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Abstract: The Beijing-Hangzhou Grand Canal in China became a World Cultural Heritage Site in 2014,
and the water quality of this ancient man-made canal has increasingly attracted societal attention.
This study focuses on monitoring the water quality of the Beijing section of the Grand Canal (BGC)
using remote sensing technology. Analysis of the comprehensive trophic level index (TLI) indicates
that the water in the Canal was predominantly light eutrophic from 2016 to 2022. The annual average
results of the TLI reveal that the water quality in the Kunming Lake and North Canal of BGC is
generally good, characterized by some mesotrophic waters, and others are in light eutrophication.
The TLI for the entire BGC water body decreased from 64.7 in 2016 to 60.3 in 2022, indicating an
improvement trend in water quality. Notably, the proportion of good water with TLI less than
60 increased from 50% in 2016 to 83% in 2022. This improvement of water quality may be attributed
to the reduced use of fertilizers and pesticides and the implementation of various environmental
policies by Beijing Municipal government. These findings offer valuable insights for the management
and protection of the water resources of the BGC, and further contribute to the evaluation of the
United Nations Sustainable Development Goal (SDG) 11.4.

Keywords: grand canal; water quality; eutrophic; comprehensive trophic level index; SDG

1. Introduction

As a World Cultural Heritage Site, the Beijing-Hangzhou Grand Canal is the earliest
and longest man-made canal in the world, with a history of over 2500 years [1]. It has
played a critical role in facilitating the development and exchange of agricultural, economic,
and cultural aspects between the northern and southern regions of China [2]. However,
the Beijing section of the Grand Canal (BGC), once thriving through several dynasties,
has experienced a sharp decline in modern times [3]. Factors such as natural changes,
human impact, and insufficient conservation efforts have led to the deterioration of its
transportation utility. Consequently, this section now grapples with significant challenges,
including the loss of water sources, rampant algae growth, and hyper eutrophic water
pollution [4,5]. Before 2018, the water quality in the BGC was categorized as inferior Class
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V according to the Water Quality Standards for Surface Water. This was mainly due to the
poor water quality, with a high pollution load primarily from nutrients like nitrates, leading
to evident eutrophication [6]. To address this issue, the government of Beijing departments
implemented targeted regulatory measures and enacted a series of water environment
management policies. These initiatives were designed to protect the ecological environment
and restore BGC original balance. Gradually, these measures have improved the water
quality of the BGC. Ongoing maintenance and repair of the river channel have also played a
crucial role in this enhancement [7,8]. Currently, the water quality of the BGC is improving
to meet the Class IV water standard, effectively eliminating the previously common inferior
Class V water bodies. The ecological environment of the water in the BGC is vital for
the holistic development of the entire Beijing-Hangzhou Grand Canal. This segment has
earned distinguished recognition from the United Nations Sustainable Development Goals.
Thus, monitoring of the water quality in the BGC is paramount, and ensuring the health
and sustainability of this waterway is vital in the efforts to safeguard and cherish global
heritage sites [9–11]. It plays a significant role in assessing the progress towards Sustainable
Development Goal 11.4, which focuses on the preservation and protection of the world
cultural and natural heritage [12].

Eutrophication, a common state of water pollution in urban areas, arises from an
ecological imbalance triggered by nutrient enrichment in water bodies. This leads to
the excessive proliferation of planktonic algae, posing significant threats to both the
regional ecological environment and human safety [13,14]. Therefore, operational moni-
toring of urban river water quality is particularly important for evaluating the ecological
health of rivers [15]. The monitoring of the comprehensive trophic level index (TLI) in
the BGC primarily utilizes traditional methods, with monthly assessments of specific
water sections. The TLI was calculated using chlorophyll-a and transparency. Com-
pared to individual parameters of chlorophyll-a and transparency, TLI provides a more
comprehensive assessment [16–19]. Additionally, TLI serves as an official indicator for
evaluating water quality [20]. Some water bodies in the BGC have in situ measurement
data, which can be compared with this research. Although this data reflects the local
trophic level, it falls short of providing the comprehensive information necessary for
large-scale and spatial continuous monitoring. This limitation makes it challenging to
determine the trophic level in areas between monitoring points. Furthermore, there is a
relative scarcity of research on the spatiotemporal changes of the water body in the canal.
This lack of detailed and expansive data significantly complicates the understanding
of the overall water quality of the canal. Additionally, obtaining field measurements
is often time-consuming, expensive, and limited by spatial and temporal constraints,
thereby hindering effective water quality management and improvement efforts [21].
To address these challenges, utilizing satellite remote sensing to monitor river water
quality is an economical, efficient, and large-scale approach to monitoring water bod-
ies [22]. In light of these challenges, quantitative remote sensing research to evaluate
the TLI of rivers holds substantial practical value [15]. Research has demonstrated that
combining remote sensing monitoring with conventional ground-based monitoring tech-
niques can offer a more comprehensive view of water environmental conditions, crucial
for effective watershed management [22–24]. This integrated approach enables more
effective monitoring of the trophic level of water bodies, with remote sensing serving
acting as a vital supplement to the design and enhancement of ground-based monitoring
systems [25,26]. Currently, in the study of water quality distribution in the BGC, there
is a notable absence of this combined methodology, merging ground monitoring data
with remote sensing data products. Consequently, the exploration of water quality in the
BGC, leveraging both remote sensing and traditional monitoring data, holds significant
theoretical and practical importance. Currently, the surface water quality in this section
is monitored by the Beijing Municipal Water Bureau, with set monitoring points across
various segments of the canal. However, each monitoring point only represents a specific
area of the water body, leading to limited representativeness of the overall water quality
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data. This limitation poses challenges in accurately depicting the spatial distribution of
water quality. Furthermore, with data collection occurring only once a month, the ability
to conduct real-time monitoring is significantly hampered.

To address these issues, in this study, Sentinel-2 MultiSpectral Instrument (MSI) satel-
lite imagery was utilized to monitor the TLI of water bodies in the BGC. Sentinel-2 satellite
data has been widely utilized in water quality monitoring due to its extensive cover-
age [27,28]. The imagery covers a large area, including lakes, reservoirs, and wide river in
the BGC, exceeding the scope of conventional ground-based monitoring. Moreover, each
lake and river are monitored comprehensively, providing a more representative depiction
of water quality in the study area compared to conventional point-based monitoring. With
the satellite passing over every 5 days, filtering images with cloud cover, the frequency
of monitoring water quality from the remaining images far exceeds that of conventional
field-based water quality monitoring. The extensive coverage of this imagery is a significant
advantage, as one scene is capable of encompassing all the water bodies within this section
of the canal. Sentinel-2A was launched on 23 June 2015, as we used Sentinel-2 to monitor
the water quality of BGC from 2016 to 2022. Because the United Nations set the 2030 SDG
target in 2015, monitoring the water quality of BGC from 2016 to 2022 is equivalent to
conducting a mid-term progress assessment of typical regions of SDG11.4. This study
employs a combined approach using ground measurement data and remote sensing im-
ages to examine the water body in the BGC. The specific objectives of this study are as
follows: (1) Quantitatively derive a comprehensive tropical level index for BGC, using
Sentinel-2 MSI images along with data on chlorophyll-a concentration (Chl-a), transparency
(Zsd); (2) Conduct a detailed analysis of the changes in water quality from 2016 to 2022;
(3) Identify the factors influencing these changes in water quality; (4) Apply the derived
index from Sentinel-2 MSI to assess the progress towards SDG 11.4 for the BGC over the
past seven years.

2. Study Area and Data Acquisition
2.1. Study Area

The BGC, a historic and once heavily utilized waterway in China, played a crucial role
in material transportation, storage, and trading. While it no longer functions as a goods
transportation route due to historical developments, parts of the canal are well-preserved
and primarily serve as drainage channels in Beijing. This section encompasses several key
waterways running north to south: the Jingmi Diversion Canal, the Nanchang River, the Ba
River, the Tonghui River [29], and the five main rivers of North Canal. The focus of this
study is on the portions of the Grand Canal of Beijing section that are wider than 100 m
and observable via 10 m resolution Sentinel-2 MSI remote sensing data. Within this area,
the water bodies of interest for research include ten specific locations: the Kunming Lake,
Zizhuyuan Lake, Yuyuantan Lake, Beihai Lake, Zhonghai Lake, Nanhai Lake, Taoranting
Lake, Longtan Lake, Gaobeidian Reservoir, and the North Canal (Figure 1).

2.2. Data Acquisition
2.2.1. In Situ Data Acquisition

To calibrate and recommend water quality remote sensing monitoring models, we car-
ried out five field experiments in the BGC on August to October 2019, covering 58 sampling
points throughout the year (Figure 1). Five experiments were conducted between August
and October 2019, specifically on 21 August, 16 September, 18 September, 15 October, and
25 October. Among these, the experiments on 21 August, 15 October, and 25 October
were synchronized with the acquisition time of the Sentinel-2 MSI images, and were used
for validation of water quality parameter retrieval. The in situ measured remote sensing
reflectance spectra, after band equivalent to Sentinel-2 MSI bands, together with the water
quality parameter data obtained from all of these five experiments were utilized to calibrate
the water quality parameter retrieval model. Then, the in situ measured water quality pa-
rameter data from the three synchronized experiments were used to validate the retrieved
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water quality parameter results from Sentinel-2 MSI images. At each location, remote
sensing reflectance (Rrs) measurements were precisely conducted using an ASD FieldSpec
spectroradiometer (Analytical Spectral Devices, Inc., Boulder, CO, USA), following the
established above-water method [30,31]. The Rrs data collected from these 58 points are
detailed in Figure 2. Surface water samples were collected from up to 0.5 m depth and
meticulously preserved under low temperature and dark conditions until their analysis
in the laboratory. These samples were filtered using Whatman GF/F (0.7 µm pore size,
Φ47 mm) filters to extract Chl-a samples. Subsequently, the concentration of Chl-a was
determined using the hot ethanol method [32,33], complemented with spectrophotometric
(Shimadzu, Kyoto, Japan) analysis. The transparency of the water was assessed using the
Secchi disk method. A standard black and white Secchi disk, about 30 cm in diameter,
was attached to a rope and slowly submerged. The depth at which the disk was no longer
visible from the surface was recorded as the Zsd [34–36]. The collected data, including
mean, standard deviation (stdv), minimum (min) and maximum (max) of Chl-a and Zsd,
are comprehensively presented in Table 1. Furthermore, TLI data, spanning from 2016 to
2022, was sourced from the Beijing Water Statistics Yearbook (https://swj.beijing.gov.cn/,
accessed on 9 December 2022).
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spectra include reflectance peaks around 565 nm and 700 nm, and valleys near 670 nm and 740 nm.

Table 1. In situ measurements of chlorophyll-a and transparency from the five field experiments
performed in the BGC in 2019.

Study Area Experiment
Date

Sampling
Points

Chl-a (mg/m3) Zsd (m)

Max Min Mean Stev Max Min Mean Stev

Yuyuantan Lake 21 August 9 26.65 14.35 21.18 0.20 0.94 0.40 0.62 0.20
Kunming Lake 16 September 14 14.60 10.14 12.88 1.13 0.58 0.48 0.53 0.04

Beihai Lake 18 September 12 18.88 5.05 13.97 4.30 1.05 0.55 0.73 0.18
North Canal 15 October 15 68.47 38.73 47.99 7.82 0.80 0.58 0.66 0.06

Zizhuyuan Lake 25 October 8 37.39 15.36 22.78 6.75 0.25 0.20 0.22 0.02

2.2.2. Satellite Data Acquisition

In this study, we utilized Sentinel-2 MSI satellite imagery to observe and assess the TLI
within the BGC. Sentinel-2 images were obtained from the official website of the European
Space Agency (ESA) (https://dataspace.copernicus.eu, accessed on 3 January 2023). The
choice of Sentinel-2 MSI for this task was driven by several key factors: (1) The configuration
of satellite includes 13 spectral bands, notably featuring the 665 nm and 705 nm bands.
These bands are particularly effective for retrieving Chl-a and Zsd in eutrophic waters,
making them ideal for this study. (2) Sentinel-2 MSI boasts 10 bands with a high spatial
resolution ranging from 10 to 20 m. This level of detail is particularly suited for monitoring
the relatively narrow confines of the BGC. (3) The system, comprising Sentinel-2A and
Sentinel-2B satellites, enables a 5-day return cycle, which is highly advantageous for
dynamic and frequent monitoring of water quality changes [37]. We used Sentinel-2 MSI
L2A level surface reflectance product for subsequent water quality monitoring. The ESA
provided L2A level data after 2019, but the previous ones only had L1C level atmospheric
top radiance images, which needed to be locally corrected to L2A surface reflectance
using the Sen2Cor v2.8 software provided by the ESA [38]. In this study, we acquired a
substantial dataset consisting of 103 scenes L2A product images from the years 2019 to 2022
and 86 scenes L1C product images from 2016 to 2018. In total, these 189 scenes of Sentinel-2
MSI images, which consisted of 25, 34, 27, 29, 21, 33, and 20 scenes each year, respectively,
spanned the seasons of spring (March, April, May), summer (June, July, August), and
autumn (September, October, November) across the seven-year period from 2016 to 2022.

https://dataspace.copernicus.eu
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3. Methods

This study is mainly based on Sentinel-2 images, and after preprocessing, TLI is
calculated to comprehensively understand the trophic condition of BGC water bodies. The
key parameters Chl-a and Zsd of TLI, and evaluate Sustainable Development Goal 11.4
(Figure 3). To accurately determine the concentration of Chl-a, we implemented a semi-
empirical model. For assessing Zsd, we utilized a sophisticated approach by employing
a Quasi-Analytical Algorithm (QAA) [39] based semi-analytical model, specifically the
QAA_RGB [40] algorithm, to ascertain the transparency of water bodies. Additionally, this
study aims to contribute to the evaluation of Sustainable Development Goal (SDG) 11.4,
which focuses on safeguarding cultural and natural heritage.
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3.1. Satellite Data Preprocessing
3.1.1. Data Resampled

Sentinel-2 images were obtained from the official website of the ESA. Considering the
constrained scope of the BGC, the 20 m resolution bands of the Sentinel-2 MSI in Level 2A
products have been consistently upgraded to a finer 10 m resolution, meanwhile, using
band subset preserves the 12 bands that can be used after resampling. This preprocessing
was implemented using the Sentinel Application Platform-7.0 software, a tool furnished by
the European Space Agency.

3.1.2. Water Mask Extraction

The water surface of the BGC presents a unique challenge due to its irregular
shape and distribution within various city parks. While a portion of these water bodies
consists of river segments, they are often surrounded by greenery and interspersed with
recreational facilities like boats, leading to a dynamic and inconsistent water surface.
Consequently, utilizing the Normalized Difference Water Index for automatic water body
detection yields suboptimal results in this complex environment. To enhance accuracy,
this study combines the results of automatic extraction with manual visual analysis to
more precisely define the water body boundaries [41]. Furthermore, to mitigate the
impact of adjacent land pixels, we adopt a strategy of eroding one pixel from the edge of
the extracted water bodies [42].
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3.1.3. Rrs Correction of Sentinel-2 MSI L2A Products

Sentinel-2 L2A surface reflectance data undergo corrections for aerosol, Rayleigh
scattering, and cirrus clouds [43]. However, for accurate Rrs in lake and reservoir water,
additional corrections for water surface skylight reflection and sunlight are necessary. To
achieve this, we implemented a straightforward correction method utilizing the Near-
Infrared (NIR) and Short-Wave Infrared (SWIR) bands, effectively extracting Rrs [44].

Rrs (λ) = (R(λ)− min(R(NIR) : R(SWIR)))/π (1)

where R(λ) represents the surface reflectance spanning from visible light to the red edge
band, and min (R(NIR): R(SWIR)) indicates the lowest value of surface reflectance across
five specific bands (842, 865, 945, 1610, and 2190 nm) within the NIR to SWIR range.

3.2. Inversion and Evaluation Methods for Water Quality Parameters
3.2.1. Inversion Modelling of Chl-a

In this study, we used in situ measured Rrs values at 58 points to simulate the spectral
bands of the Sentinel-2 MSI satellite. Concurrently, Chl-a measured at these same locations
formed the training dataset. We then leveraged these combined measurements to develop
semi-empirical models specifically designed for estimating Chl-a.

The primary objective in developing semi-empirical model for Chl-a inversion was to
identify the most effective spectral index. Through the analysis of the Rrs spectrum from
the BGC, shown in Figure 2, we noted specific spectral features characteristic of water
eutrophication. These features include reflectance peaks around 565 nm and 700 nm, and
valleys near 670 nm and 740 nm (Figure 2), commonly used for constructing the Chl-a
spectral index in eutrophic waters [45–47]. The Sentinel-2 MSI data closely matches these
spectral features, including four bands at central wavelengths of 560 nm, 665 nm, 705 nm,
and 740 nm. Furthermore, the Rrs measured data are utilized for band equivalent to the
Sentinel-2 MSI bands, which are then used in combine with the in situ Chl-a data to build
a semi-empirical model for the inversion of Chl-a. We explored several spectral indices
known for Chl-a retrieval in eutrophic waters, such as the slope index (SL) [48], fluorescence
line height (FLH) [49], maximum chlorophyll index (MCI) [50], and normalized difference
chlorophyll-a index (NDCI) [51], as outlined in Table 2. Employing these four spectral
indices, we developed a semi-empirical model for Chl-a inversion. Furthermore, we
conducted comparative analyses to assess the effectiveness of each index within the models,
ensuring an optimized approach for accurate Chl-a estimation.

Table 2. Four spectral indices employed for developing the chlorophyll-a estimation model in the
Beijing Section of the Grand Canal.

Reference Spectra Index Abbreviation Spectra Index Formula

[48] SL X = (Rrs (705) − Rrs (665))/(705 − 665)
[49] FLH X = Rrs (665) − Rrs (560) − ((665 − 560)/(705 − 560)) × (Rrs (705) − Rrs (665))
[50] MCI X = Rrs (705) − Rrs (665) − ((705 − 665)/(740 − 665)) × (Rrs (740) − Rrs (665))
[51] NDCI X = (Rrs (705) –Rrs (665))/(Rrs (705) + Rrs (665))

3.2.2. Zsd Estimation

In this study, we employed both empirical and semi-analytical modelling methods
to estimate water transparency in the BGC. The empirical modelling approach primarily
focused on examining the correlation between the spectral data from satellite images and in
situ surface measurements at 58 synchronized experimental points. This method involved
selecting appropriate spectral bands or combinations thereof for the model. Specifically,
we analyzed the spectral characteristics of water bodies, opting to use a combination of
red, green, and blue bands. For empirical modelling, we selected a green to red/blue light
ratio model [52] and a blue/green to red/green light model [53]. On the other hand, the
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semi-analytical model utilized was based on the QAA_RGB [39] (Table 3). This model
effectively harnesses the red, green, and blue bands of the spectral data, which are vital for
a detailed and accurate analysis of water clarity. This method estimates inherent optical
properties, specifically the total absorption and backscattering coefficients. From these, we
inverted the diffuse attenuation coefficient. Finally, water transparency was determined by
correlating this diffuse attenuation coefficient with Rrs [54–58].

Table 3. Procedure for extracting the total absorption coefficient (a), backscattering coefficient (bb),
and diffuse attenuation coefficient (Kd) using the QAA_RGB algorithm [39,40].

Step Property Calculation Formula

1 rrs(λ) rrs(λ) = Rrs(λ)(0.52 + 1.7Rrs(λ))

2 u(λ) u(λ) = −g0+
√

g2
0+4g1rrs(λ)
2g1

, g0 = 0.089, g1 = 0.1245

3 α(λ0)

If Rrs(665) < 0.02 sr−1

α(λ0) = aw(560) + 10P

P = −1.085 − 1.110 χ − 0.234 χ2 − 0.102 χ3

χ = log
(

2B
G+ 5R2

B

)
Else

α(λ0) = aw(665) + 0.39
(

rrs(665)
r*

rs(443)+rrs(490)

)1.14

r*
rs(443) = rrs(560)× Q

(
B
G

)
Q
(

B
G

)
= q2

(
rrs(490)
rrs(560)

)2
+ q1

(
rrs(490)
rrs(560)

)2
+ q0

4 bbp(λ0) bbp(λ0) =
u(λ0)×α(λ0)

1−u(λ0)
− bbw(λ0)

5 η η = 2.0
(

1 − 1.2exp
(
−0.9Q

(
B
G

)))
6 bbp(λ) bbp(λ) = bbp(λ0)

(
λ0
λ

)η

7 α(λ) α(λ) = (1 − u(λ))
(

bbw(λ) + bbp(λ)
)

/u(λ)

8 Kd Kd = (1 + 0.005 × θs)a(λ) +
(

1 − 0.265
(

bbw(λ)
bbp(λ)

))
× 4.26

(
1 − 0.52e−10.8a(λ))bbp(λ)

9 Zsd Zsd = 1
2.5Min(Kd(490,560,665)) ln

(
|0.14−Rtr

rs |
0.013

)
Notes: Rrs: this term refers to the above-surface remote-sensing reflectance. rrs: it denotes the below-surface
remote-sensing reflectance. u(λ): the ratio of the total absorption coefficient a to the sum of a and the total
backscattering coefficient bbp. P: intermediate variable. λ0: this is the reference wavelength. aw: represents the
absorption coefficient of pure water. r*

rs (443): the original QAA method, rrs (443) is utilized, which is substituted
with an RGB expression in the QAA_RGB approach. bbp: the backscattering coefficient of suspended particles.
bbw: it stands for the backscattering coefficient of pure seawater. η: this is the spectral power of the particle-
scattering coefficient. θs: denotes the solar zenith angle. Sentinel 2A: q0 = −0.0209, q1 = 0.5402, q2 = 0.2269. Sentinel
2B: q0 = 0.0684, q1 = 0.5398, q2 = −0.0255. RGB represents Rrs (665), Rrs (560), Rrs (490). Rtr

rs: Represents the remote
sensing reflectance at this specific wavelength.

3.2.3. Evaluation of the Accuracy of Chl-a and Zsd Inversion

The semi-empirical Chl-a estimation model, together with the Zsd model derived from
empirical data, was implemented on Sentinel-2 MSI images taken on 21 August, 15 October,
and 25 October 2019. We evaluated the models accuracy by comparing their results with
simultaneously measured Chl-a and Zsd values of the water surface, using two statistical
metrics: root mean square error (RMSE) and mean relative error (MRE) [45].

RMSE =

√
1
N ∑N

i=1(Yi − Xi)2 (2)

MRE =
1
N ∑N

i=1
|Yi − Xi|

Xi
× 100% (3)

where, Xi denotes the Chl-a or Zsd as derived from the satellite images. Yi represents the
Chl-a or Zsd obtained from in situ measurements. The variable N signifies the total number
of sample points utilized in the evaluation process.
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3.3. Method for Calculating TLI and Evaluating Water Quality
3.3.1. Method for Calculating TLI

The calculation of the TLI is conducted following the eutrophication evaluation and
grading technical regulations for lakes and reservoirs, as issued by the China Environ-
mental Monitoring Station [20]. Eutrophication in water bodies is affected by a variety
of environmental factors. Zsd represents the clarity of the water, which is an important
indicator for assessing water quality. In addition to Zsd [59], Chl-a is also a crucial indicator
for evaluating water quality [60]. To facilitate a comprehensive analysis of water quality
conditions, we utilize Zsd and Chl-a to calculate the TLI. The TLI can synthesize the infor-
mation provided by both Zsd and Chl-a [61]. The TLI of each indicator (Chl-a and Zsd) is
calculated individually. After determining the relevant weight index for each, the TLI is
then computed.

TLIChl−a = 10 × (2.5 + 1.086× ln(Chl − a)) (4)

TLIZsd = 10 × (5.118 − 1.94 × ln(Zsd ) (5)

TLI =
1

1 + 0.6889
× TLIChl−a +

0.6889
1 + 0.6889

× TLIZsd (6)

whereas TLIChl-a indicates the chlorophyll-a based trophic level index. TLIZsd denotes
the transparency based trophic level index. The comprehensive trophic level index is
represented by TLI, which is calculated based on the weight of Chl-a and Zsd [62].

3.3.2. Evaluation Methods for Good Water Quality

In this study, we classify water bodies in the BGC as good water quality based
on their TLI. By differentiating between these categories and conducting an annual
analysis of the results, we can effectively monitor trends in water quality changes
within the canal. The trophic level of these water bodies is evaluated against standards
typically used for lakes and reservoirs. A scale ranging from 0 to 100 is employed,
divided into five distinct levels. Within this scale, a trophic level index between 30 and
50 indicates mesotrophic nutrition, a range of 50 to 60 indicates light eutrophication,
and a score from 60 to 70 indicates middle eutrophic [20]. In large urban environment,
achieving mesotrophic condition in water bodies is challenging. Therefore, light
eutrophication has been adopted as the benchmark for classifying a good proportion
of urban water bodies. According to the clean water is defined in the research as
having a transparency greater than 0.5 m [63,64]. Corresponding to this transparency
level, this study calculates the TLI to be 64. We have set a TLI of 60 as classification
threshold, meaning that urban water bodies demonstrating light eutrophic are deemed
good water.

3.4. Spatiotemporal Analysis Method of TLI and Good Ambient Water Quality

This study inverted Sentinel-2 MSI images from 2016 to 2022, with a focus on evaluat-
ing the average TLI and the proportion of good water quality. Analysis is divided into two
main dimensions: spatial analysis and temporal analysis. Temporally, the daily, monthly,
seasonal, and annual average values of BGC were calculated, and the interannual changes
in water quality were analyzed [57,65]. Spatially, this study calculated the average TLI
from 2016 to 2022 and analyzed the spatial distribution characteristics of the average TLI
for BGC. Based on the definition of the proportion of good water bodies, the changes in
good water bodies were evaluated.
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4. Results
4.1. Calibration and Validation of Water Quality Estimation Model
4.1.1. Calibration and Validation of Chl-a Estimation Model

We refined four semi-empirical models for estimating Chl-a, using Sentinel-2 MSI
band-equivalent in situ Rrs values from 32 synchronous sample points, and corresponding
Chl-a (Table 4). The optimization of these models resulted in high R2 values, indicating
their efficacy. Particularly, the model employing the NDCI achieved the highest R2 value of
0.85, signifying a strong correlation between predicted and observed values (Table 4).

The four optimized models were applied to quasi-synchronous Sentinel-2 MSI satellite
images. We assessed their performance using RMSE and MRE, with detailed results
presented in Table 4. Among these models, the one utilizing the NDCI showed the lowest
MRE and RMSE, along with the highest R2 value. Based on these metrics, the NDCI model
was chosen for estimating Chl-a in the BGC using Sentinel-2 MSI imagery [66–68].

Table 4. Optimization semi-empirical models of Chl-a inversion model for the BGC based on
measured spectra and Chl-a.

Index (X) Optimized Chl-a Model
Calibration Validation

R² R² RMSE
(mg/m³) MRE (%)

SL 10ˆ (35,748,887,305.13X3 − 28,085,209.05X2 + 6714.07X + 1.37) 0.84 0.16 13.83 42.8
FLH 10ˆ (−3,190,137.93X3 − 77,772.4X2 − 588.52X + 0.48) 0.78 0.08 14.85 40.1
MCI 10ˆ (28.19X3 − 9.17 X2 + 2.07X + 1.69) 0.84 0.04 17.57 54.0

NDCI 10ˆ (3.37X + 1.34) 0.85 0.73 11.54 32.1

4.1.2. Calibration and Validation of Zsd Estimation Model

Utilizing Sentinel-2 MSI band-equivalent in situ Rrs values and corresponding Zsd data,
we calibrated two semi-empirical models for estimating Zsd. The optimization of these
models demonstrated high R2 values, indicating their effectiveness (Table 5). In addition to
the semi-empirical model, we also need to compare a semi analytical model based on QAA
for RGB. It does not require optimization, there is no calibration R2, only validation results
are needed.

Table 5. Model comparison of the various Zsd retrieval models.

Reference Band or Spectral Index Zsd Model
Calibration Validation

R² R² RMSE (m) MER (%)

[52]
X1 = Rrs (560) 1.941 − 11.069X1 − 1.27X2 0.81 0.83 0.1 18.2X2 = Rrs (665)/Rrs (490)

[53]
X1 = Rrs (490)/Rrs (560) 0.913 − 2.069X1 + 1.378X2 0.71 0.8 0.11 20.8X2 = Rrs (665)/Rrs (560)

[40] QAA_RGB 0.87 0.09 18.1

We applied both semi empirical and analytical models to quasi-synchronous Sentinel-2
MSI satellite images. The performance of these three models was evaluated by comparing
their RMSE and MRE against measured values and image derived estimates, as detailed in
Table 5. The QAA-RGB model demonstrated superior accuracy, evidenced by the lowest
MRE and RMSE, and the highest R2 value. Based on these results, the QAA-RGB model
was selected for inverting the water transparency in the BGC using Sentinel-2 MSI imagery.

4.2. Spatiotemporal Analysis of the Comprehensive Trophic Level Index

Based on the established classification standards for assessing the trophic level of
lakes and reservoirs, we graded the comprehensive trophic level index of the water bodies
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in the BGC. The results of all image inversions are initially averaged on a monthly basis,
subsequently aggregated into seasonal means, and finally calculated as annual averages.
The line graph of TLI dynamic changes is shown in the Figure 4. It reveals that, during
this period, The TLI for the entire BGC water body decreased from 64.7 in 2016 to 60.3
in 2022, indicating an improvement trend in water quality. There were no instances of
poor or hyper eutrophication in the BGC; the prevalent condition was mainly light and
middle eutrophic. Notably, the water quality at the Kunming Lake was relatively better,
consistently maintaining a mesotrophic condition from 2018 to 2021. Other water bodies
demonstrated a fluctuating trophic level, varying from mesotrophic to light eutrophic and
then back to mesotrophic over the monitored years. The Zhonghai Lake and North Canal
areas consistently exhibited a light eutrophic.
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In order to analyze the spatial distribution characteristics of BGC water quality, we
computed the seven-year average of TLI. First, the process involves calculating the monthly
average of the TLI for each year. Then, based on the monthly averages, the seasonal
averages are calculated. Then, the annual averages are calculated based on the seasonal
averages. Finally, based on the annual averages from 2016 to 2022, the overall average is
calculated. These water bodies were then categorized based on the classification standards
for the TLI. The spatial distribution results are shown in Figure 5. It visualizes the spatial
distribution of the average water quality values in the BGC from 2016 to 2022. Through
analysis of the figure, the spatial variation of water quality in BGC lakes, reservoirs, and
rivers can be observed. In this study, the water quality of the upstream Kunming Lake
and the down-stream North Canal is relatively good, with some bodies of water being
mesotrophic. In the middle reaches, other lakes and reservoirs are mainly light eutrophic,
with some bodies of water being middle eutrophic. In the Nanhai Lake and Longtan Lake
areas, only some of the water bodies are classified as middle eutrophic, while the majority
are in a light eutrophication. This indicates that, overall, the water quality in the BGC has
been maintained at a relatively satisfactory level.

In this study, we compared and analyzed the TLI of water bodies in the Beijing
Municipal Water Bureau Yearbook with the corresponding values obtained in this research
(Figure 6). While the Environmental Index [69] used in the Beijing Water Bureau Yearbook
differs from the results of this study, the disparity between the two sets of data is relatively
minor, with MRE of only 8.2% and RMSE of 5.91. The RMSE of 5.91 is relatively small to
the TLI range of 0 to 100. It suggests that the disparity between the two data sources is
minimal. The narrow range can be attributed to the concentrated distribution of TLI values
within the study area, primarily falling between 50 and 70, with minor fluctuations and
absence of large variations.
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5. Discussion
5.1. Influencing Factors Analysis of the Annual Change of Water Quality of BGC
5.1.1. Meteorological Factors

Previous research has indicated that meteorological factors, such as temperature and
precipitation, can significantly influence the TLI of water bodies [70]. Building on this
understanding, we conducted an analysis of the impact of these meteorological factors on
the TLI (Figure 4) of the BGC. Due to the absence of water quality data during the winter
freeze, this comparative analysis focused on data from March to November. Figure 7a shows
the average air temperature and total precipitation from 2016 to 2022, obtained from Beijing
meteorological observation station (116◦28′0′ ′ E, 39◦48′0′ ′ N, station no. 54511), provided
by China meteorological science data sharing service (http://data.cma.cn/, accessed on
3 January 2023), which is the nearest meteorological observation station to the BGC.
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We analyzed the relationship between the average TLI and the average air temper-
ature of the BGC over the period from 2016 to 2022. Findings revealed no significant
correlation between these two parameters (R2 = 0.07, p > 0.05). This suggests that average
air temperature does not have a notable impact on the TLI in the BGC. Similarly, when
comparing total precipitation with the annual average TLI, we found that the correlation
between total precipitation and the index was also insignificant (R2 = 0.27, p > 0.05). Conse-
quently, this implies that total precipitation has a relatively minor effect on the TLI. Overall,
meteorological factors have a relatively minor effect on the TLI.

5.1.2. Human Activities Factors

Previous research on water eutrophication has highlighted the contributory role of
human pollution and economic development in exacerbating this issue [71–73]. In the
BGC, the primary water sources are the Miyun Reservoir and the Yongding River, which
supply major park lakes through the Jingmi and Yongding River Water Diversion Canals.
Additional water contributions come from natural rainfall and recycled water. Notably, the
main canal of the Jingmi Water Diversion Canal, extending 110 km and passing through
five districts, plays a crucial role. It supports industrial production, farmland irrigation,
and urban domestic water needs in suburbs of Beijing, and also channels water to major
lakes of parks. In particular, the water quality of the upstream Kunming Lake and the
downstream North Canal is relatively good, with some bodies of water being mesotrophic.
In the middle reaches, other lakes and reservoirs are mainly light eutrophic, with some
bodies of water being middle eutrophic. Additionally, the entirety of the BGC water bodies
exhibits a light eutrophication. To further investigate this, we procured social data from
the Beijing Water Resources Bulletin, provided by the Beijing Municipal Water Bureau.
This data of Beijing includes figures on fertilizer application (10,000 t) and pesticide use
(10,000 t). Utilizing this data, we conducted a correlation analysis between the annual

http://data.cma.cn/
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average of the TLI (Figure 4) of the BGC from 2016 to 2021 and human activity data. The
aim was to explore the relationship between the annual average TLI and various aspects of
human activity (Figure 7b).

We compared the application rates of chemical fertilizers and pesticide use with
the annual average TLI (Figure 4) from 2016 to 2021. The results revealed that both the
application of chemical fertilizers and pesticide use exhibited a downward trend over
these years. Their correlation with the TLI was found to be significant. Specifically, the
correlation between the application of chemical fertilizers and the annual average TLI was
markedly significant (R2 = 0.97, p < 0.001). Similarly, the relationship between pesticide
application and the annual average index was also significant (R2 = 0.87, p < 0.01). These
findings showed that the fertilizer and pesticides usage may be the affecting factors on
the eutrophication of water bodies. As the use of fertilizers and pesticides has declined
in recent years, it may have a contribution of the improvement in the water quality of the
BGC. This suggests that changes in human activities, particularly in agricultural practices,
may be linked to the health and eutrophication levels of water bodies in this area.

5.1.3. Water Environment Protection Policies

The release of the Water Pollution Prevention and Control Action Plan, on 16 April
2015, marked a significant step in enhancing efforts towards water pollution prevention
and control, drawing public attention to urban water environments [74,75]. This initiative
has had a positive impact on the water environment of the BGC, an important water
system in the city. Further progress was made on 12 July 2018, with the release of opinions
on strengthening ecological environment protection and combating pollution in Beijing.
These measures initiated stricter control over the sources of water pollution in the BGC,
leading to gradual improvements in water quality [76]. In May 2019, the Outline of the
Plan for Cultural Protection, Inheritance, and Utilization of the Grand Canal was published.
This plan emphasized the management of the system of BGC and aimed to rejuvenate its
historical and ecological significance [77]. Subsequently, the ‘Regulations on the Protection
and Management of Rivers and Lakes in Beijing’, issued on 26 July 2019, further reinforced
the efforts in maintaining the water quality of the Grand Canal, enhancing the water
ecology and environment of rivers in the region [78].

The last decade has witnessed significant developments, including the opening of
the middle route of the South to North Water Diversion Project, bringing water from the
south to Beijing [79]. The coordinated development strategy of the Beijing-Tianjin-Hebei
region, emphasizing ecological methods and the rule of law for water management, has
fundamentally transformed the Grand Canal rivers [80]. The North Canal achieved a
milestone of maintaining a continuous water supply throughout the year, realizing the goal
of a ‘flowing river’ in 2020. The ‘Beijing Grand Canal National Cultural Park Construction
and Protection Plan’, officially released on 9 October 2021, aims to restore the ecological
environment of the Grand Canal. It is projected that by 2025, the comprehensive treat-
ment of the North Canal will be largely completed, revitalizing the river water body [81].
Additionally, the ‘Beijing Water Resources Guarantee Plan (2020–2035)’, announced on
16 September 2022, focuses on improving the main stream water quality of the North
Canal, restoring ecological flows, and protecting and rejuvenating the water ecosystem [82].
Through these targeted and comprehensive management efforts, the water quality of the
BGC is steadily improving.

The policies for water environment protection in Beijing generally include a series of
measures and policy documents aimed at improving water quality, protecting water re-
sources, and controlling water pollution. Here are some of the main policies and measures:
(1) Water Pollution Control Policy (16 April 2015). Beijing has implemented measures
to control water pollution, such as setting up sewage treatment plants and promoting
advanced technologies, alongside enforcing standards for sewage discharge and emission
limits [6,74]; (2) Water Resources Conservation and Utilization Policy (May 2019). Bei-
jing aims to enhance water resource efficiency through policies promoting water-saving
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technologies, bolstering management, and establishing quantitative resource management
systems [82,83]. The implementation of these policies has contributed in a declining trend
in the TLI of the BGC in recent years, improving the ecological environment and reducing
in eutrophication of the BGC.

5.2. Implications for the SDG 11.4 Evaluation

On 22 June 2014, the Beijing-Hangzhou Grand Canal was recognized as a World
Cultural Heritage Site. This recognition includes the BGC, which is the starting section of
the Beijing-Hangzhou Grand Canal. The water quality of this section is not only crucial for
its heritage status but also an integral part of preserving world heritage sites. In this context,
the TLI emerges as a key parameter for evaluating overall water quality. It serves as an
indicator reflecting the health and condition of the water body. This evaluation aligns with
the UN 2020 Agenda SDG 11.4, which focuses on ‘Further efforts to protect and safeguard
world cultural and natural heritage’. The direct evaluation of this indicator is quite difficult.
Therefore, we attempt to indirectly evaluate. The TLI, derived from Sentinel-2 satellite
imagery, proves to be an effective tool for assessing the water quality of the BGC. This
assessment not only contributes to the preservation of the Grand Canal as a World Heritage
site but also provides valuable data for the evaluation of SDG 11.4, supporting global efforts
in sustainable development and heritage conservation.

In this study, we defined urban water bodies with a TLI less than 60 as having
good environmental water quality, indicating a light level of eutrophic. This benchmark
is roughly based on a simple criterion that categorizes water bodies with a transparency
greater than 0.5 m as eutrophic inland waters [63], and it can be indirectly used as a standard
for assessing the quality of urban water bodies. We conducted a statistical analysis of water
bodies in the BGC with a TLI less than 60 from 2016 to 2022. The results revealed that in
2016, the proportion of water bodies within the BGC classified as having good water quality
was relatively low (50%). However, from 2017 to 2022, there was a fluctuating increase
and decrease in the percentage of water bodies meeting this standard. The proportion of
water bodies classified as having good water quality in the BGC reached 83% in 2022. This
demonstrates a significant improvement in the overall water quality of the BGC from 2016
to 2022.

The UN 2030 Agenda SDG11.4 goal aims to further enhance the protection and preser-
vation of the and natural heritage of the world cultural [12]. This objective is assessed
through evaluating the total per capita expenditure dedicated to preserving both cultural
and natural heritage [9,84]. However, acquiring evaluation data for SDG11.4 is challenging,
leading to difficulties in the assessment. Subsequently, this study adopts a novel approach
by assessing the conservation of the Grand Canal, a natural water heritage, through water
quality conditions. By calculating the proportion of clean water bodies, the water quality
compliance rate for the BGC stood at 50% in 2016 and improved to 83% in 2022. If this rate
is sustained, reaching 100% compliance before 2023 is feasible, thereby aligning with the
SDG11.4 target by 2030 for the BGC.

6. Conclusions

In this study, we utilized Sentinel-2 MSI data to identify water bodies wider than
100 m along the Beijing section of the Grand Canal (BGC) and assess their comprehensive
trophic level (TLI). The data included 189 cloud-free, high-quality images spanning 2016 to
2022. We established empirical and semi-analytical models tailored to this canal section,
based on measured chlorophyll-a concentrations (Chl-a), transparency (Zsd). These models
facilitated the calculation of the TLI for ten water bodies in the BGC.

During the monitoring period of 2016 to 2022, none of the ten study areas in the BGC
exhibited poor or hyper eutrophic. The overall trend indicated a decline in eutrophic
levels, predominantly featuring light eutrophic conditions. Notably, the water quality
at the Kunming Lake remained in a mesotrophic condition from 2018 to 2021, reflecting
good conditions of water. Other water bodies fluctuated between mesotrophic and light
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condition, except for Zhonghai Lake and the North Canal, which consistently exhibited
light eutrophic. The TLI for the entire BGC water body decreased from 64.7 in 2016 to
60.3 in 2022, indicating a declining trend in water quality improvement. Spatially, over
the seven-year average, the overall water quality of the Beijing section was favorable.
Mesotrophic condition was found in the part near the Kunming Lake and North Canal.
Some water bodies in the Nanhai Lake and Longtan Lake were middle eutrophic, but
most were light eutrophic. The decreasing trend in TLI showed low correlation with
meteorological factors and may be attributed the improvement in water quality to the
reduction of fertilizer and pesticide use by the Beijing Municipal Government, along with
the implementation of various environmental policies. Remarkably, the proportion of
clean water in the canal increased from 50% in 2016 to 83% in 2022, likely due to reduced
fertilizer and pesticide usage and various water environment management policies by
Beijing Municipal Government. This research offers valuable insights for managing and
protecting the water resources of the BGC and contributes to the evaluation of the United
Nations Sustainable Development Goal SDG11.4 indicator.
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