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Abstract: Due to the absence of communication and coordination with external spacecraft, non-
cooperative spacecraft present challenges for the servicing spacecraft in acquiring information about
their pose and location. The accurate segmentation of non-cooperative spacecraft components in
images is a crucial step in autonomously sensing the pose of non-cooperative spacecraft. This pa-
per presents a novel overlay accelerator of DeepLab Convolutional Neural Networks (CNNs) for
spacecraft image segmentation on a FPGA. First, several software–hardware co-design aspects are in-
vestigated: (1) A CNNs-domain COD instruction set (Control, Operation, Data Transfer) is presented
based on a Load–Store architecture to enable the implementation of accelerator overlays. (2) An
RTL-based prototype accelerator is developed for the COD instruction set. The accelerator incorpo-
rates dedicated units for instruction decoding and dispatch, scheduling, memory management, and
operation execution. (3) A compiler is designed that leverages tiling and operation fusion techniques
to optimize the execution of CNNs, generating binary instructions for the optimized operations.
Our accelerator is implemented on a Xilinx Virtex-7 XC7VX690T FPGA at 200 MHz. Experiments
demonstrate that with INT16 quantization our accelerator achieves an accuracy (mIoU) of 77.84%,
experiencing only a 0.2% degradation compared to that of the original fully precision model, in
accelerating the segmentation model of DeepLabv3+ ResNet18 on the spacecraft component images
(SCIs) dataset. The accelerator boasts a performance of 184.19 GOPS/s and a computational efficiency
(Runtime Throughput/Theoretical Roof Throughput) of 88.72%. Compared to previous work, our
accelerator improves performance by 1.5× and computational efficiency by 43.93%, all while con-
suming similar hardware resources. Additionally, in terms of instruction encoding, our instructions
reduce the size by 1.5× to 49× when compiling the same model compared to previous work.

Keywords: image semantic segmentation; instruction set architecture (ISA); field programmable gate
array (FPGA); spacecraft component images

1. Introduction

Recently, the exploration of deep space has gained extensive support from various
countries and enterprises [1]. Vision-based Artificial Intelligence (AI) applications are
crucial for current and upcoming space missions, such as automation navigation systems
for collision avoidance [2], asteroid classifications [3], and debris removal [4]. One notable
application of these technologies is the accurate recognition of spacecraft feature compo-
nents in images [5]. In scenarios where the target spacecraft lacks sensors or communication
capabilities, such as during debris removal operations [6], it is desirable to implement an
object recognition payload that can segment spacecraft component images (SCIs) obtained
from visual sensors to locate the target object of interest.

As a fundamental problem in computer vision, semantic segmentation aims to assign
semantic labels (class labels) to every pixel in an image. Early segmentation algorithms
relied on handcrafted feature matching [7,8], but these methods have been shown to exhibit
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poor generalization and stability. In recent decades, deep learning methods based on
convolutional neural networks (CNNs) have become the mainstream approach for almost
all vision tasks, including semantic segmentation [9]. Compared to previous methods,
CNNs exhibit higher reliability in the presence of noisy interference or previously unseen
scenarios [6]. Therefore, CNNs are now being applied to recognize space targets from
spacecraft images, which are more susceptible to interference than natural images from
common datasets such as COCO [10,11]. Several studies have demonstrated the promis-
ing performance of CNNs-based approaches for spacecraft component image semantic
segmentation [10].

However, the CNN deployment on resource-constraint embedded hardware systems
onboard also poses significant challenges due to their compute-intensive and memory-
intensive characteristics. Typically, CNN-based approaches can be delineated into two
distinct phases: the training phase and the inference phase. During the training phase, a
CNN model learns to discern the relationships between input data and their corresponding
labels. Through iterative processes, the CNN refines its parameters, progressively improv-
ing its ability to capture task-relevant features. Upon completion of the training phase,
the CNN model is prepared for the inference phase, during which it generates predictions
for new unseen data. As the parameters remain fixed once the training is complete, the
training phase can be performed offline at a data center on the ground. The key challenge
lies in efficiently implementing inference for CNNs using onboard hardware, a crucial
aspect in deploying CNN-based semantic segmentation approaches onboard.

Field Programmable Gate Arrays (FPGAs) with high parallelism and reconfigurability
are widely employed in exploration missions [12]. For instance, onboard science data
processing systems like Spacecube, based on the Xilinx Virtex family of FPGAs, have been
utilized to implement data processing requirements for robotic servicing [12]. In this paper,
we design an accelerator on an FPGA to aid processor acceleration CNNs computation for
the SCIs segmentation task in a space scene.

Several studies have investigated the deployment of CNNs for semantic image seg-
mentation onto FPGAs. Shen et al. proposed a model called LNS-Net [13] based on
U-Net [14] for lung nodule segmentation and accelerated this CNN model on four Xilinx
VCU118 FPGAs using a proposed mapping scheme that took advantage of the massive
parallelism. Bai et al. designed RoadNet-RT [15], a lightweight CNN segmentation model
for road scenarios, and implemented an accelerator for this model on a Xilinx ZCU102
FPGA to perform inference with an 8-bit quantized model.

In addition to the networks-specific custom accelerators, some studies have explored
overlay accelerators. Liu et al. designed an efficient custom deconvolution (DeCONV)
architecture and designed a U-Net CNN accelerator to support the acceleration of semantic
segmentation tasks on FPGAs [16]. They later optimized this architecture and proposed
a unified processing engine to address the problem of convolution (CONV) and DeConv
modules not being able to share computational resources. The optimized architecture
shows remarkable performance on remote sensing image segmentation tasks [17]. Wu et al.
proposed a reconfigurable FPGA hardware accelerator for various CNN-based vision
tasks including semantic segmentation [18]. They implemented diverse operator modules
including CONV, depthwise convolution (DwCONV), and others, and proposed efficient
data flow scheduling and processing schemes under the constraint of limited computing
resources. The evaluation results showed that the accelerator can efficiently accelerate the
semantic segmentation model ENet [19], which is common for embedded devices.

Most of the previous works have either designed U-Net-specific accelerators on FPGAs
or evaluated U-Net on FPGA-based CNNs domain-specific accelerators. While U-Net’s
Encoder–Decoder architecture addresses the issue of missing low-level features, its en-
coder network lacks a component that captures multi-scale features, leading to a loss of
contextual information. To overcome this limitation, the Pyramid Scene Parsing Network
(PSPNet) [20] was proposed, which leverages different downsample rates of pooling fol-
lowed by CONV operations to extract abundant multi-scale semantic features. Furthermore,
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The DeepLabV3 [21] introduced an Atrous Spatial Pyramid Pooling (ASPP) module, which
reduced the feature response loss caused by down and up samples in PSPNet converting
the Pooling-CONV-Upsample operation to an Atrous CONV. The computational principle
of Atrous CONV is shown in Figure 1, and it can be seen that adjusting the rate can achieve
convolution with a larger receptive field without increasing the convolution kernel parame-
ters and computational effort. The convolution with different receptive fields facilitates the
capture of features at various scales.
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(MAC) operations. Dark red, purple, and blue represent 3 different convolutional kernel parameters
and the output feature maps of the corresponding channels, respectively. Green represents the input
feature maps of the involved operations).

DeepLabV3+ [22] extended DeepLabV3 by adding a decoder to refine the segmentation
result, allowing it to take into account multi-scale contextual information and low-level sharper
boundaries information through the ASPP module and Encoder–Decoder structure. Table 1
compares the accuracy and complexity of the aforementioned CNNs on our SCIs dataset. It
can be seen that DeepLabv3+ has better accuracy at lower complexity instead.

Table 1. The structures used in different CNN segmentation algorithms (backbone is VGG16) and the
complexity and accuracy of the SCIs set of each algorithm. (SCIs dataset consists of 8833 spacecraft
simulated images, including 5 feature component types [23]).

Model U-Net [14] PSPNet [20] DeeplabV3 [21] DeeplabV3+ [22]

Structure E-D ASPP ASPP ASPP and E-D

Parameter (M) 24.89 139.82 19.44 19.56

Complexity (GOPS) 112.76 40.82 42.64 48.42

Accuracy (mIoU) 65.15 53.66 61.47 81.62

For the acceleration of the Deeplabv3+ model, Morì et al. devised a hardware-aware
pruning method based on genetic algorithms to reduce model operations and parame-
ters [24]. Furthermore, they implemented an overlay CNN accelerator on an Intel Arria
10 GX1150 FPGA platform, evaluating its acceleration performance with the DeepLabv3+
ResNet18 model. Im et al. designed a DT-CNN ASIC accelerator [25] supporting variant
convolution based on 65 nm CMOS technology. This accelerator efficiently accelerates
dilated and transposed convolution by skipping redundant zero computations. The acceler-
ation performance of ENet, Deeplabv3+, and FCN [9] models was also evaluated. However,
these efforts are still lacking in terms of acceleration efficiency and model adaptation.

This paper aims to map a DeepLabv3+ CNN onto a flight-like hardware FPGA for the
purpose of a semantic SCIs segmentation task. There are two main challenges involved in
this process: (1) Accelerators that are specifically designed for certain CNN models require
FPGA reconfiguration when switching to other models, a process which is not practical for
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onboard scenarios. (2) The extensive intermediate results generated by the complicated
skip-connection of the Encoder–Decoder structure must be cached in the limited on-chip
SRAM or require additional external memory access, posing a significant challenge for a
resource-constrained onboard FPGA.

To address these challenges, this paper presents a comprehensive flow for mapping
CNNs onto FPGAs as is illustrated in Figure 2. To decouple the hardware architecture from
the specific CNN model structure, we designed a customized instruction set architecture
called COD (Control, Operation, and Data transfer). During the offline stage, we quantized
and tiled the model parameters, and converted and compiled the computation graph to
generate COD instruction sequences. (processes: ❶ and ❷) At this stage, we employed a
quantization method that effectively halved the model size (32 bits to 16 bits) while incur-
ring an accuracy loss of less than 0.5%. Our proposed COD instruction set and compiler
have a 1.5× to 49× size reduction compared to previous work, and a 26% reduction in
DRAM accesses compared to the primitive design. During the online stage, we design the
hardware accelerator architecture corresponding to the COD and implement it on the Xilinx
Virtex-7 VX690T FPGA to achieve the task of segmentation of SCI images. (process: ❸) The
performance and computational efficiency of our accelerator was 1.5× and 43.93% higher
than previous work, respectively, with a 5.1× increase in energy efficiency compared to an
NVIDIA RTX 2080Ti GPU.
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Figure 2. The overview of the mapping flow.

The main contributions of this work are as follows:

1. To facilitate network replacement and decouple the accelerator micro-architecture
from a specific network, we propose a COD instruction set based on load–store. This
enables re-compiled instruction sequences to overlay the accelerator without the need
for hardware re-burn.

2. We propose an accelerator micro-architecture based on a COD instruction set, which
contains an instruction decoder and dispatch unit, data scheduler unit, and unified
Execution Unit (EU). The first two guarantee the coarse-grained parallel data transfer
based on dependency of instructions. The unified EU for CONV and Atrous CONV
ensures the fine-grained parallel data operation leveraging spatial and temporal data reuse.

3. We develop a compiler for COD instruction generation to convert the computational
graph of an input CNN model into a sequence of COD instructions and produce
corresponding binary signals. The compiler was designed to incorporate tiling and
operation fusion techniques, aimed at optimizing the execution of the CNN.

4. We implemented our accelerator on the Xilinx VC709 development board with an
XC7VX690T FPGA chip, which is commonly used on spacecraft. Our accelerator runs
at 200 MHz and achieves a performance of 184.19 GOPS/s and a detection accuracy
(mIoU) of 77.84% for the SCI dataset when accelerating the Deeplabv3+ ResNet18
CNN model.

The remaining parts of this paper are organized as follows: Section 2 introduces the
preliminaries about CNNs and DeepLabv3+. Section 3 describes the COD instruction set.
The accelerator micro-architecture is proposed in Section 4. Section 5 presents optimization
strategies for instruction sequence compilation. Section 6 presents our experimental results
in the SCIs segmentation task. Finally, Section 7 concludes this paper.
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2. Deeplab CNN Preliminaries

The flow of SCIs segmentation using DeepLabv3+ is illustrated in Figure 3. It em-
ploys a classical CNN backbone and ASPP as the encoder module to capture multi-scale
high-level features, and a simple decoder to merge detailed low-level features. In the
encoder, operations that involve ‘Rate’ refer to atrous convolution operations, where ‘Rate’
determines the dilation rate. Our overlay accelerator supports all the basic operations
involved in the CNN-process depicted in Figure 3.
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Figure 3. Overview of the DeepLabV3+ semantic SCIs segmentation. (Green and red areas are
antenna and panel components, respectively, in the result image).

Below, we provide a brief explanation and mathematical notation for these operations.
In the following notations, X and Y represent the input and output tensors, respectively,
having shapes of (Ci, Wi, Hi) and (Co, Wo, Ho), where w stands for width, h for height, and
c for the number of channels in the feature maps.

Convolution: It takes as inputs a set of nonlinear functions of spatially nearby re-
gions of outputs from the prior layer, which are multiplied by weights and added with
bias. (The input to first layer is a tensor of image pixels.) It is equationally described in
Equation (1) [26].

Y = Conv(X)W,b = X ⊗ W + b (1)

The tensors W(wk, hk, ci, co) and b(co) represent the weight and bias parameters for
the convolution operation, respectively, acquired through training. Here, wk denotes kernel
width, hk denotes kernel height, ci represents the number of input feature map channels,
and co indicates the number of output feature map channels.

Atrous (Dilated) Convolution: Its operation mode functions in the same manner as
standard convolution, but with the addition of a dilation rate that adjusts the receptive
field (the size of the region of the input feature map that produces each output element)
without increasing the number of convolution parameters.

Max Pooling: This operation is a commonly used convex function for downsampling.
Its mathematical representation is given by Equation (2) [26].

Y = Maxpool(X) → yi,j,k = max
(p,q,k)∈ℜijk

(xp,q,k) (2)

yi,j,k represents the values at the (i, j, k) position within the Y, while xp,q,k denotes the
values at the (p, q, k) position within the X. ℜijk signifies the sliding window region in
which y aligns with the input tensor X where the pooling operation is executed.

Element-Wise Addition: It is the operation of summing two identically shaped
tensors by position and is commonly used for residual structures and feature fusion. Its
mathematical representation is given by Equation (3) [26].

Y = X1 + X2 → yw,h,c = x1 w,h,c + x2
w,h,c (3)
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Upsampling (Nearest Interpolation): It is the operation to expand the feature resolu-
tion. Its mathematical representation is given by Equation (4) [26].

Y= Upsamples(X) → yi,j,k = x[i/s],[j/s],k (4)

The variable s represents the upsampling factor. Additionally, x[i/s],[i/s],k specifies the
value located at the nearest position in the input tensor X corresponding to the position
(i, j, k) of the output tensor Y.

ReLU/LeakyReLU: It is an activation function placed after a convolution.
Concatenation: It is a tensor concatenation operation. It is equationally described in

Equation (5) [26].
Y = Concate(X1, X2, . . . Xn) (5)

X1 ,X2 , . . . Xn ,Y are tensors of the same shape in w and h dimensions and Y comes
from the concatenation of X1 ,X2 , . . . Xn along the c-dimension.

Batch Normalization: Batch Normalization (BN) is commonly used following a
convolution layer to improve model training [27]. The operations of BN can be expressed
using Equation (6).

Y= BN(X) → y = γ
x − µ√
σ2 + ε

+ β (6)

Here, γ is the scaling factor and β is the shift factor, both of which are learnable
parameters used to adjust the normalized scale and mean, respectively. µ and σ2 represent
the mean and variance of the input X calculated during training, with ε being a small
constant for numerical stability.

In the sequel, we will show the data path of the aforementioned basic operations for
their spatial or temporal parallel compute. Meanwhile, their instruction coding and the
parallelism schedule between operations will also be described in detail.

3. COD Instruction Set Architecture

Our accelerator does not rely on fixed data scheduling based on a specific network
(SN) [28]. Instead, it drives the data stream by reading and executing instructions, ef-
fectively decoupling the hardware micro-architecture from the SN by Instruction Set
Architecture (ISA). As shown in Figure 4, when the network is replaced, our overlay
accelerator only requires re-compiling the computing graph to the new instruction se-
quence. However, for an SN accelerator, a new hardware micro-architecture (RTL or HLS
code) based on the new network must be designed and the FPGA re-burned, which is an
inefficient task in a space environment. Hence, we propose a novel ISA called COD in
this section, which integrates three types of instructions for control, operation, and data
transfer, covering all the CNN basic operations discussed in Section 2.
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Figure 4. Workflow for SN accelerator versus overlay accelerator.

3.1. Control Flow

The Instruction Set (IS) refers to the vocabulary of commands that is understood by
a specific hardware architecture. A control logic structure is employed in the hardware
to facilitate an explicit Control Flow (CF), with the IS being decoded as a crucial signal in
the CF that controls the sequential execution of tasks. Therefore, prior to discussing the IS
design, it is imperative to clarify the CF of our accelerator.
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Our accelerator follows a load–store architecture, wherein the CF schedules the data
from memory to the Execution Unit (EU) and subsequently manages the storage of results
from the EU back to the memory. It is evident that the efficacy of data storage and load
represents a significant bottleneck in the overall performance of this architecture [29].
However, there is a large gap between the memory-intensive characteristics of CNNs
and the insufficient on-chip memory resources of FPGAs. Full avoidance of external
memory(DRAM) access is unfeasible. Figure 5 shows the memory footprint of intermediate
results and convolution kernels in each layer of the DeeplabV3+ CNN model. It can be seen
that the memory space requirement of some layers even exceeds 5 MB, while for FPGAs
commonly used on satellites, most of their on-chip memory resources (SRAM) are below
7 MB, such as the Xilinx XC7VX690T 6.6 MB and XC7K325T 3.2 MB.�������������	
 ������

������������������������������������ !"�"###$��%��%&'����$ %��(��$'�)*�%'��$%�+$���'��&'����������� ���

Figure 5. The memory footprint of DeeplabV3+ ResNet18 CNN model with INT16 quantization
(Input shape: 256 × 256 × 3).

For minimizing DRAM access, we designed a dynamic memory hierarchy (DMH), as
shown in Figure 6. If the intermediate results of a layer can be stored in the on-chip buffer,
then the storing of DRAM on this layer and the reading of DRAM on the next layer can be
skipped. Of course, the selection of a branch path depends on the signal decoded from the
instruction. We can substantially reduce the consumption of external communications via
optimizing instruction compilation in certain on-chip buffer space constraints. For example,
if we have a 1 MB on-chip buffer, for the network shown in Figure 5, there will be 30 layers
that do not require storing feature maps by external memory.
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3.2. COD Instruction Set

IS is a collection of control information in CF. Instruction length and granularity are
the two main factors that impact the performance of ISs. Prior specialized ISs developed
for CNN domains can be broadly classified into two categories based on their execution
granularity, as illustrated in Table 2.

Fine-grained ISs such as Cambricon [30] and OPU [31] feature instructions with a fixed
length and separate instruction parsing and control units in their hardware architecture.
Such ISs typically require a group of instructions to execute an entire load–compute–store
flow with higher execution parallelism per instruction. However, fine-grained ISs can
lead to complex CFs with numerous branch paths, necessitating careful consideration
of instruction dependencies by both the relevant compiler and hardware control logic
to ensure the correct execution of instruction sequences. As a result, fine-grained ISs
require more FPGA logic resources for command control, which is not friendly to resource-
constrained flight-FPGAs. Therefore, we opt for a concise coarse-grained IS, similar to
SLC [32] and Xilinx DPU [33,34], to identify the CF.

Table 2. Comparison of some previous CNN-domain instruction sets.

Cambricon [30] SLC [32] DPU [33,34] OPU [31] COD (Ours)

Year ISCA16 TRTS18 TCAD19 TVLSI20 2024

Hardware ASIC FPGA FPGA FPGA FPGA

Instruction
length 64 bit 128 bit 128 bit/192 bit 32 bit 256 bit

Instruction
granularity Fine Coarse Coarse Coarse Coarse

We analyze all data transmissions in CF and design a Data Transfer Instruction (DTI) to
identify the data transfer path. In the case of the access branch in DMH, we design a Control
Instruction (CTI) to schedule the data flow. Furthermore, we design an Operation Instruction
(OPI) to specify the parameters of the EU runtime. Together, CTI, OPI, and DTI form a 256-bit
COD instruction. The number of bits and information details occupied by each instruction
type are illustrated in Figure 7a. We introduce each instruction type as follows:
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Figure 7. Overview of the COD ISA and prototype accelerator.

DTI: The DTI consists of four loading instructions (ELW, ELF, ELR, OLF) and one
storing instruction (SR). ELW, ELF, and ELR handle the loading of weight, Feature Map
(Fmap), and Residual data from DRAM to the on-chip buffer, respectively. The Residual
contains data from Fmap that needs to skip some layers during delivery. These data are
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not involved in the convolution operation and are moved to the on-chip Addition FIFO for
the element-wise addition operation. The OLF instruction is used to load Fmap from the
on-chip buffer to the EU. The SR instruction is used to store the result data derived from
the EU to Memory (DRAM or on-chip buffer).

CTI: CTI is the branch control command mentioned in Section 3.1. To control three DTI
instructions that may access DRAM, we have designed three selector instructions: Jumping
ELW (JW), Jumping ELF (JF), and Jumping ELR (JR). Additionally, we have designed the
Jumping Store (JS) instruction to handle the situation where the result may store FIFO in
EU. Furthermore, a 1-bit interrupt instruction has been designed to remind the host of the
timing of reading the result.

OPI: The relevant operations in CONV, ACT (ReLU), QUANT (Quantization), POOL,
and Upsample instructions are identified by their parameters. The QUANT instruction con-
tains parameters related to bias and partial sum in addition to the quantization parameters.

3.3. COD Work Flow

We integrated CTI, OPI, and DTI into a single 256-bit COD very long instruction word
(VLIW) and designed its decoder and parallel EU in the accelerator. In a typical VLIW
superscalar processor, the compiler explicitly specifies the control dependencies between
instructions. However, CNN inference with forwarding propagation in layers has a clear
layer order. Therefore, we design a fixed depth pipeline at the accelerator micro-architecture
level to ensure the sequential execution of all instruction types to reduce the complexity of
the compiler. The execution flow of instructions, as shown in Figure 7b, indicates that CTIs
act as decision nodes that determine the path for each execution branch. In the loading data
stage, ELW, ELF, and ELR do not have dependencies on each other, and they are executed
concurrently, sharing DRAM bandwidth in our accelerator. In the computation and data
storing stage, OPIs and SR are also executed by a parallel pipeline. The parallel architecture
of the accelerator is described in Section 4.

4. Prototype Accelerator

In this section, we present our prototype accelerator for COD, which comprises a
series of instruction decode and dispatch units, a memory management unit (MM Unit),
and an EU. The micro-architecture is illustrated in Figure 7c.

The workflow of the accelerator is as follows: During the preliminary stage, the
instruction sequence generated by the compiler, the quantized weight, and the image are
sent from the host to an on-chip buffer or DRAM using I/O DMA with AXI4 bus protocol.
The accelerator subsequently operates through six major instruction pipeline stages, namely,
fetching, decoding, issuing, memory accessing, execution, and writing back. The CF and
Data Flow (DF) of these stages are depicted in Figure 7c. The instruction counter (IC)
fetches instructions sequentially from the buffer and passes them to the decoder until
an interrupt signal is received. The decoder disassembles COD VLIW into DTIs, CTIs,
and OPIs using a bit-wise approach. OPIs are issued directly to the EU, while DTIs are
transmitted to the MM Unit via the scheduler and the issue unit. The issue unit synchronizes
the transfer status to the scheduler while issuing DTI to the MM Unit. Memory accessing,
execution, and writing back form a coarse-grained parallel pipeline that is controlled by
the scheduler. Additionally, we have designed a spatial parallel fine-grained execution
pipeline to accelerate the OPIs in EU.

4.1. Control Logic

In the instruction pipeline of serial execution, as depicted in Figure 8a, two execution
bottlenecks, caused by communication and computation, have to be endured. However, in
the domain of CNNs, computation does not rely on global data, as the output of each com-
putation is only related to the data corresponding to the sliding windows. Consequently,
we designed a Coarse-Grain Temporal Pipeline (CTP) at the instruction level to enable the
simultaneous execution of DTIs and OPIs in a single clock cycle.
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To guarantee proper instruction execution, we categorize the dependencies of DTIs
and OPIs into three levels: independent, partially dependent (p-dependent), and globally
dependent (g-dependent). Table 3 illustrates how instruction X depends on instruction
Y. When an instruction is independent of another instruction, the execution of the former
does not need to take into account the execution process of the latter. When an instruction
is p-dependent on another instruction, it has to wait for the latter to be executed for a
certain amount of time before it can be executed (signal is generated and distributed by
the scheduler). When an instruction is g-dependent on another instruction, it must wait
for the latter to be executed before it can be executed. Subsequently, based on the COD
instruction workflow and the dependencies, we design an instruction execution CTP, as
shown in Figure 8b. The ELoad stage contains the ELW, ELR, and ELF instructions; the
OLoad stage contains the OLF instruction; the Compute stage contains the CONV, ACT,
QUANT, POOL, and UPSAMPLE instructions, and the SR stage contains the SR instruction.
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Table 3. Dependency table between DTIs and OPIs.

X
Y ELW(R) ELF OLF OPIs SR

ELW(R) / independent independent independent independent
ELF g-dependent / independent independent independent
OLF g-dependent p-dependent / independent independent
OPIs g-dependent p-dependent p-dependent / independent
SR g-dependent p-dependent p-dependent p-dependent /

In our implementation strategy, weights and residuals are preloaded into the on-chip
buffer, so all other instructions are g-dependent on the ELW and ELR instructions. These
two instructions, on the other hand, have no dependency on each other and are executed
simultaneously through multiple ports of the MM Unit. After ELW(R) is executed, feature
maps start to be loaded while OPIs and SRs are executed one after another. Figure 8b shows
the timing diagram of the instruction execution CTP for four typical cases. Case 0 is the case
when JW, JR, and JF are 0. After the ELF instruction has loaded a certain amount of data,
the subsequent stages are executed in parallel one after another. The Eload stage is jumped
in case 1, and the SR stage is jumped in case 2. Different from the communication-bound in
the previous three cases, the execution of computation-bound occurs in some instruction
species with high data reuse, as shown in case 3.

To ensure the correct execution of CTP, we designed a multi-port shared DRAM
bandwidth MM Unit and a scheduler, as illustrated in Figure 9. Four on-chip buffers and
external memory DRAM are interconnected via AXI crossbar and are uniformly addressed
between each memory. Each on-chip buffer is implemented with dual-port block RAM,
writing data through AXI port and reading data through native port. Multiple AXI ports
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provide support for accessing data from different banks of DRAM, ensuring the concurrent
execution of DTIs. Moreover, our MM Unit not only receives DTIs from the Issue unit, but
also synchronizes the instruction execution process to the scheduler through the Issue unit.
The scheduler will proceed to read the subsequent COD instruction only after all DTIs have
been executed.
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4.2. Execution Logic

In addition to the instruction-level parallelism enabled by CTP, there are further
opportunities for parallelism in numerical operations pertaining to OPIs. In this section,
we propose an EU capable of performing the parallel computation of OPIs, utilizing both
spatial and temporal parallelism methodologies.

Spatially Parallel Structure (SPS): The CONV is computed as described in Section 2.
We exploit the Co-dimensional irrelevance of the CONV result Y(Fout) to design a SPS that
enables parallel computation of 1-POC (Parallel Output Channel) channels. The choice of
parallelism POC determines the hardware architecture design, which we determine in this
paper based on burst transmission width and data quantization width. Our accelerator con-
nects to the DRAM via AXI4 channels, where each channel typically supports 64 bytes per
cycle through burst transmission mode in state-of-the-art FPGA platforms [35]. In addition,
our data format is 16 bit. Thus, to match the access speed of the AXI4 bus (64 Bytes/cycle),
we must implement 32 (64 Bytes/16 bits) computations per clock cycle, which we choose
as our POC.

Figure 10 illustrates the SPS of the EU, where we use 16 spatially parallel FTPs
(0–15 lines) to process each of the 32 output channels of Fout. To exploit this feature more
effectively, we operate the DSP48 at twice the clock frequency of the system. Meanwhile,
we design two sets of LUTRAM for each FTP to cache weight, which matches the DSP48.
In this way, each FTP can perform two output channels at the system clock frequency,
effectively saving DSP48 resources. The ELW instruction drives the weight fetch unit to
load two weights into LUTRAMs in each FTP along the Co dimension before the OPIs
start executing. With the execution of OPIs in CTP, Fin is broadcast to 16 FTPs, and the
32 channels of Fout are computed in parallel.

Fine-grain Temporal Pipeline (FTP): Opportunities for parallelism arise for each input
channel that the FTP is responsible for, as the multiplication operations within each kernel
sliding window are uncorrelated. In Figure 10, we employ 32 cascaded DSP48s to form a 1D
systolic array, creating a computational pipeline for parallel computation of 1-PIC (Parallel
Input Channel) channels. Subsequently, two quant units and two pool units, collectively
forming a FTP, follow this array. Once the FTP is established, it can handle the computation
of two output channels within each system clock cycle (100 MHz).
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Figure 10. The overview of the execution unit.

Algorithm 1 presents the computational flow of the pipeline with K = 1 and S = 1
for Fin(32, 4, 4), illustrating the operations at each clock cycle for each level of DSP. It is
observed that the pipeline is established and one Fout can be output for each clock cycle after
31 cycles. The implementation of 1024 MACs (Multiply Accumulate) operations utilizes
63 clock cycles, resulting in a 16-fold efficiency improvement over a naive serial design.

Algorithm 1 CONV Operation Pipeline

Input: Fin(32,4,4), W(2,32,1,1)
//Due to K = 1, the indexes of the 3rd and 4th dimensions of W are omitted in the
following description

Output: Fout(2,4,4)
Clock Cycle 00: DSP L0: W[0][0] × Fin[0][0,0] = P0,0;
Clock Cycle 01: DSP L0:W[1][0] × Fin[0][0,0] = P1,0;

DSP L1: P0,0 + W[0][1] × Fin[1][0,0] = P1,1;
Clock Cycle 02: DSP L0: W[0][0] × Fin[0][0][1] = P2,0;

DSP L1: P1,0 + W[1][1] × Fin[1][0][0] = P2,1;
DSP L2: P1,1 + W[0][2] × Fin[2][0,0] = P2,2;

......
// Pipeline setup
Clock Cycle 31: DSP L0:W[1][0] × Fin[0][3,3] = P31,0;

......
DSP L31: P30,30 + W[0][31] × Fin[31][0,0] = Fout[0][0,0];

Clock Cycle 32: DSP L1:P31,0 + W[1][0] × Fin[1][0,0] = P32,1;
......

DSP L31: P31,30 + W[1][31] × Fin[31][0,0] = Fout[1][0,0];
......

Clock Cycle 62: DSP L31 P61,30 + W[1][31] × Fin[31][3,3] = Fout[1][3,3];

As shown in Figure 10, to ensure the accuracy of FTPs data fetching, weight and
Fmap caches are designed separately. Two sets of weight caches composed of LUTRAM
are allocated for each FTP, and the two sets of cache alternate in inputting weight for
DSP during operation. To reuse the Fmap, 16 FTPs share 32 Fmap caches, where each
cache stores one channel of Fin, and five line buffers alternate write reads, broadcasting
the correct Fmap to all FTPs. For atrous CONV, unnecessary rows in the Fmap fetch unit
and unnecessary columns in the line buffers are skipped by the read logic, enabling the
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atrous CONV to share the same FTP as the CONV. Moreover, a temporary cache logic is
incorporated after the systolic array, which is used to accumulate the result of multiple
clock cycles to support the instruction of kernel size greater than 1. The intermediate result
of the array is accumulated and stored in a reg type variable, and the result is output when
the count reaches the size of the kernel (W). For instance, when K = 3, the output of the
array is summed with the data from Reg and the result is re-stored in Reg until the ninth
output completes the sum.

Following the convolution unit, we designed the Quant, Pool, and Upsample units to
execute other OPI instructions. The Quant unit is shown in Figure 11a. First, it quantizes
the input data from 48 bits to 16 bits by performing a bit shift operation. The exact shift
parameter, denoted as Fl, is determined by parsing the Quant instruction. Additionally,
this instruction defines the operation mode of the Add Partial Sum (Psum) module. There
are three modes: (1) When the input data represents the final result, it is directly fed into
the next module. (2) When the data is an intermediate result (IR) and corresponds to
the first tile, it is stored in the Psum FIFO. (3) Subsequent tiles read the data of Psum
FIFO and accumulate it. (More details about tiling will be discussed in Section 5.2). The
final result of the convolution is then directed to the Add bias and ReLU modules for
the corresponding logical operations. Following this, there is an Element-Wise Addition
module. It functions similarly to the Add Psum module, with the key difference being
that the Addition FIFO can also be initially loaded with data via the ELR instruction. This
feature is useful when dealing with situations where the amount of residual data exceeds
the FIFO capacity. Finally, the result of the upsample is sent to the MM Unit to execute the
RS instruction.
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Figure 11. The overview of the Quant and Pool units.

5. COD Compiler

We develop a specialized compiler based on the COD encoding rule to translate high-
level language CNN computation graphs into a COD instruction sequence composed of
binary digits that the accelerator can understand and execute. Additionally, we perform
optimizations, including BN folding and fixed-point quantization, on the input CNN before
compiling it. Figure 12 depicts the entire process of deploying a CNN received from a DL
framework into our accelerator. After optimization, the fixed-point weights, computation
graph prototxt (CGP), and quantization information files are sent to the compiler. In the
tiling phase, the CONV layers of the CGP are divided into multiple sub-blocks to fit the
FTP mentioned in Section 4, and the weights are rearranged according to the tiling rules.
In the fusion phase, the operations of other layers are merged into each sub-block. In the
assembly phase, the COD instruction information is converted into binary digits. All COD
instructions are arranged to form the instruction sequence corresponding to the input CNN.
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Figure 12. The workflow of the compiler.

5.1. Optimizations

BN Folding: The coefficients γ, σ, ε, β, and µ in the BN operation described in Equation (6)
are explicitly determined during the inference stage. When we substitute Equation (1) into
Equation (6), it results in Equation (7), representing the convolution merge BN operation. This
equation can be simplified to Equation (8). It is evident that the computational pattern in
Equation (8) is the same as that used in convolution. Therefore, BN folding can be achieved by
modifying the weight and bias of the CONV layer to incorporate the BN coefficients, resulting
in new weight Ŵ and new bias b̂ as shown in Equations (9) and (10). This technique eliminates
the need for computing BN, thereby reducing the inference time.

y = γ
(Wx + b)− µ√

σ2 + ε
+ β (7)

y =
γW√
σ2 + ε

x +
γ√

σ2 + ε
(b − µ) + β (8)

Ŵ =
γW√
σ2 + ε

(9)

b̂ =
γ√

σ2 + ε
(b − µ) + β (10)

Data Quantization: Our post-training quantization scheme is based on the fusion of
methods proposed in [36,37]. It involves a linear mapping of integers x to floats x̂ using
Equation (11).

X f ≈ X̂i = 2− fl · Xi (11)

where − fl and X̂i represent the fraction length parameter and the floating point value from
the de-quantization of Xi, respectively. Substituting the original CONV Equation (1) each
term with (11), we can obtain the full integers CONV Equation (12).

ôi =
2− fl x · 2− flw

2− fl o ∑ xi · wi +
2− fl b

2− fl o
bi (12)

The fraction length parameter fl is pre-computed offline on the calibration set using
the method proposed in [37], as shown in Equation (13).

arg max ∑ cos(ôi, o f ) (13)

The resulting array of quantization information, consisting of fl for each layer, is fed
to the compiler, and these parameters are compiled into Quant instructions. At runtime,
only a simple shift operation is required in the Quant unit.

5.2. Tiling

Tiling Rule: The tiling rule presented in Equation (14) and Figure 13a slices the CONV
operation into sub-blocks along the Ci and Co dimensions to fit the parallelism capability
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of the accelerator. The parameter Sn represents the total number of sub-blocks, which is
determined by the amount of parallelism in the Ci and Co dimensions, i.e., PIC and POC,
respectively.

Sn = ⌈Ci/PIC⌉ · ⌈Co/POC⌉ (14)

To ensure that the size of data scheduled by an instruction does not exceed the on-chip
buffer capacity, the tiling rule can be extended to consider the H dimension as well. The
parameter Th determines the height of each sub-block, and it should satisfy the constraint
in Equation (15), where C(GlobalBuffer) represent the size of the on-chip buffer. This
constraint guarantees that the feature map of each sub-block can fit into the on-chip buffer.

Th × W × PIC < C(GlobalBuffer) (15)

However, it is unnecessary to perform K dimensional tiling of weights since the on-
chip buffer of weights typically has sufficient capacity to cache the weight data tiled in
the Ci and Co dimensions. Therefore, the tiling rule presented in Figure 13a only slices the
CONV operation along the Ci and Co dimensions.
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Figure 13. CONV Tiling and Data layout.

Data Layout: To optimize the utilization of the 64 bytes of data accessed from the AXI4
channel per clock cycle via burst mode, a specific data layout must be designed, which differs
from the generic DL framework. As illustrated in Figure 13b, a classic DL framework like
Caffe arranges data in a three-dimensional tensor based on the channel (C), height (H), and
width (W). However, for Atrous CONV, this arrangement leads to numerous non-contiguous
data accesses, thereby wasting the bandwidth of the AXI4 bus. To avoid this issue, we propose
a NHWC[x] scheme based on NHWC, as depicted in Figure 13c. In this scheme, the tensor is
sliced along the C dimension based on the maximum amount of data accessed in one burst
(T). The sliced block is then arranged in order, with the HWC order used within each block.
Since the design of tiling unifies T and the POC and PIC, the 64 bytes of data accessed in one
burst precisely contain the data needed for all FTPs.

5.3. Fusion and Assembler

To minimize unnecessary data movement, we integrate the Quant ReLU, Pool, and
Upsample operations into the sub-block CONV operation and execute them in parallel in
the FTP of our accelerator. The parameters of these fused-operations are combined to form
the OPI information for each sub-block. Using this OPI information, we generate DTI and
CTI, with the main objective being to find the optimal data scheduling path that minimizes
the latency of the load–store process. The load-related DTIs depend on SR instructions
in the previous layer of the instruction sequence. To reduce the external memory load
(ELoad) as much as possible, the SR instruction address is directed towards the on-chip
cache address, as illustrated in Figure 8b case 1, 2, 3.

The assembler is responsible for converting the COD instruction information generated by
each fused-operation into binary digits, based on the encoding format described in Section 3.2.
When switching between different CNNs, our accelerator can simply overlay a new COD
instruction sequence into the instruction buffer, without the need to re-burn the FPGA.
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6. Experiments

The workflow of our accelerator is illustrated in Figure 2. In the offline phase, we
employ PyTorch for model training and quantification. Subsequently, the compiler gen-
erates instruction sequences and rearranged weights based on Fls and CGPs. During the
runtime phase, the Host PC transmits instructions, weight files, and preprocessed images
to the external DRAM of the FPGA via the PCIe bus. The accelerator initiates the CNN
inference process, and upon completion, the Host PC retrieves the inference results from
the DRAM. It should be noted that this work focused on accelerating the CNN process, and
other operations such as image preprocessing and result display were implemented on the
CPU. Further reports and details of the evaluation are provided below.

In this section, we conduct experiments based on the aforementioned process. Initially,
we train and quantize the segmentation model using PyTorch 1.11.0 and the CUDA 11.3
toolkit on an NVIDIA RTX 3090 GPU. Next, we developed the proposed compiler in C++
to transform the CGP into a sequence of COD instructions. Lastly, we implement the
prototype accelerator on a Xilinx VC709 development board with a XC7VX690T FPGA. All
the accelerator hardware modules are developed using Verilog HDL. The accelerator is
synthesized and implemented with Vivado 2018.3.

6.1. SCIs Segmentation

Dataset: In this subsection, we evaluate the performance of our segmentation models
on two datasets.

Satellite Dataset [5]: This dataset consists of 3117 images collected from the internet,
all having a consistent resolution of 1280 × 720. It is divided into training (2516 images)
and test subsets (600 images). The dataset includes three main feature component types:
Body, Solar Panel, and Antenna.

SCIs Dataset [23]: This newly created dataset contains 8833 simulated spacecraft
images, with 7061 images designated for training and the remaining 1772 for testing.
The dataset spans 26 different image resolutions, ranging from 90 × 82 to 1015 × 1015.
It encompasses 16 diverse spacecraft types and five crucial feature component types: Panel,
Antenna, Thruster, Optical load, and Mechanical arm. This dataset closely aligns with the
actual segmentation needs of space scenes, setting it apart from the Satellite Dataset.

Preprocessing and Hyperparameters: For all images, we apply uniform resizing to
256 × 256 both during training and inference. Additionally, for the training set, we employ
standard data augmentation techniques, including random scaling (0.5, 2.0), random
horizontal fliping, and normalization.

The training hyperparameters are as follows: the learning rate schedule “poly” pol-
icy [38] and initial learning rate 0.005, weight decay of 1 × 10−4, number of iterations
20,000, batch size of 32, and cross-entropy loss type. Hyperparameters without mentioned
task-related training were adopted from the CNN’s base model.

Benchmark: We configure six benchmark CNN models for the SCIs segmentation
task, based on the Deeplabv3 series of algorithms. These models consist of two head
networks: Deeplabv3+ [22] and DeepLabv3 [21], paired with three backbone networks:
VGG16 [39], ResNet18 [40], and SqueezeNet1.1 [41]. The head network with ASPP module
has dilation rates of 1, 2, 4, 6. Table 4 displays the model sizes and complexities. The GOPS
(Giga-operations) column in the table represents the number of operations (multiplication
or addition operations) included in each model.

Table 4. The model size and complexity of the DeeplabV3 series model on the satellite dataset.

Model Backbone
Model Size (MB) Complexity

FP32 INT16 (GOPS)

DeepLabv3 VGG16 77.96 38.88 42.64

DeepLabv3 ResNet18 63.72 31.86 11.06
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Table 4. Cont.

Model Backbone
Model Size (MB) Complexity

FP32 INT16 (GOPS)

DeepLabv3 SqueezeNet1.1 21.80 10.90 2.84

DeepLabv3+ VGG16 78.24 39.12 48.42

DeepLabv3+ ResNet18 64.16 32.08 17.18

DeepLabv3+ SqueezeNet1.1 22.28 11.14 9.28

Segmentation Result: We employed both mIoU (mean Intersection over Union) and
PA (Pixel Accuracy) [42] metrics to assess the segmentation accuracy of the six models
across the two datasets, as demonstrated in Table 5. Figure 14 shows a visualization of
the segmentation result obtained using the Deeplabv3+ ResNet18 model. To reduce the
computational complexity and memory footprint of these models, we adopt an INT16
quantization scheme, as discussed in Section 5.1. We observe that the quantized models
achieve almost the same accuracy as the original float (FP32) models, with accuracy degra-
dation ranging between −0.14 and +0.09 for the mIOU on the Satellite dataset and between
−0.5 and +0.54 on the SCI dataset. The degradation in quantification accuracy typically
arises from two sources: clipping error and rounding error, which are mutually exclusive.
Retaining a larger quantitation range, such as the maximum and minimum values, reduces
clipping error to zero but significantly increases rounding error, especially when quantify-
ing activations. Activations, having more outliers than weights, are particularly susceptible
to this effect. The EasyQuant quantitation framework [37] used in this paper iteratively
retains the quantitation parameters with the highest cosine similarity between the inverse
quantized data and the original data during the quantitation process. This implies that
the clipping range of quantization may not strictly follow the maximum and minimum
of the data, leading to some outliers not being considered within the quantization range.
Consequently, outliers in the quantized activation for each layer may have a comparatively
lesser impact on forward propagation. In fact, these outliers may not always have a positive
effect on the final accuracy, since in cases where the outliers are noise, the quantized model
may bring unexpected accuracy gains, as is the case for some models in Table 5. However,
these marginal gains are also influenced by the convergence degree of the model. When the
model is trained with more rounds of higher accuracy, the noise in the forward propagation
is reduced, and consequently, this accuracy gain may be diminished as well.
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Figure 14. Result on the SCI image based on our model (DeepLabv3+ ResNet18): input image (top)
and segmentation result (bottom). Green, blue, and red areas are antenna, mechanical arm, and panel
components, respectively.
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Table 5. The accuracy of the DeeplabV3 series model.

Satellite Dataset

Model

Accuracy

mIoU PA

FP32 INT16 FP32 INT16

DeepLabv3 VGG16 67.32% 67.31% 95.12% 95.12%

DeepLabv3 ResNet18 60.57% 60.66% 93.30% 93.33%

DeepLabv3 SqueezeNet1.1 54.93% 54.98% 91.31% 91.34%

DeepLabv3+ VGG16 67.46% 67.32% 95.50% 95.50%

DeepLabv3+ ResNet18 62.63% 62.71% 93.99% 94.01%

DeepLabv3+ SqueezeNet1.1 56.06% 56.05% 92.47% 92.49%

SCIs Dataset

DeepLabv3 VGG16 69.72% 69.42% 99.00% 99.00%

DeepLabv3 ResNet18 64.06% 63.56% 98.86% 98.84%

DeepLabv3 SqueezeNet1.1 61.09% 61.63% 98.70% 98.70%

DeepLabv3+ VGG16 81.62% 81.65% 99.56% 99.55%

DeepLabv3+ ResNet18 78.04% 77.84% 99.45% 99.43%

DeepLabv3+ SqueezeNet1.1 74.14% 74.36% 99.35% 99.35%

6.2. Accelerator Performance Analysis

In this subsection, we provide information about the implementation details of the
accelerator and then analyze its performance. Considering the model complexity, we focus
on Deeplabv3+ ResNet18 and SqueezeNet1.1 for model acceleration in this subsection.

Implementation Details: Table 6 displays the parameters and resource utilization of
our prototype accelerator. The global buffer is 1 MB implemented by BRAM resource for
caching intermediate feature maps. The weight buffer is distributed adjacent to each DSP,
and we configure two 64 B LUTRAM caches for each DSP, which allows our DSP to operate
at two times the system clock frequency. This design allows the EU using 512 DSP resource
to achieve the computational efficiency of 1024 multiplier and adder equivalents.

Table 6. Parameters and resource utilization of our accelerator.

Parameters of Our Accelerator

Buffer

Global Buffer 512 KB

Weight Buffer 64 KB (1024 × 64 B)

Bias Buffer 16 KB

Instruction Buffer 79 KB (32 B × 2500)

Operation Operations in EU 512 (32 × 16) multipliers and adders

Bus AXI bus width 512 bits

Data Width 16 bits (fixed point)

Resource Utilization

Resource LUT FF LUTRAM DSP BRAM

Used 198,262 185,839 42,097 519 724

Total 433,200 866,400 174,200 3600 1470

Utilization 45.77% 21.45% 24.17% 14.42% 49.25%
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Reducing External Memory Access: Enhancing energy efficiency and throughput can
be achieved by reducing off-chip data movement and enhancing EU utilization [24]. The
DMH introduced in Section 3.1 effectively utilizes the on-chip buffer and minimizes DRAM
accesses. To illustrate, we consider the DeepLabv3+ ResNet18 model as an example, which
we compiled into 2424 COD instructions. A comparison of DRAM accesses between our
COD CF and the primitive CF case is presented in Figure 15. In the primitive CF, DRAM
accesses involve inputs, output feature maps, and weights. (Thanks to our instruction
buffer, we can cache all instructions on-chip.) The DMH structure of the COD control
flow avoids DRAM accesses for intermediate feature maps by directly caching them in the
on-chip Global Buffer. For the DeepLabv3+ ResNet18 model, we achieve an impressive 26%
reduction in DRAM accesses overall. Notably, in the most efficient RES1 layer, we achieve
a remarkable 95% reduction in DRAM accesses. These savings in access time contribute to
the high performance of our accelerator.
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Figure 15. The comparison of external memory access between primitive control flow and our COD
control flow on the DeepLabv3+ ResNet18 model.

Performance Analysis: To evaluate the performance of our accelerator, we employed a
roofline model [29], as depicted in Equation (16), where the TTR represents the Theoretical
Roof Throughput. This model considers both memory and compute bottlenecks, providing
a valuable representation of the hardware performance.

P =

{
β · I, I < Imax
TTR, I ≥ Imax

(16)

Within the equation, P represents performance, measured in throughput (GOPS/s,
Giga-operations per second). Additionally, β corresponds to DRAM access bandwidth
(GB/s, Giga-bytes per second), I denotes operation density (OPS/Byte, operations per
byte), and Imax signifies the point of intersection between computational and bandwidth
bottlenecks, calculable using Equation (17).

Imax =
TTR

β
(17)

Furthermore, Theoretical Roof Throughput (TTR) of hardware is calculated according
to Equation (18), where MACnum represents the number of MAC units (DSP48E1) in
hardware and f is the working clock frequency of MAC units. To convert the unit of
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operations from MACs (multiply-accumulate operations) to OPS (multiplication or addition
operations), it is necessary to multiply by a factor of 2.

TTR = MACnum × 2 × f (18)

The TTR of our accelerator is calculated at 207.6GOPS/s (519 × 200 × 2), while actual
testing revealed a bandwidth (β) of approximately 6.7 GB/s. To assess the accelerator’s
runtime performance, we added a global clock cycle counter and a Xilinx ILA (Integrated
Logic Analyzer) IP into the design. When the accelerator is running, the ILA can be
triggered to view the counter number based on the instruction address and state machine
ID, and the delay of each stage can be calculated based on the running clock frequency and
the clock cycle number. The actual performance of the accelerator can then be calculated
from the operations and delays. Utilizing roof throughput data and runtime performance
data, we constructed the roofline model for our accelerator, as illustrated in Figure 16.
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Figure 16. The roofline model of our accelerator.

In the figure, the dotted line illustrates the hardware acceleration limit of our acceler-
ator. The bandwidth bottleneck is highlighted in red, and the computational bottleneck
is depicted in green. Scattered dots represent the acceleration performance of each layer
in the DeepLabv3+ ResNet18 model. Closeness of the dots to the bounding line indicates
higher hardware utilization. The primitive CF case represents a scenario where all layer
data is fetched from DRAM. Our COD CF reduces unnecessary DRAM accesses, bringing
our performance closer to the boundary.

In total, we achieved model acceleration with a latency of 93.27 ms and a performance
of 184.19 GOPS/s, representing 88.72% of the TTR. This indicates that 88.72% of the clock
cycles are effectively utilized for computation.

6.3. Comparison with Related Works

In this subsection, we compare the efficiency of our COD instructions and acceler-
ator with prior research in terms of instruction set coding and computational efficiency,
respectively.

Instruction Coding Efficiency Comparison: Despite our COD ISA having a 256-bit
word length for a single instruction list, our scheme maintains excellent coding efficiency
due to the high parallelism strategy of our hardware accelerator. Table 7 provides an
instruction size comparison between our COD instructions and previous works for the
same CNN models.
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Table 7. Comparison of total instruction size for different accelerators.

Model
Instruction Size (KB) Reduction

RateSLC [32] IUU [43] LIS [44] Ours

VGG-11 1620 270 — 33 49/8.2/—

VGG-16 2650 450 106 54 49/8.3/1.9

VGG-19 — 600 108 73 —/8.2/1.5

The hardware parallelism for IUU [43] and SLC [32] is limited to 64 (PIC, POC = 8).
This parameter is directly correlated with the number of instructions because the CONV
operation is sliced according to this parameter, with each tiling requiring one instruction to
drive it. In contrast, our COD accelerator features a parallelism of 1024 (PIC, POC = 32),
enabling us to encode the same model with fewer instructions. As a result, our COD
reduces the instruction size by a factor of 8× compared to IUU [43] and 49× compared
to SLC [32], respectively. LIS [43] is a lightweight instruction set that supports dilated
convolution and mixed-precision operands. However, its execution depends on a RISC-V
processor, requiring the inclusion of a 96 KB program within the instructions. In contrast,
our instruction parsing unit and instruction encoding are co-designed, making our in-
structions independent of RISC-V or other processors for execution. As a result, our COD
reduces the instruction size by a factor of 1.9× and 1.5× compared to LIS [43].

While instructions constitute a relatively small amount of data compared to weights
and feature maps, it is crucial to consider the constraints of bandwidth and storage resources
in space applications.

Computational Efficiency Comparison: Table 8 presents a performance comparison
of our accelerator with previous CNN-based image segmentation accelerators. The “—”
in the table indicates that the accelerator did not report that parameter or performance.
Computational Efficiency reflects how efficiently the accelerator utilizes computational
resources and is calculated as Performance divided by TTR. Note that in the comparison
we uniformly use the number of DSPs used to denote the MACnum in the TTR. The
model abbreviations in the table represent DLV3P-X (DeepLabv3+ Xception [45]), DLV3P-B
(DeepLabv3+ ResNet18), and DLV3P-C (DeepLabv3+ SqueezeNet1.1).

Table 8. Comparison with previous image segmentation accelerators.

Liu et al. [16]
in TRETS 2018

Wu et al. [18]
in TCASI 2022

Bai et al. [15]
in TCASI 2020

Im et al. [25]
in TCASI 2020

Morì et al. [24]
in DAC 2022 Ours

Accelerator
Type Overlay Overlay SN Overlay Overlay Overlay

Model U-Net ENet RoadNet-RT DL3P-X DL3P-B DL3P-B DL3P-C

Platform Xilinx
XC7Z045

Intel Arria
10

Xilinx
ZCU102

65 nm
CMOS Intel Arria 10 Xilinx XC7VX690T

Frequency
(MHz) 200 200 250 200 189.81 148.44 200

Precision 16-bit 8-bit 8-bit 8-bit 16-bit 16-bit

DSPs used 900 607 1560 — 690 1362 519

Performance
(GOPS/s) 107.00 200.31 * 331.00 65.23 ** 117.31 183.3 184.19 159.48

Computational
Efficiency

(GOPS/s/TTR)
29.72% 82.5% 42.43% — 44.78% 45.33% 88.72% 76.82%

* The data calculated based on the computational efficiency and used DSP in [18]. ** The data calculated based on
the latency and model architecture in [25].
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Morì et al. introduced a hardware-aware pruning method using a genetic algo-
rithm [24], effectively reducing the complexity of the benchmark model DL3P-B. However,
when accelerating the original model, our accelerator outperforms theirs with similar re-
source consumption. In the acceleration of the DL3P-B model, our computational efficiency
is 43.93% better than that of their accelerator. In addition to [43], Im et al. designed the
DT-CNN accelerator [25], which also supports the ASPP structure of DeepLabv3+. We
obtained a performance of approximately 65.23 GOPS/s for DT-CNN when accelerating
the DL3P-X model based on the delay and network structure parameters they provided.
Compared to this, our accelerator achieves higher performance.

In addition to the DeepLabv3+ model, we also compared other similar segmentation
task models. Bai et al. introduced a lightweight road segmentation model, RoadNet-RT [18],
and implemented an SN-type model accelerator on a ZCU102 FPGA with an acceleration
performance of 331GOPS/s. However, it consumes more computational resources, resulting
in lower computational efficiency. In comparison, our computational efficiency is 46.29%
higher than [18]. Wu et al. proposed an efficient accelerator [18] supporting multiple
convolution types. For the semantic segmentation task, they accelerated the ENet model,
achieving a performance of 200.31 GOPS/s and a computational efficiency of 82.5%. Our
accelerator outperforms theirs with a 6.22% higher computational efficiency compared
to [18]. Liu et al. [16] designed a custom architecture for DeCONV in the U-Net model and
implemented the image segmentation task at 107 GOPS/s. We outperform them with a
performance that is 77.91 GOPS/s higher and a computational efficiency that is 59% higher.

Comparison with Other Overlay Accelerators: In addition to addressing semantic
segmentation tasks, more previous accelerators are catered to more fundamental assign-
ments, including classification. Consequently, to gauge the efficiency of our accelerator in
comparison to previous overlay accelerators, we assess both the processing efficiency and
resource consumption of the classical VGG-16 model, as summarized in Table 9.

Compared to fpgaConvNet [46], our work uses less computational resources and
achieves higher performance. Compared to Angel-eye [47], we use similar LUT resources
and achieve similar performance, but our DSP usage is significantly reduced and the over-
all computational resource efficiency is improved by 8.51%. While we may not possess
a performance advantage compared to Caffeine [48] and FlexCNN [49], our work uses
far fewer resources. In fact, we demonstrate a resource efficiency improvement of 15.16%
and 19.80% compared to Caffeine [48] and FlexCNN [49], respectively. Furthermore, given
that Xilinx’s Vitis AI tool employs 8-bit quantization, the Xilinx B4096 DPU [34,50] exhibits
reduced LUT resource consumption. However, its computational resource efficiency is
comparatively lower at 57.59%, potentially attributed to multi-core DDR sharing. In con-
trast, our work boasts a more substantial efficiency improvement at 30.82%. The DPU’s
inference performance is sourced from the official Xilinx document [34], while its resource
consumption data is extracted from the official document [50].

Comparison with GPU (Graphics Processing Unit): In addition to FPGAs, GPUs are
a prevalent hardware platform for CNN acceleration. In Table 10, we present a comparison
of the acceleration performance between our accelerator and a GPU. It is evident that the
GPU, equipped with more computational resources and higher frequencies, demonstrates
faster processing speeds, but it also brings higher power consumption. Considering energy
efficiency as a crucial metric for onboard computing platforms, our dedicated accelerator
showcases a noteworthy 5.1× improvement in energy efficiency when performing SCI
segmentation tasks compared to a general-purpose GPU.
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Table 9. Performance and computational efficiency comparison with previous overlay accelerators.
(Model: VGG 16, Image Size: 224 × 224).

fpgaConvNet [46] Caffeine [48] Angel-Eye [47] Xilinx B4096
DPU [34,50] * FlexCNN [49] COD(Ours)

Platform Zynq Z045 XC7VX690T Zynq Z045 ZCU102 Alveo U250 XC7VX690T

Precision 16-bit 16-bit 16-bit 8-bit 16-bit 16-bit

Frequency
(MHz) 125 150 150 281 241 200

Batch Size 1 1 1 3 1 1

DSPs used 900 2833 780 1926 4667 519

LUTs used 218,600 350,892 182,616 111,798 682,732 198,262

Performance
(GOPS/s) 155.81 488.00 187.80 623.10 1543.40 183.54

Computational
Efficiency

(GOPS/s/TTR)
69.25% 73.25% 80.26% 57.59% 68.61% 88.41%

* Xilinx DPU’s VGG16 model contains fully connected layers, whereas the other work in the table contains
only convolutional layers. It is worth noting that the convolutional layer accounts for 99.6% of all computation
in VGG16.

Table 10. Energy efficiency comparison with GPU (Model: DL3P-C, Image Size: 256 × 256).

Platform RTX 2080 Ti GPU XC7VX690T FPGA

Framework Pytorch-GPU -

Frequency (MHz) 1635 200

External Memory 11 GB GDDR6 4 GB DDR3

Speed (Frames/s) 39.6 17.2

Power (W) 250 21 *

Energy Efficiency
(Frames/s/W) 0.16 0.82

* The power consumption is measured from the board using a power meter during FPGA inference.

7. Conclusions and Future Work

This paper introduces an innovative workflow for deploying DeepLabv3+ CNN
onto FPGAs, comprising a tailored COD instruction set, an RTL-based overlay CNNs
accelerator, and a specialized compiler. Our accelerator was implemented on a Xilinx Virtex
XC7VX690T FPGA at 200 MHz. In our experiments, the accelerator achieved an accuracy
of 77.84% with INT16 quantization, exhibiting only a 0.2% degradation compared to the
fully precision model on the SCIs dataset. Notably, the accelerator delivered a performance
of 184.19 GOPS/s with a computational efficiency of 88.72%. In contrast to prior work, our
accelerator exhibited a 1.5× performance improvement and a remarkable 43.93% boost in
computational efficiency. Moreover, our COD instruction set demonstrated a substantial
reduction in size, ranging from 1.5× to 49× when compiling the same model compared to
previous methodologies.

The experiments presented in this paper are conducted on the ground. The PC serves
as the analog source for sending and receiving data, while the FPGA development board
functions as the implementation platform for the accelerator, performing CNN inference
computations. For deployment in the actual space environment, it also is essential to
consider engineering experiments, including mechanical tests, high- and low-temperature
tests, radiation resistance tests, etc., to verify the reliability of the accelerator.
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Random bit-bias feature faults (RBFFs) [51] caused by single and multiple event upsets
is an issue to be considered during the migration of our design to an actual hardware
platform in a space environment. From an architectural design perspective, the impact of
the radiation environment on the accelerator can be mitigated through the implementation
of logical redundancy. In subsequent work, we will add parity bits to the COD instruction
and use the triple modular redundancy (TMR) approach to increase the fault tolerance
of instruction set execution in hardware. Moreover, different CNN models have different
tolerances for RBFF, and due to our overlay design we can explore highly fault-tolerant
CNN models for deployment without redesigning the hardware.
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