared
to when it was more developed later in the growing season. Among the raw reflectance
bands in the top 25 input variables, the RedEdge bands were unsurprisingly included; they
have been found useful for discriminating vegetation types [83]. In particular, the RedEge
portion of a graminoid (the primary plant taxon in the Aulac marshes) canopy is largely
affected by inundation [84], and so RedEdge bands may be especially useful for classifying
the vegetation of intertidal salt marshes, where water levels regularly fluctuate. The other
raw reflectance bands among the top 25 variables included the occasional Red, Green,
and Blue (RGB) band, supporting that RGB bands can be useful for classifying wetland
vegetation [52,54,83]. Previous studies have accurately mapped coastal wetlands without
RedEdge and NIR bands [52], and the minimum number and required types of bands
necessary to accurately map salt marsh vegetation should be further investigated. If RGB
bands are capable of accurately mapping habitats without RedEdge and NIR, a project’s cost
could decrease, since RGB sensors are more readily available and affordable. The NIR band,
which was not among the most important input variables in our classifications, has also
been found to be less important for distinguishing wetland vegetation previously [54]; it is
correlated with leaf thickness [85], and the graminoids dominating the Aulac marshes have
very thin leaves. While there were differences in the number of important raw reflectance
bands between classification approaches, this importance was more consistent between PB
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and OB classifications than for the other types of input variables (vegetation indices and
textural features).

A major difference in the top 25 most important input variables between our PB
and OB classifications was a greater occurrence of vegetation indices in the latter clas-
sification. Vegetation indices are now almost always used in classifications of coastal
wetlands [37,86] and have also been used to accurately quantify vegetation biomass and
canopy moisture [42,87]. Similar to our expectations for the raw reflectance input variables,
we expected the June vegetation indices to be less important than those extracted from the
July and August images. Surprisingly, the vegetation indices among the most important
variables were all extracted from June images in the PB classifications, although it is unclear
why. In the OB classifications, however, vegetation indices extracted from the July and
August images were more important than those extracted from the June ones. Our results
suggest that segmenting an image into objects may increase the importance of vegetation
indices and decrease the importance of textural features during the classification of salt
marshes (discussed further in the next paragraph).

The sizeable difference in the importance of textural features between our PB and OB
classifications suggests that texture is more important when analyzing an image using a
smaller base unit of analysis (individual pixels) than it is when using a larger base unit
of analysis (image objects) and supports the notion that texture is strongly influenced
by spatial resolution [88]. Textural features in classification are useful in sites like salt
marshes that have classes with little inter-class spectral variability and high within-class
variability [27,56]. We found that the tonal mean calculation always ranked very high
for our classifications, as also reported previously [83]. While textural features extracted
from the imagery of each month were important, those extracted from the August images
were most prevalently featured among the top 25 input variables of our classifications.
This may be because August is when vegetation is fully grown and variations in its
spatial characteristics are elevated [54]. While there were differences in the input variables
considered important for each classification, both classifications were similar in that those
from August prevailed. Overall, understanding the importance of input features relative to
their acquisition times is useful information when streamlining methodologies for remotely
monitoring wetlands, including those undergoing change.

4.3. Further Classification Considerations for Temporal Change, Both Seasonal and Annual

With our multi-temporal images (collected at monthly intervals during the growing
season), we found that imagery acquired in August was more useful for distinguishing
landcover classes than imagery acquired in June and July, and, in general, imagery acquired
in July was more useful than imagery acquired in June. Previous studies have also found
that variation in spectral characteristics and vegetation indices between coastal vegetation
types is greatest later in the growing season when vegetation is fully grown, particularly
when it is flowering [39,89], which typically occurs in August in Atlantic Canadian salt
marshes [23]. Furthermore, our study and others have [29,30] determined that multi-
temporal classification of coastal wetlands achieves higher validation accuracies than
single-temporal classification for habitats with strong seasonality [87,90,91] like our north
temperate salt marshes [23]. Note that these short-term studies used multi-temporal
imagery acquired within a single year, whereas longer-term image analyses of coastal
wetland change typically used images acquired at one time per year [56,92,93].

Beyond overall validation accuracy, other considerations come into play when se-
lecting an appropriate remote sensing methodology for detecting temporal change in
vegetative communities. Using multi-temporal images within a growing season may com-
plicate the analysis of long-term annual change by introducing within-year variation and
many images. The financial cost and effort required increase with the number of image
acquisitions, since resources must be put towards additional ground-truthing and image
processing. Therefore, the type of change that is of interest (within or between years)
should be considered when determining the necessary frequency of image acquisitions
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per year. For assessing restoration dynamics, annual changes are often of greater interest
than within-year changes [23,60]. Note, though, that early in a restoration project, multiple
(monthly) monitoring times have been central to uncovering certain fast changing dynam-
ics [59]. Additionally, restoration occurring in sub-optimal or deteriorating conditions
may need frequent monitoring for the quick implementation of adaptive management
strategies [21]. Thus, the decision on whether to have (or how many) multiple image
acquisition times for a given year may depend on the age and/or environmental conditions
of the restoration project. Based on the results of our study, for long-term monitoring of
salt marsh vegetation dynamics, we recommend acquiring one or two images annually,
specifically when vegetation has fully grown and is flowering. Nevertheless, there may be
situations where imagery from both early and late in a growing season is necessary. In the
next section, we further discuss quantifying temporal change in salt marshes by comparing
our method using change classes with other commonly used methods.

4.4. Assessment of Number of Landcover Classes, including Change Classes

The number and nature of landcover classes used during a classification greatly
influence the resulting map. In our study, we used a relatively large number of salt marsh
landcover classes (24 and 15) and achieved overall OOB and validation accuracies greater
than 90%. Our classification of the restoration site (15 classes) achieved a higher validation
accuracy than that of the reference site (24 classes). Many previous studies with similar or
higher validation accuracies (88–95%) used fewer classes (five classes with 95% [56], five
classes with 88% [52], and eight classes with 90% [28]). Studies experimenting with a similar
number of classes (17) typically achieved lower accuracies than our study (57–86%) [31,35],
and a classification that used 43 classes only achieved 58% [27]. While we did have
many classes, separating the mixed vegetation classes into individual species classes could
make them more spectrally homogonous and potentially increase classification accuracy.
However, this could also increase the classification error due to the mixed-pixel problem,
and, in general, using more classes increases the probability of misclassification. Note that
in our study, mixed vegetation classes helped address the small-scale (within a 49 cm2

area) heterogenous plant communities. We considered having more of them but lacked
enough appropriate training and validation data because these mixed landcovers did not
cover substantial areas within the sites. Previous studies mapping coastal wetlands have
also used mixed vegetation classes to address the spatial heterogeneity of coastal wetlands
and the mixed-pixel problem [35,40,46]. Other studies using very high spatial resolutions
avoid the use of mixed classes [37,38,42,54] and rarely directly discuss how they address
mixed pixels or their implications. As in previous studies, our classes with contrasting
spectral properties, including our deep salt pool water, wood, and shallow salt pool water
classes (Classes 8, 11, and 25, respectively), were more likely to be correctly identified by
the classifiers (high validation PA, >95%) and be reliably mapped (high validation UA,
>95%) [35,40]. On the other hand, the classes with lower UAs and/or PAs were those with
spectral and textural properties that were more similar to those of other classes. Many of
our change classes, including Classes 15, 19, 23, 24, 27, 28, and 29, achieved high (>90%)
validation UAs and PAs because of their spectrally contrasting properties caused by their
variation within the multi-temporal images. Overall, the objectives of a study, the spatial
resolution of the imagery, and the prevalence of mixed pixels must be considered when
determining the appropriate number and type of landcover classes for a classification.
Additionally, the landcover classes should be determined at the beginning of a project,
so that appropriate field validation data can be collected for each class. The number of
landcover classes and the quality and quantity of field data greatly influence the result
of a classification, which highlights the importance of establishing meaningful landcover
classes and building strong training and validation datasets.

While we developed change classes within a single growing season (from an image set
containing three acquisition times), such classes could be applied to an image set spanning
multiple years. Representing change as individual classes has been used to assess temporal
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patterns in Eucalyptus forests in Brazil [55] and coastal areas, including salt and brackish
marshes, in Texas, USA [56], but has never been used to monitor salt marsh restoration.
An advantage of using change classes in a single classification is that the importance
of variables from each image in the set can be extracted, providing insight into which
acquisition time was most important. However, as the number of classes in a classification
increases, coinciding with the amount of change observed and the number of images in the
set, more processing time is required, and results are often harder to interpret. Instead of
using change classes, change assessment is most often conducted as a post-classification
technique [32,55,93], where change is more easily interpreted in the form of a confusion
matrix. Post-classification techniques do not require the creation of change classes but do
require classifications representing before and after change, which are then compared [46].
This method could be applied to single images and used to assess sequential within- and
between-year differences, rather than classifying multiple images together. We do not
recommend using change classes to assess within-year differences (as we did in our study)
in combination with interannual post-classification analysis because it is unlikely that the
same seasonal changes would occur in the same spatial locations in multiple years, and so
change would be overestimated. If using multi-temporal images within and between years,
we recommend that either every image in the time series should be classified individually
and change assessed with post-classification analysis (both within and between years),
or that a general map excluding change classes should be created for each year and then
compared using post-classification change analysis [32].

4.5. Challenges and Future Research in Remote Sensing of Salt Marshes

The process of selecting remote sensing and image analysis methods for environmental
monitoring can be daunting. Each project comes with its own set of unique goals and con-
ditions, and the learning curve for acquiring and processing images can be steep. Moreover,
with the continuous development of new technology and methods, staying up to date adds
to the complexity. Environmental managers need to be mindful of their project objectives,
budget constraints, and knowledge limitations when choosing appropriate remote sensing
methods. Consulting with remote sensing experts can simplify this process. In the initial
project planning phase, understanding the required image spatial resolution and survey
area size is central to determining whether satellite or drone imagery is more suitable. Sub-
sequently, consideration must be given to the number of required images and the selection
of appropriate remote sensing methods tailored to the desired project outcomes, ranging
from simple visual assessments to complex classification models [46]. Some trial and error
with various image processing methods may be necessary to optimize the approach for
a specific environmental monitoring project. Additionally, considering local ecological
knowledge of the landcovers and biotic communities at the sites is necessary to ensure
that high-quality training and validation data are created and that meaningful objectives
are pursued. For our study, we had this knowledge because we have been sampling the
sites since 2010 (i.e., the beginning of the Aulac salt marsh restoration project) [23,59,60].
Overall, the quality of an environmental management project is enhanced through a cross-
disciplinary approach, involving collaboration among experts in remote sensing, ecology,
geology, sociology, and other relevant fields to broaden the collective knowledge base.

Addressing the challenges encountered in our study that may have influenced result
quality is instructive. Initially, our field data acquisition was not intended to evaluate every
individual landcover class. Instead, our sampling focused on assessing ecological changes
in salt marsh restoration and reference sites, following the field methods outlined in Virgin
et al. [60]. Consequently, we gathered numerous field data points for the most abundant
vegetation landcovers but fewer points for landcovers around the site perimeters or within
the large salt pool in the reference site (Site A). To overcome this challenge, we augmented
training and validation data for these less sampled landcovers using our knowledge of
the sites and aerial photographs, which has previously been carried out with success [40].
Additionally, the Geographic Positioning System (GPS) we utilized had a spatial accuracy
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of 2–3 meters, meaning that GPS points collected during our fieldwork did not always
precisely represent the sampled area. This spatial inaccuracy was a notable challenge,
especially in a salt marsh, where landcover variations occur at centimeter scales. Future
studies needing ground-truthing should consider employing centimeter-accuracy RTK
GPS units during field data collection. Despite these challenges, we maintain confidence
in the accuracy of the training and validation points, as we have expert knowledge of
the field sites through extensive annual sampling and could perform appropriate correc-
tions. A further study component that we could have conducted is testing more than one
classifier (in addition to Random Forests) for our study system. We chose RF because
it is known to perform well, based on our experience [36,94] and other studies in the
literature [33,34,40,50,54]. However, a focused comparative analysis with other algorithms
could have revealed a higher-performing option, as documented in other studies [52].
Another study component (alluded to above) is to evaluate the minimum number and
required types of spectral bands needed to accurately map salt marsh vegetation. Moreover,
evaluating the inclusion of additional sensors and remote sensing platforms could have
enhanced the comprehensiveness and informativeness of our study to guide future remote
sensing of salt marsh restoration projects (see below).

Since the integration of multispectral drone data in coastal environmental monitoring
projects has become widespread, many future research efforts are needed to guide and
extend their utility in coastal vegetation mapping, in addition to the ones mentioned above.
These include investigation of the effect of incorporating more landcover classes, training
data, and validation data to assess improvement or diminishment of mapping accuracy [38].
Moreover, the drone camera utilized in our study, the MicaSense Dual Camera System, has
similar bands to Sentinel-2 [95]. This compatibility allows for the validation of Sentinel-
2-based classified images using drone imagery [96]. The synergy of drone and satellite
data facilitates the assessment of environmental changes at various scales and would be
particularly valuable for habitats like salt marshes which exhibit heterogeneous vegetation
communities while covering extensive geographic areas. Our study solely used input
variables derived from the reflectance data acquired with the MicaSense dual-camera
system, and future studies could benefit from incorporating DSMs, DTMs, and canopy
height models derived from RTK GPS and Lidar data. These additional data sources have
been valuable in various studies [35,58], especially considering the strong influence of
elevation on salt marshes and its role in driving vegetation zonation in these habitats.
Overall, there are many future research directions that, if followed, will further assist with
the selection of appropriate remote sensing methods for mapping salt marshes.

5. Conclusions

Our comparison of classification approaches showed that pixel-based Random For-
est classifiers achieved higher classification and validation accuracies than object-based
Random Forest classifiers for mapping vegetation in north temperate salt marsh sites.
Our results likely partially depended on the small-sized plants at the sites; OB methods
may be more appropriate for wetlands with larger-sized plants. Pixel-based approaches
do not require the optimization and selection of input features for image segmentation,
possibly explaining its higher performance in our case study, in addition to making it more
user-friendly. We found that input variables extracted from the August images were most
important in the classifications, suggesting that imagery should generally be acquired at
times when vegetation is developed and flowering. Additionally, our results indicated that
many image input variables, including raw reflectances, vegetation indices, and textural
features, are valuable for achieving high classification accuracy and that increasing the
number of input variables can be achieved by using multi-temporal image sets. Also, our
results showed potential for monitoring classes that change when using multi-temporal im-
ages. The lessons learned from our study provide guidance for future monitoring projects
of salt marshes in Atlantic Canada and could be applied to other geographical locations
with plant sizes similar to those in the Aulac marshes. Monitoring vegetation dynamics
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during coastal wetland restoration is essential because of the threatened status of these
ecosystems and the need to restore the important services they provide.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs16061049/s1, Table S1: Photographs of vegetation classes;
Figure S1: Photographs of substratum landcover classes; Figure S2: Photographs of salt pool landcover
classes; Figure S3: Map of spatial distribution of training and validation data in the reference site
(Site A); Figure S4: Map of spatial distribution of training and validation data in the restoration
site (Site B); Table S2: JM distance values for Reference W classes; Table S3: JM distance values for
Restoration W classes; Table S4: OOB and validation accuracy for Reference W classifications; Table S5:
OOB and validation accuracy for Restoration W classifications; Table S6: Variable importance for
Reference W classifications; Table S7: Variable importance for Restoration W classifications.
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