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Abstract: High-resolution infrared remote sensing imaging is critical in planetary exploration, espe-
cially under demanding engineering conditions. However, due to diffraction, the spatial resolution
of conventional methods is relatively low, and the spatial bandwidth product limits imaging sys-
tems’ design. Extensive research has been conducted with the aim of enhancing spatial resolution
in remote sensing using a multi-aperture structure, but obtaining high-precision co-phase results
using a sub-aperture remains challenging. A new high-resolution imaging method utilizing multi-
aperture joint-encoding Fourier ptychography (JEFP) is proposed as a practical means to achieve
super-resolution infrared imaging using distributed platforms. We demonstrated that the JEFP ap-
proach achieves pixel super-resolution with high efficiency, without requiring subsystems to perform
mechanical scanning in space or to have high position accuracy. Our JEFP approach extends the
application scope of Fourier ptychographic imaging, especially in distributed platforms for planetary
exploration applications.

Keywords: Fourier ptychography; joint encoding; optical camera; key technique of remote
sensing payload

1. Introduction

The utilization of infrared remote sensing is crucial in the field of planetary exploration
due to its ability to gather a wealth of data on planetary atmospheres and surface char-
acteristics. However, remote sensing in planetary exploration needs to meet challenging
requirements, such as lighter and smaller payloads with lower power consumption and a
long-life payload design [1]. The successful execution of high-resolution planetary explo-
ration often depends on the utilization of large-aperture remote sensing systems [2]. As the
aperture of large traditional telescopes such as the Harper telescope continues to increase,
the processing and launch of satellite payloads may pose technical obstacles. To address
the challenges related to launching a telescope with a large aperture, NASA proposed the
use of splicing technology for the JWST [3].

The resolution of an optical system is not only limited by the Abbe diffraction limit
but also determined by the detector pixel size. In recent years, the size of detectors has been
progressively reduced. However, the trend of pixel size reduction (especially for infrared
detectors) has slowed down significantly due to constraints in the fabrication process and
other conditions. On the other hand, the physical reduction in pixel size not only leads to a
decrease in luminous flux at the expense of the signal-to-noise ratio (SNR) but also imposes
higher requirements on the signal pathway, data storage, and processing; moreover, dark
current, pixel delineation, and unit cell readout capacity also constrain further reductions
in pixel size [4]. In imaging systems where the focal plane detector array is not sufficiently
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dense to meet the Nyquist criterion, the resulting images are degraded due to aliasing
effects, which is a common problem among staring infrared imaging systems [5]. How
to mitigate the impact of the pixel size of such infrared remote sensing systems to obtain
high-resolution images with reduced aliasing is an urgent problem to be solved in the field
of planet exploration.

Pixel super-resolution is a technique for recovering high-resolution images from single
or multiple low-resolution images (under-sampling), and methods including it can be
broadly classified into three categories at present.

The first class of methods includes single-frame-based restoration methods, which
consist of the reconstruction of a high-resolution image from a single low-resolution image
and were first proposed by Goodman and Harris [6]. Generally, in such methods, the
interpolation of the captured image is based on some kind of a priori physical model of the
scene. In recent years, machine learning has further fueled the development of single-frame
super-resolution techniques [7,8]. However, while such methods are able to achieve a
perceptual increase in resolution, it is often difficult to guarantee high-resolution realistic
detail in the target image.

The second class of methods includes multi-frame-based restoration methods, which
consist of the recovery of a high-resolution version of a low-resolution scene by acquiring
multiple images. In these methods, micro-scanning is typically employed to acquire
multiple low-resolution images with sub-pixel shifts; the images are then combined with
an iterative algorithm to reconstruct a high-resolution image. There is a fundamental
limitation to this type of approach: the constraints on super-resolution reconstruction
rapidly weaken with increasing magnification (typically no more than 1.5 times) [9,10] due
to problems such as non-uniform sampling [11] during image acquisition and alignment
errors [12] during image processing.

The third class of methods includes coding-based pixel super-resolution imaging
methods [13–15], which allow the spectral aliasing problem caused by image elements to
be overcome by setting a coding mask, thus overcoming the limitation of detector spatial
sampling and achieving image de-aliasing. Among them, the Fourier ptychography-based
coding method consists of multiple-image aliasing acquisition by using different aperture
codes [16] and the iterative reconstruction of the target in the frequency domain using
Fourier ptychography, ultimately allowing for the recovery of high-frequency detailed
information that exceeds the pixel limit. This method can improve optical resolution very
effectively, but the aperture modulation needs to be changed to achieve the complete
acquisition of spectral information; therefore, its imaging time efficiency is relatively low.
Therefore, it is still difficult to meet the stringent dynamic and temporal requirements of
satellite missions and other missions.

In planetary and space sciences, image super-resolution techniques improve surface
feature identification in planetary observation missions and data quality to support human
exploration missions. The relevant super-resolution methods mainly include methods
based on traditional image computation and deep learning. The former are used for
extracting non-redundant, sub-pixel information from multi-frame images [17]; however,
they also face the problems of computational speed and the fixed orbit limitation of the
camera load. Deep learning-based methods, on the other hand, are data-driven approaches
used to improve the spatial resolution of images while maintaining or enhancing their
details and quality; however, such methods also suffer from issues such as synthetic textures,
the realism of the results, the limitations of the training data, and the generalization and
interpretability of the models [18,19].

In recent decades, the space-based electro-optical distributed aperture system (EO-
DAS) [20] and synthetic-aperture systems [21–24] have seen rapid development, achieving
better imaging performance with on-orbit self-assembly of relatively small mirror segments
mounted on separate low-cost spacecraft [25]. However, it cannot be ignored that the high
precision of mirror mounting and the difficulty of sub-aperture co-phase adjustment cause
significant problems from fabrication to launch in orbit in such space-based systems.
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Herein, we introduce a new pixel super-resolution method termed JEFP which encodes
the spatial frequency of an under-sampled imaging system by means of an elliptical aper-
ture and performs spectral reconstruction from acquired low-resolution image sequences
to improve the resolution of the pixelized imaging system. Further, our proposed JEFP
scheme, which can be extended to distributed systems, aims to maximize the benefits
of utilizing distributed platforms for high-resolution imaging. Different from traditional
pixel super-resolution methods and traditional synthetic-aperture imaging techniques, our
method does not rely on sophisticated mechanical scanning devices to obtain redundant
information to perform the super-resolution task. Significantly, the proposed method does
not rely on the accurate position information of the distributed platform, which shifts the
whole focus to the subsequent computational processing of the data. In addition, the pro-
posed distributed system greatly improves the collection efficiency of the system, making it
more adaptable as well as more flexible.

2. Methods

To better understand the whole process of our multi-aperture JEFP scheme for fast
and high-resolution reconstruction in distributed synthetic-aperture systems (such as
satellite constellations), we start by examining the optical scheme (see Figure 1). For
individual satellites, a series of low-resolution images of the target can be acquired with
the regulation of different aperture codes to achieve pixel super-resolution. Meanwhile,
in satellite constellations, all the elements collaboratively accomplish spatial resolution
imaging improvement with greater efficiency through image fusion [26–28].
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Figure 1. Schematic of distributed detection system for implementation of JEFP.

In this study, we considered a table-top miniature laboratory validation model with
four cameras (where each camera is equipped with a coded aperture), as shown in Figure 2,
as an example to demonstrate the ability of JEFP to reconstruct high-resolution images with
high efficiency. By utilizing four imaging subsystems, the target-emitted light waves, which
contain the different frequency components of the target information, can be captured
from multiple directions. With the implementation of a series of coded apertures, we
can generate numerous low-resolution images for each subsystem, obtaining pixel super-
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resolution by using spectral stitching. In summary, we efficiently fuse reconstructed pixel
super-resolution images obtained with individual sub-apertures with joint encoding to
achieve higher spatial resolution.
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2.1. Image Formation Model

Under natural conditions, the imaging process can be treated as being entirely spatially
incoherent, as discussed in detail below. The imaging process of the entire system can be
viewed as two Fourier transforms, according to the Abbe imaging principle. Under the
approximation of Fraunhofer diffraction, the light intensity exiting the sample (s(x0, y0))
is first transformed from the spatial domain to the frequency domain using the Fourier
transform and is then low-pass-filtered by the optical system:

F{s(x0, y0)} · H(u, v) (1)

where F denotes the Fourier transform [29] and H(u, v) is the optical transfer function of
the optical system. The latter is mathematically expressed as an autocorrelation form of the
system’s pupil function:

H(u, v) = P(u, v)⊗ P(u, v) (2)

where ⊗ is defined as the autocorrelation operator and P(u, v) is the pupil function.
The traditional approach consists of scanning the encoded aperture with a small hole

that complies with the Nyquist sampling law in terms of its dimensions and pixel size [30].
Effectively identifying small objects using remote sensors continues to be a significant
obstacle. Due to the significant distance between these objects and the sensor, the SNR is
typically low. To enhance the SNR of the low-resolution images captured, we implemented
the use of elliptical-aperture rotation instead of small-hole scanning. Matching the short axis
of the ellipse to the pixel size and matching the long axis to the diameter of the subsystem
pupil can significantly increase the incoming light, leading to an improved image SNR. By
setting the long and short axes of the elliptic aperture to a and b (both in mm), respectively,
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the ratio between the two axes of the ellipse can be expressed as r = a/b. Then, the elliptic
pupil function can be expressed as

P(u, v) =

1, u2

u2
c
+ v2

(uc/r)2 ≤ 1

0, u2

u2
c
+ v2

(uc/r)2 > 1
, uc = 2π

NA
λ

(3)

where uc is the cut-off frequency of the optical system and NA is the numerical aperture
corresponding to the long axis.

As the light field travels through the pupil, it eventually reaches the sensor plane
through the lens and is captured as light intensity. This can also be described as a
Fourier transform:

I(x, y) = F−1{F{s(x0, y0)} · H(u, v)} (4)

where I(x, y) is the light intensity image captured by the camera.

2.2. Pixel Super-Resolution

The smallest resolvable feature on the image plane for an incoherent imaging system
can be calculated with the equation 1.22λ f /D, where λ, f, and D represent the central
wavelength, the focal length of the imaging lens, and the aperture diameter, respectively.
According to the Nyquist sampling theorem, pixel aliasing can be avoided if the sampling
frequency is at least double the signal frequency [31]. Essentially, the sensor can fully
capture the low-pass-filtered light field information, as long as the smallest distinguishable
feature is at least two pixels or more in size. If the pixel size fails to meet the specified
requirements, the light field information will be under-sampled. This can cause pixel
aliasing and greatly reduce the quality of the image.

We demonstrated the entire process of pixel under-sampling in optical systems with
simulation experiments. The ground truth and spectrum of the low-pass-filtered image
obtained with the optical system are shown in Figure 3a,b, respectively. The image captured
by using standard pixel sampling is depicted in Figure 3c. Figure 3d displays the image
with under-sampling effects due to the larger pixel size.
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Figure 3. Simulation of the pixel aliasing problem. (a) The ground truth. (b) The spectrum of the
low-pass-filtered image obtained with the optical system. (c) The low-resolution image obtained
with systematic low-pass filtering and standard pixel sampling. (d) The low-resolution image with
under-sampling effects due to larger pixel size.
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By utilizing the Fourier ptychography approach, pixel super-resolution is achieved by
capturing image sequences with encoded and modulated optical pupil functions, resulting
in varying spatial frequency data. Figure 4a displays a schematic illustration of the aperture-
coded Fourier ptychographic imaging device, as explained in the section on the image
formation model. The operational concept is illustrated in Figure 4b. By employing
elliptical apertures with inconsistent long and short axes, we can filter the target’s spectrum
and generate an image with varying resolution in the orthogonal directions. By employing
mechanical rotation or a spatial light modulation device such as a DMD with digitally coded
modulation, we sequentially rotate the aperture up to 180◦ and collect one low-resolution
image at each rotation.
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Figure 4. Workflow for aperture-coded Fourier ptychographic imaging. (a) Schematic of aperture-
coded Fourier ptychographic imaging device. (b) Coded aperture-based rotary sampling.

By utilizing the optical transfer function as a constraint, the algorithm simulates the
transfer of optical field information between the spatial and frequency domains, allowing
for alternate iterations and updates [32]. The algorithm implementation process is detailed
as follows:

1. The initial estimated intensity image of the high-resolution target (Ihigh(x, y)) is ob-
tained by using the up-sampling result from averaging the low-resolution images
taken with all coded apertures:

Ihigh(x, y) = Upsample
(
∑N

i=1 Ic,low
i (x, y)/N

)
(5)

where N denotes the total number of captured images, Ic,low
i (x, y) denotes the captured

down-sampled low-resolution image, and Upsample(· · · ) denotes the up-sampling
process. Then, the estimated high-resolution spectrum of the target can be expressed
as Ohigh(u, v) = F

{
Ihigh(x, y)

}
.

2. Generation of low-resolution estimates of light fields: The first step involves perform-
ing a Fourier transformation on the high-resolution target, after which the optical
system applies a low-pass filter. Here, we define Hi(u, v) as the optical transfer
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function corresponding to the i-th coded aperture. Then, the intensity information
(oe,low

i (x, y)) is captured by the detector after the Fourier inverse transform:

oe,low
i (x, y) = Downsample

{
F−1

{
Ohigh(u, v) · Hi(u, v)

}}
(6)

where Downsample( ) denotes the down-sampling process.
3. Implementation of spatial-domain intensity constraints: The amplitude of the esti-

mated optical field (oe,low
i ) is replaced with the actual captured low-resolution intensity

image (Ic,low
i ), and the phase information is kept unchanged to obtain the replaced

estimated optical field (ou,low
i ).

ou,low
i (x, y) = Ic,low

i (x, y)
oe,low

i (x, y)∣∣∣oe,low
i (x, y)

∣∣∣ (7)

4. Updating of the spectrum for high-resolution targets: We up-sample the replaced
light field (ou,low

i (x, y)) and transform it to the frequency domain to update the region

selected by the coded aperture: Ou,high
i (x, y) = F

{
Upsample

(
ou.low

i

)}
.

Ohigh(u, v) = Ohigh(u, v) + α
Mi(u, v) ·

(
Ou,low

i (u, v)− Oe,low
i (u, v)

)
Hi(u, v) + τ

(8)

Mi(u, v) =
{

1, Hi(u, v) ̸= 0
0, Hi(u, v) = 0

(9)

where τ is the regularization parameter, α is the adaptive step parameter, and Mi(u, v)
is the zero–one mask of the optical transfer function.

5. Repetition of the updating process: Steps 2 to 4 are repeated for all acquired low-
resolution images, which is considered completing one iteration.

6. Iteration until convergence: Steps 2 to 5 are repeated until the algorithm converges
to complete the reconstruction process of the high-resolution target spectrum. Sub-
sequently, a Fourier inverse transform is applied to it to obtain the high-resolution
complex amplitude information of the target. The goal of the iteration step is to
minimize the difference between the estimated light field information and the actual
low-resolution image acquired.

2.3. Joint Reconstruction of Multiple Apertures

The above analysis was shown to be effective in achieving uniform resolution en-
hancement in under-sampled low-resolution images, as reported below in the experimental
section. Advancements in small satellite platforms, such as CubeStar, have enabled us to ex-
tend the use of this pixel super-resolution technique from single-aperture to multi-aperture
imaging devices (e.g., camera arrays). The workflow is shown in Figure 5.

In the procedure of single-aperture-coded imaging for each subsystem, adjusting
the aperture to a rotation angle of 5◦ requires the capturing of 36 consecutive images
(180◦/5◦ = 36). Throughout the process of image acquisition, it is imperative to keep both
the system and target stable to avoid recording and amplifying errors during recovery.
Relatively speaking, the multi-aperture-coded imaging process does not require additional
positional accuracy while extending the image spectrum through fusion. For instance, in
the case of the four-aperture camera array, if the total data volume remains constant, each
individual sub-aperture only needs to capture nine low-resolution images. Initially, we
apply a single-aperture reconstruction algorithm to reconstruct the incomplete spectrum
information of the target for each sub-aperture. Then, we utilize multi-scale image fusion to
jointly reconstruct information acquired with multiple apertures and obtain the reconstruc-
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tion outcomes of the sub-apertures. The system acquisition speed can thus be significantly
increased, resulting in improved temporal resolution and enhanced robustness.
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𝑀𝑖(𝑢, 𝑣) = {
1, 𝐻𝑖(𝑢, 𝑣) ≠ 0

0,𝐻𝑖(𝑢, 𝑣) = 0
 (9) 
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The multi-scale image fusion technique we use is based on Laplace pyramid decom-
position [33,34]. It ensures that the reconstruction results of different sub-apertures are
decomposed into different spatial frequency bands and that feature and detail information
at different spatial frequencies is fused. The steps are as follows:

1. Gaussian pyramid decomposition is first performed on the high-resolution results of
aligned single-aperture reconstruction:

Gi
l(x, y) = GaussianPyramid

(
oi

re(x, y)
)

(10)

where Gi
l(x, y) denotes the l-th layer pyramid decomposition image of the i-th sub-

aperture reconstruction result, GaussianPyramid denotes the Gaussian pyramid de-
composition process, and oi

re(x, y) denotes the high-resolution reconstruction of the
i-th sub-aperture.

2. Creation of a Laplace pyramid. We interpolate the Gaussian pyramid to obtain the
image G∗ i

l(x, y), which has the same dimensions as Gi
l−1(x, y):

G∗ i
l(x, y) = Upsample

{
Gi

l(x, y)
}

(11){
LPi

l = Gi
l − G∗ i

l+1, 0 ≪ l < N
LPi

N = Gi
N , l = N

(12)

where N denotes the highest layer of the Laplace pyramid and LP denotes the Laplace
image pyramid.

3. The fusion process is performed layer by layer starting from the top layer of the
Laplace image pyramid of the sub-aperture high-resolution reconstruction result. The
fused Laplace pyramid is obtained based on the fusion rule of maximum absolute
value at high frequencies and average value at low frequencies. Finally, the inverse
step of decomposition is applied to the fused pyramid to obtain the fused recon-
structed image. The whole multi-scale fusion framework based on Laplace pyramid
decomposition is shown in Figure 6.
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Figure 6. Multi-scale fusion framework.

3. Results
3.1. Experimental Setup

As shown in Figure 7, we built an infrared imaging system and simulated the imaging
effect of the camera array by controlling the movement of the imaging target. We used a
blackbody as the illumination device, which had a 60 mm diameter aperture and was able
to provide a temperature adjustment range of 0–500 ◦C, a stability accuracy of ±1 ◦C, a
radiation coefficient of 0.97 ± 0.01, and a radiation wavelength of 2–14 µm. The imaging
system consisted of a detector (SOFRAFDIR; France; 320 pixels × 256 pixels, 30 µm pixel
pitch, medium infrared band) and an infrared imaging lens (f = 100 mm, F/#2, film
coating of 3–5 µm). In order to enhance the temporal coherence of the system, we set up
a narrowband filter with a center wavelength of 4020 nm and a bandwidth of 150 nm.
The negative USAF1951 resolution target placed at the blackbody exit was used as the
experimental sample.
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The optical pupil was equipped with an elliptical aperture in front of the lens, which
was then rotated mechanically to achieve coded modulation. The elliptical aperture had a
long axis of 31 mm and a short axis of 8 mm. By designing our setup in this manner, we
ensured that the spatial frequency for the shorter axis was sampled normally, while the
spatial frequency for the longer axis of the elliptical aperture was under-sampled. It should
be noted that the physical rotation utilized in our experimental configuration is simply a
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representation and could be interchanged with a digital micromirror array or a spatial light
modulator for digital manipulation.

We sequentially validated the effectiveness of the single-aperture reconstruction and
multi-aperture joint reconstruction algorithms. By rotating the elliptical aperture by 5◦ for
each image, we were able to acquire 36 low-resolution images with different frequency
information along the orthogonal directions during the single-camera imaging process.
Following this, we exchanged the elliptical aperture with an equivalent synthetic aper-
ture for imaging and obtained a full-aperture high-resolution image for comparison. We
simulated the imaging result of a four-camera array by physically moving the camera
through a mechanical translation stage for the multi-aperture joint imaging technique.
With multi-aperture-coded joint modulation, only nine low-resolution images needed to be
acquired for each sub-aperture.

3.2. Spatial Resolution Results

The full-aperture image, raw image, and recovered high-resolution images obtained
by using a single camera and multiple cameras are shown in Figure 8a–d, respectively. It
should be noted that the image depicted in Figure 8b is merely a low-resolution image in a
particular direction. Its corresponding coded aperture is an elliptical aperture with a long
horizontal axis and a short vertical axis (that is, the mask rotation angle is 0◦). The spatial
resolution disparity between the images in the horizontal and vertical directions was the
highest, as depicted in Figure 8b. As previously stated, the resolution in the horizontal
direction was limited by the size of the short elliptical axis. Although the long axis had a
higher frequency transfer capacity, the detector pixel size constraint resulted in the vertical
resolution being inferior to the horizontal resolution, which only performed better in terms
of contrast.

By comparing Figure 8a,b, it can be easily found that the visual performance of
the line pair in the full-aperture image was better. However, by further comparing the
normalized intensity profiles of the line pairs of both in Figure 8a1–a2,b1–b2, it can be seen
that the spatial resolutions of full-aperture imaging and elliptical-aperture modulation
imaging were at the same level. Group 1 element 6 (561.24 µm periodicity, corresponding
to 63.98 µm imaging resolution, which is twice the pixel size) could be resolved in both
cases. Significantly, neither was able to resolve sharper line pairs, which is the result of
pixel aliasing, preventing higher spatial frequencies from being recorded by the detector.

As shown in Figure 8c, the recovery result obtained by using a single camera was able
to resolve group 0 element 5 (314.98 µm periodicity, corresponding to 35.90 µm imaging
resolution). By observing the pairs of lines oriented perpendicularly to each other, we
can see that our algorithm has the ability to achieve consistent resolution recovery across
different orientations. Compared with the raw image, the recovery result achieved a
1.78-fold resolution improvement and an overall better line-pair contrast; moreover, it also
achieved the same resolution improvement and better contrast for high-frequency pairs
compared with the full-aperture image, which can be easily inferred from Figure 8a2–c2.

In addition, the result obtained by using multiple cameras could resolve group 0
element 4 (353.55 µm periodicity, corresponding to 40.30 µm imaging resolution) in Fig-
ure 8d. Compared with the raw and full-aperture images, we can see that the results
still provided a consistent resolution improvement in the orthogonal direction, a 1.59-fold
improvement, and better performance in terms of line-pair contrast. It is worth noting that
this recovery method is based on the quadrupling of the temporal resolution of the entire
acquisition setup (i.e., for each camera, the number of data acquired becomes one-fourth of
the original total).

Further, we explored the effect of different multi-camera co-sampling methods on
the recovery results. The multi-camera results in Figure 8d were obtained by using a
continuous-sampling method, i.e., each camera captured a low-resolution image under con-
tinuous aperture rotation, as shown in Figure 9a. For the joint multi-camera reconstruction
interval-sampling experiment, the sampling method is shown in Figure 9b.
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distribution of the dotted lines in (a–d).
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It can be easily seen that the recovery results obtained with interval sampling were
able to resolve group 0 element 3. From the results in Figure 10, it can be found that the
interval-sampling method was able to achieve similar resolution results and better-quality
recovered stripes (the artifacts inside the stripes were obviously reduced) compared with
the continuous-sampling method. However, the performance was not as satisfactory as
that of the latter in terms of the limit of the resolution ability and the contrast of the line
pairs. From the two spectral sampling methods in Figure 10, it can be seen that the image
set acquired by using a single camera in the continuous-sampling method showed lower
coverage of the complete spectrum but that the spectral overlap between adjacent images
was higher; on the other hand, the image set acquired by using a single camera with the
interval-sampling method achieved higher spectral coverage, but the spectral overlap
between adjacent images was lower. Therefore, the continuous-sampling method achieved
better limiting resolution and line-pair contrast performance, while the interval-sampling
method provided better stripe quality.
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3.3. Temperature Results

In addition to spatial resolution, temperature accuracy is also an important param-
eter for infrared-band planetary detection, which helps us explore the mysteries of the
universe [35]. Therefore, we verified the temperature accuracy of the proposed method by
collecting 17 data points for temperature calibration and fitted the calibration curve of the
working range, as shown in Figure 11. In our experiments, the temperature of the blackbody
was set to 200 ◦C, and based on the above-mentioned temperature calibration curve, the
corresponding temperature for the captured image was calculated to be 195.54 ◦C (error of
2.23%).
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3.4. Discussion on Method Robustness

To prove the robustness of the proposed method, we conducted a more detailed
investigation into its effectiveness, and the results are as follows:

• SNR: We carried out simulation experiments on low-resolution images under different
noise conditions and obtained the corresponding reconstruction results. Taking the
noiseless condition as a reference, the reconstruction results were evaluated in terms of
the structural similarity index (SSIM) for image quality, as shown in Figure 12. When
the SNR of the image was close to 5.4, the structural similarity of the reconstruction
result decreased to below 0.2, and the reconstruction quality was unacceptable. It
can be seen that the proposed method has certain requirements relative to the SNR of
the captured images. Therefore, our subsequent work will focus on how to further
improve the SNR of the infrared system.

• Elliptical-aperture scanning speed: The elliptical rotation speed needs to be selected
based on both image SNR and acquisition efficiency. Indeed, both slow rotation, to
ensure a sufficient SNR for a single image, and fast speed, to improve the acquisition
efficiency of the entire system, are required.

• Light source: In the experiment, we also attempted to use heated metal plates as
infrared targets. Due to the highest heating temperature of the metal plate being
130 ◦C, the SNR of the collected images was low, which had a certain impact on the
reconstruction results. The reason for using this blackbody as a light source is that it
provides stable infrared radiation at high temperatures and high SNRs.

• Vibration and camera stability: In the high-resolution imaging scheme based on
conventional synthetic apertures, the sub-wavelength scale of phase accuracy requires
the sub-aperture to be highly stable. Different from those of conventional methods,
the requirements of the proposed method in terms of camera stability are comparable
to those of conventional single-aperture loads, i.e., the platform is required to be free
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from large vibrations as well as other instabilities during the exposure time of a single
imaging session.
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4. Conclusions

In this paper, we present a computational imaging method (multi-aperture joint-
encoding Fourier ptychography (JEFP)) as a practical means to achieve super-resolution
infrared imaging for distributed platforms in planetary exploration missions. By merging
reconstructed images from several sub-apertures, this approach enables distributed systems
to achieve high temporal resolution. The proposed method solves the pixel aliasing problem
by means of systematic coding and algorithmic decoding. Further, sensors with larger pixel
sizes can be used to obtain superior SNRs and reduce the processing and manufacturing
costs of the system. In addition, the proposed method does not require the system to be
mechanically scanned in space, thus offering the possibility for distributed systems to
recover the amplitude and phase of the light field in a simpler and faster way. It should
be noted that the method’s temporal coherence requirement decreases the SNR of the
captured images. The JEFP scheme proposed in this paper extends the application scope
of Fourier ptychographic imaging, especially for distributed synthetic-aperture imaging
systems, which not only improves the acquisition efficiency of the system and reduces
the control accuracy requirements of the distributed system, but also greatly reduces the
volume and weight of the system and the manufacturing costs. For planetary exploration
missions that require greater adaptability and design lifetime, our distributed scheme can
also provide less strict deployment conditions and higher risk tolerance for a single camera.
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