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Abstract: Synthetic Aperture Radar (SAR) images are widely utilized in the field of remote sensing.
However, there is a limited body of literature specifically addressing the compression of SAR learning
images. To address the escalating volume of SAR image data for storage and transmission, which
necessitates more effective compression algorithms, this paper proposes a novel framework for
compressing SAR images. Experimental validation is performed using a representative low-resolution
Sentinel-1 dataset and the high-resolution QiLu-1 dataset. Initially, we introduce a novel two-stage
transformation-based approach aimed at suppressing the low-frequency components of the input
data, thereby achieving a high information entropy and minimizing quantization losses. Subsequently,
a quality map guidance image compression algorithm is introduced, involving the fusion of the
input SAR images with a target-aware map. This fusion involves convolutional transformations to
generate a compact latent representation, effectively exploring redundancies between focused and
non-focused areas. To assess the algorithm’s performance, experiments are carried out on both the
low-resolution Sentinel-1 dataset and the high-resolution QiLu-1 dataset. The results indicate that the
low-frequency suppression algorithm significantly outperforms traditional processing algorithms
by 3–8 dB when quantifying the input data, effectively preserving image features and improving
image performance metrics. Furthermore, the quality map guidance image compression algorithm
demonstrates a superior performance compared to the baseline model.

Keywords: lossy compression; low-frequency suppression; quality map; learned compression

1. Introduction

Synthetic Aperture Radar (SAR) images are assuming an increasingly pivotal role in
the realm of remote sensing. In recent years, a myriad of SAR systems of various types
have been developed globally, with a continuous increase in the research and deployment
of SAR satellites. The utilization of SAR images is progressively expanding into diverse
domains, including aerospace, and there is a concurrent enhancement in both the data
volume and the quality of SAR images [1–3].

SAR images exhibit intrinsic features of complex data structures and concentrated
pixel distributions. Due to the continuous development of imaging technology, SAR images
are attaining higher spatial and spectral resolutions, resulting in the creation of a significant
volume of data characterized by features such as a high resolution, extensive imaging
coverage, and a large data size [4–6]. In certain scenarios, especially over maritime surfaces
where focal targets such as ships are relatively scarce and non-focal areas like open sea
are extensive, the associated costs for the transportation, storage, and management of
SAR images become notably elevated. Consequently, these challenges present significant
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obstacles to downstream tasks such as detection, identification, and segmentation in SAR
image analysis [7,8].

Traditional image compression can be broadly categorized into two main types: loss-
less compression and lossy compression. Lossless compression refers to the process where
the reconstructed image, after compression, retains all information from the original im-
age, ensuring the preservation of image details without any loss. Despite the absence of
information loss in lossless compression, its compression ratio typically hovers around
10:1 [9]. On the other hand, lossy compression involves a certain degree of information loss
between the reconstructed and original images. However, it achieves compression ratios of
up to 100:1 or even higher [10].

Lossless compression finds common application in tasks requiring precise capture of
detailed features, such as spectral feature extraction and medical image detection. Promi-
nent algorithms for lossless compression encompass run-length encoding, arithmetic cod-
ing, and Huffman coding [11,12]. Termed as entropy coding, this approach is distinguished
by the preservation of information entropy during image reconstruction and restoration.
While these methods can compress images without loss, their compression ratios often
do not meet ideal standards. Conversely, lossy compression is frequently employed in
scenarios where detailed image reconstruction is not paramount, such as in tasks like
image segmentation, classification, and target extraction [13–17]. Across various domains,
including military and civilian applications, the demand for lossy compression has been on
the rise. Prominent lossy compression algorithms include JPEG and JPEG2000 [18,19]. De-
spite their proficiency in achieving commendable image reconstruction at low compression
ratios, issues such as perceptible information loss, subjective deviations from the original
image, and artifacts like block effects, ringing effects, and blurring tend to manifest at
higher compression ratios [20].

In recent years, researchers have introduced numerous innovative compression algo-
rithms for Synthetic Aperture Radar (SAR) images. These approaches primarily fall into
two categories: those based on traditional image processing and those leveraging machine
learning techniques. JPEG is considered one of the classical traditional compression algo-
rithms; however, it is not very effective on SAR images affected by significant multiplicative
noise. Kozhemiakin et al. considered the specific characteristics of SAR images and applied
the JPEG2000 and SPIHT [21] algorithms to SAR images. The results indicated that, under
equivalent compression ratios, the JPEG2000 method exhibited a performance comparable
to SPIHT [22]. Li and Chang optimized the wavelet transform and proposed an enhanced
SAR image compression model based on tower-shaped wavelet decomposition [23]. Sub-
sequently, Zemliachenko et al. developed a compression ratio prediction algorithm for a
discrete cosine transform (DCT) encoder, utilizing remote sensing images. Building upon
the discrete wavelet transform (DWT), Dheepa et al. introduced a directional lifting wavelet
transform (DLWT) [24,25]. By constructing a transformation matrix, implementing internal
quantization, and employing a general function for the encoding and decoding processes,
they aimed to enhance the coding efficiency and clustering capabilities. Experimental
results demonstrated that the PSNR performance of DLWT surpassed that of the discrete
wavelet transform (DWT) [26]. In exploring efficient strategies for image compression, Du
and Fowler demonstrated the feasibility of effectively compressing hyperspectral images
by combining JPEG2000 and principal component analysis (PCA), offering an effective
approach for handling the high data volumes of remote sensing images [27]. On another
note, Bai et al. (2017) explored PolSAR image compression based on online sparse K-SVD
dictionary learning, proposing a novel strategy to address the unique challenges of PolSAR
images [28]. Furthermore, Li et al. (2018) introduced an innovative method for compressing
remote sensing images in the visible/near-infrared range using heterogeneous compressive
sensing, providing new perspectives and technical support for the compression of remote
sensing images [29]. In practical applications of remote sensing image compression, the de-
mand for various image compression qualities becomes apparent. Consequently, research
focusing on quality control has gained prominence. Ieremeiev and Makarichev conducted
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studies on image quality control and successfully implemented a compressive model with
controllable quality [30,31].

In recent years, there has been significant development in learning-based image pro-
cessing methods, including detection, recognition, and segmentation, and these methods
have found successful applications in the field of remote sensing [13–17]. Concurrently,
the demand for image compression in remote sensing has witnessed a steady increase.
Consequently, numerous researchers have dedicated their efforts to exploring learning-
based algorithms for compressing remote sensing images [32–40]. These learning-based
approaches in remote sensing image compression use extensive sample learning to extract
key features that leverage the spatial characteristics of images. Compared with traditional
image compression algorithms, learning-based algorithms use Convolutional Neural Net-
works (CNNs) to deeply explore image features and represent high-dimensional features
into low-dimensional visualizations.

In 2016, the application of CNNs to image compression emerged, with Balle et al.
introducing an end-to-end image compression framework based on variational autoen-
coder CNNs [32]. Subsequently, in 2018, Bella et al. introduced further enhancements
to the end-to-end CNN compression framework. This framework employed variational
autoencoders for data processing and introduced a hyperprior network to capture latent
data structures [33]. Expanding on this work, Minnen et al. improved the entropy coding
stage, introducing an enhanced context model for entropy coding. This marked a significant
advancement, representing the first instance of a deep learning compression method sur-
passing the performance of the widely used BPG in objective image evaluations [34]. Li and
Liu leveraged CNNs for feature extraction from multispectral remote sensing images. The
baseline network employed a simple two-layer CNN and achieved overall remote sensing
image compression through the DCT transformation and entropy coding. The experimental
results demonstrated superiority over methods based on BPG [35]. In a parallel develop-
ment, Xu et al. proposed a variational autoencoder model for SAR image compression,
incorporating a priori models. By combining residual blocks with transformations, they
enhanced the depth of the network for improved image feature extraction. The results
demonstrated superior performance compared to JPEG, JPEG2000, and Li’s method [36].
Building on Xu’s foundation, Zhang et al. further refined the model by introducing a
hybrid Gaussian model for fitting and estimating model parameters. This modification,
validated on ICEYE and Sandia datasets, demonstrated superiority over traditional com-
pression methods and learning-based algorithms [37]. In a separate contribution [38], a
compression algorithm featuring pyramid features and quality enhancement was proposed.
Utilizing a variational autoencoder–decoder network as the baseline model, this approach
combined the conditional Gaussian with universal quantization for SAR remote sensing
image compression. Validation on Sandia National Laboratories and ICEYE datasets con-
firmed the effectiveness of the proposed method. Fu et al. endeavored to explore spatial
redundancy by incorporating both local and global context information. Multiple residual
modules were introduced to enhance the model’s feature extraction performance [39]. In
the same year, Fu et al. proposed a model employing multiple prior networks, combining a
CNN-based prior network with one based on transformer modules. This cascade approach,
although increasing the complexity, resulted in a thorough exploration of spatial redun-
dancy, achieving favorable experimental results on high-resolution remote sensing image
(HRRSI) datasets [40].

In practical applications, most models often overlook errors at data input [21–31,35–40].
Commonly, traditional techniques such as linear stretching are employed for quantiza-
tion processing [41]. Regrettably, most preprocessing methods based on conventional
approaches result in the loss of crucial input features. Additionally, existing models often
concentrate solely on spatial redundancy at both global and local levels, without distin-
guishing between target and non-target regions [36–41]. This lack of consideration may
adversely affect the compression performance of the models.
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By addressing the loss of image features, aiming to enhance information preservation
in SAR image inputs, and exploring redundancy in spatial structures unrelated to the
target, this paper introduces a SAR image compression model based on two-stage low-
frequency suppression and quality map guidance. The primary contributions of our work
are summarized as follows:

1. The paper proposes an SAR image compression model that utilizes two-stage low-
frequency suppression and quality map guidance, validated through experiments
conducted on Sentinel-1 low-resolution images and QiLu-1 high-resolution images.

2. Aiming at the problem of existing huge losses in the input data, the paper constructs
two-stage transformation operators to suppress low-frequency input data, achieving
both a peak signal-to-noise ratio and a minimized quantization loss in the input data.

3. To explore the redundancy between focused and non-focused targets, we establish a
compression model guided by a quality map, directing the allocation of compression
bit rates. This method results in a higher level of information fidelity in the compressed
model focused on target perception.

The remainder of this paper is organized as follows: Section 2 provides a review of
the related work, including an introduction to baseline network principles and formulas.
Section 3 details the algorithm proposed in this paper. Experimental results and analyses
are presented in Section 4. Section 5 discusses the algorithm, and in Section 6, we conclude
with the main findings of this paper.

2. Materials and Methods

This section introduces the relevant work on remote sensing image compression. It
encompasses an overview of the baseline network model, the principles of the hyperprior
network, and an exposition of the parameters and formulas employed in this paper.

Most compression models obtained through learning typically include components
such as an encoder, a decoder, quantization coding, and an entropy coding network. Built
on the foundation of the variational autoencoder model, the introduction of a hyperprior
network captures structural redundancy among latent representation feature maps. Con-
sequently, these networks exhibit high precision, a superior compression performance,
and reduced loss of complex data. The optimization problem of the algorithm can be
modeled as a variational autoencoder [42], with the prior of the latent layer representation
corresponding to the entropy model and the edge information generated by the hyperprior
network serving as a prior for the entropy model. In general, the quantized data probability
model is regarded as a joint known distribution. This model is subsequently employed for
entropy coding and is applied to tasks such as image storage and transport. The overall
network framework is illustrated in Figure 1, with the main parameters and formulas
described as follows:

y = ga(x)
ŷ = U|Q(y)
z = ha(y)
ẑ = U|Q(z)
prior = hs(ŷ)
x̂ = gs(ŷ)
Ry = R(ŷ

∣∣prior)
Rz = R(ẑ)

(1)

where x and x̂ represent the original and reconstructed images, y and ŷ represent the latent
and quantized latent variables, and z and ẑ hyperprior represent the latent and quantized
latent variables. The prior is the output of the hyperprior decoder, representing the pa-
rameters σ within a zero-mean single Gaussian model or µ and σ for multiple Gaussian
models within a mixture Gaussian model. Here, ga and gs represent the encoder and
decoder transformations, while ha and hs represent the transformations of the hyperprior
encoder and decoder. Due to the disruption of gradient backpropagation during training
caused by uniform quantization, the training process incorporates uniform noise instead
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of quantization to complete the entire model training. In this way, we use U|Q to refer to
the quantizer. R represents entropy coding, such as arithmetic coding (AE), where Ry and
Rz respectively denote the bit rate (BPP, bits per pixel) after entropy coding for the latent
representation and hyperprior latent representation.
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The entropy model constitutes a pivotal element in the realm of learning-based lossy
image compression algorithms. By leveraging the additional information introduced
through the hyperprior, the entropy model occupies a minute bit rate while aiding in the
construction of a more precise entropy model, thereby significantly enhancing the com-
pression performance. The hyperprior model essentially estimates the parameters of the
true distribution y. Given the inherent discrepancy arising from the unknown nature of the
actual distribution, the primary aim is to minimize this disparity. This involves aligning the
probability model distribution as closely as possible with the true distribution of y. During
the image entropy coding process, effective image compression coding can be achieved
through arithmetic coding when the parameters of the probability model ŷ are discerned.
To reduce the divergence between the probability model and the actual model, the intro-
duction of boundary variables z through the hyperprior encoding network ha facilitates
the precise estimation of the probability model [43]. Through quantization, the arithmetic
encoder (AE), and the arithmetic decoder (AD), the hyperprior latent representation z
is redefined as ẑ. Using the parameter generation model, i.e., the hyperprior decoding
network hs, to conduct multi-Gaussian modeling, the estimation of the distribution of y
can be expressed as:

pŷ|ẑ(ŷ|ẑ)← hs(ẑ; θh) (2)

where θ represents the parameters of the hyperprior decoding network h, denoting the
model’s estimation. If a Gaussian mixture model is employed for the estimation pro-
cess [44,45], the model can be characterized as follows:

pŷ|ẑ(ŷ|ẑ) ∼∑
k

Nk(µk, σ2
k ) (3)

Here, µ and σ represent the estimations of the mean and standard deviation in the
Gaussian model, with a practical choice of k set to 3. The process of parameter fitting and
estimation involves the utilization of a three-component Gaussian mixture model. After
processing the data with the estimated parameters, they are input into the primary decoder
to achieve image reconstruction. Concerning the optimization of the entire network’s
parameters [46,47], we continue to employ the overarching rate distortion function:

L = R + λD (4)

where D represents the distortion between the original image and the reconstructed image,
which is usually replaced by MSE, PSNR, and MS-SSIM [48,49]. R represents the compres-
sion code rate of the overall framework. In fact, R in Equation (4) includes two parts of the
code rate shown in Equation (1):

R = Ry + Rz (5)
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3. Proposed Algorithm

This section mainly introduces the low-frequency suppression algorithm and the
target perception model. In Section 3.1, we explore the motivation and principles of the
two-stage low-frequency suppression algorithm, and in Section 3.2, we introduce the quality
map guidance model algorithm. Figure 2 illustrates the overall design framework of the
model, including modules for pre-processing and post-processing for the low-frequency
suppression algorithm, as well as the quality map guidance image compression model. The
latter includes modules for quality map extraction and fusion, with the baseline network
being the hyperprior network described in Section 2.
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3.1. The Two-Stage Low-Frequency Suppression Algorithm

The overall algorithmic process of the low-frequency suppression algorithm is illustrated
in Figure 3. Firstly, the distribution of raw SAR data needs to be fitted. Subsequently, the
low-frequency suppression algorithm is applied to obtain a bag-of-words model for the
selection of parameters k and t. Two algorithmic modes have been designed to cater to
different requirements: a rough selection mode, directly completed using interpolation, and
a refined selection mode that utilizes the low-frequency suppression algorithm for precise
parameter selection around the target parameters. With the selected parameters, the original
data undergo transformations, achieving processing at the data input level. The processed
image will be compressed and reconstructed through the compression model. Finally, the
reconstructed data undergo post-processing to achieve overall data reconstruction.
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3.1.1. Background and Motivation

For the accurate preservation of SAR signals, most primary and secondary products
derived from SAR images are stored in a 16-bit format [50,51]. However, in many down-
stream tasks of learning-based SAR image processing, such as compression, detection,
and recognition [13–17], the utilized data are in 8-bit JPEG and PNG formats. According
to [52], SAR image samples from MSTAR-O are generated by employing simple linear
enhancement of official MSTAR raw data using MATLAB, while SAR image samples from
MSTAR-P are directly downloaded from an online personal blog as post-processed “.jpeg”
images. In many learning-based SAR processing tasks, the utilization of 16-bit data input
in the network is challenging due to limitations in hardware conditions, model size, and
resource consumption. Therefore, quantizing SAR data from 16-bit to 8-bit is a crucial yet
frequently overlooked aspect in many learning-based SAR processing tasks.

When converting 16-bit SAR raw data to 8-bit through linear quantization, a substan-
tial portion of the grayscale tends to be concentrated in the lower intensity range. For
example, in the experimental data, the Sentinel-1 dataset displays a distribution primarily
within the range of 0–30, while the QiLu-1 dataset was concentrated within 0–3. This
direct linear quantization results in a significant quantization loss. Established methods
for enhancing quantization in SAR images include techniques such as linear stretching,
histogram equalization, and the power-law transformation. The primary objective of these
enhancement techniques is to mitigate quantization loss and enhance the preservation of
image information. Considering the characteristic concentration of SAR image distribu-
tions, there is a need to design a transformation operator to suppress the low-frequency
components and expand the high-frequency components in the data, thereby minimizing
information loss at the input level. Traditional methods for low-frequency suppression
include linear stretching, histogram equalization, and the power-law transformation.

The method of linear stretching involves dynamically expanding the dynamic range
of data in a linear fashion. Pixels exceeding a certain threshold are excluded, and the
quantized result will be used as input data. While this method preserves most information
data, it leads to a significant loss for pixels with higher grayscale values, resulting in
substantial information loss at the input data level.

Histogram equalization’s central idea is to suppress low-frequency pixel intensities
and expand high-frequency pixel intensities. However, the degree of suppression and
expansion varies with the number of pixels within a specific range. Like linear stretching
within a certain range, this method necessitates recording additional and larger parameters,
which deviates from the original intention of image compression.

The power-law transformation strikes a balance between linear stretching and his-
togram equalization. Requiring only one parameter, this method efficiently suppresses
low-frequency pixel intensities. However, the extent of expansion for high-frequency
components can become excessive with different internal model parameters.

To address these issues, we propose a two-stage low-frequency suppression operator
built upon existing methods. It involves linear stretching for the primary high-frequency
pixel components to achieve high-frequency expansion. Simultaneously, it compresses the
secondary high-frequency and low-frequency pixel components to achieve low-frequency
suppression. This design aims to minimize information loss at the data input level while
introducing fewer parameters.

3.1.2. Model Design and Construction

The SAR image distribution generally follows a Rayleigh distribution. The raw data
can be accurately described by fitting them to the Rayleigh distribution, which requires
only one parameter, σ, to represent the probability distribution of grayscale values. The
probability distribution function of the Rayleigh distribution can be expressed as follows:

y =
x

σ2 ∗ e−
x2

2∗σ2 (6)
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In most SAR images, high-frequency components correspond to low grayscale values,
while low-frequency components correspond to high grayscale values. Typically, under
the conditions of compressing high grayscale values and stretching low grayscale values,
methods such as the power transformation and histogram equalization can achieve more
optimal SAR image quantization and reconstruction compared to linear transformation.
However, with different introduced parameter values, the power transformation may lead
to an excessive stretching of low grayscale values. Additionally, histogram equalization
introduces extra parameters and is not conducive to the reconstruction of quantized data.
To meet the low parameter reference and suit the characteristics of SAR distribution, a
linear and power two-stage low-frequency suppression constructor g(x) is constructed:

g(x) =
{

g(t) ∗ x/t while x < t
255 ∗ log( x

k + 1)/log( 255
k + 1) while x ≥ t

(7)

where x ∈ [0, 255]. The constructed function g introduces two additional parameters, t and
k, where t ∈ [0, 255] and k ∈ (0, ∞). Here, t represents the threshold. Pixels smaller than
t are considered high-frequency points for linear stretching, and pixels larger than t are
considered low-frequency points for power compression. The parameter k represents the
degree of compression in the power-law transformation. Specifically, the inflection point
g(t) at x = t is expressed as:

g(t) = 255 ∗ log(
t
k
+ 1)/log(

255
k

+ 1) (8)

It is apparent that for t = 0, the constructed function g reduces to the power trans-
formation method, denoted by a sole parameter, k. When t = 255, the function simplifies
to g(x) = x, mapping any point x to itself. As k approaches 0, g(t) approaches 255, and
the function approximates a linear stretch within the 0 to t range, transitioning to a linear
transformation with removal of the t to 255 range; x is mapped to itself. As k approaches
infinity, g(t) converges towards t, and the function g similarly approximates g(x) = x,
mapping any point x to itself. The inverse function of the transformation function g(x) is:

g−1(x) =

{
t ∗ x/g(t) while x < g(t)

k ∗
(

10x∗log( 255
k +1)/255 − 1

)
while x >= g(t)

(9)

3.1.3. Quantitative Loss Analysis

SAR raw data are initially stored in a 16-bit format. For subsequent calculations, we
linearize them to a floating-point representation within the 0–255 range without quantiza-
tion, minimizing loss. In traditional quantization methods, the Mean Squared Error (MSE)
quantization loss function for directly quantizing SAR images can be defined as:

lossraw =

255∫
0

y(x) ∗ (x− round(x))2 =
255

∑
m=0

m+0.5∫
m−0.5

y(x) ∗ (x−m)2dx (10)

where lossraw can be conceptualized as the sum of MSE losses across the interval
[m − 0.5, m + 0.5], where m ranges from 0 to 255. Here, y(x) denotes the distribution
function of the SAR image. The loss for each interval [m− 0.5, m + 0.5] can be defined
as lossm:

lossm =

m+0.5∫
m−0.5

y(x) ∗ (x−m)2dx (11)

Within the interval [m− 0.5, m + 0.5], the distribution function y(x) exhibits continuous
smoothness. For computational convenience, we can approximate y as a linear segment that
is symmetric about the point (m, y(m)). Hence, the y(x) in Equation (11) can be simplified
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to a constant, y(m). Through overall simplification of the MSE loss function, the loss results
in a constant with respect to σ.

lossraw =
255

∑
m=0

y(m)

m+0.5∫
m−0.5

(x−m)2dx ≈
255∫
0

y/12 dx =
1− e−

2552

2∗σ2

12
(12)

The method of directly quantizing high-frequency and low-frequency points with-
out distinction undoubtedly leads to significant losses. Therefore, it is imperative to
introduce a front-end preprocessing step to mitigate these losses. In this preprocessing
stage, we apply the constructed function g. Following this transformation, y(g(x)) is
quantized within the interval [m − 0.5, m + 0.5], where m represents the index ranging
from 0 to 255. Subsequently, restoration is performed through y(g−1(Q(g(x)))), and this
process can be conceptualized as quantizing the actual distribution y(x) within the range
[g−1(m− 0.5), g−1(m + 0.5)], mapping it to g−1(m). After the two-stage low-frequency
suppression transformation, the quantized MSE loss function, denoted as losspro, can be
expressed as:

losspro =
255

∑
m=0

g−1(m+0.5)∫
g−1(m−0.5)

y(x) ∗
(

x− g−1(m)
)2

dx (13)

3.1.4. Function Parameter Optimization

In fact, the problem can be simplified to a quantization loss problem of stretch-
ing within 0~t and compression within t~255. Referring to the optimization method
in Equations (10)–(13), the distribution y(x) is regarded as a straight-line segment within
[g−1(m− 0.5), g−1(m + 0.5)], and the following simplified loss can be obtained:

losspro =

 g(t)

∑
m=0

y
(

g−1(m)
)
+

255

∑
m=g(t)+1

y
(

g−1(m)
)∫ g−1(m+0.5)−g−1(m)

g−1(m−0.5)−g−1(m)
x2dx (14)

The integral part in Equation (14) can be proposed separately to obtain an expression
related only to the transformation function g:

∫ g−1(m+0.5)−g−1(m)

g−1(m−0.5)−g−1(m)
x2dx =

(
g−1(m + 0.5)− g−1(m)

)3 −
(

g−1(m− 0.5)− g−1(m)
)3

3
(15)

The first part of losspro is the linear stretching loss, and the second part is the power
compression loss. The losses can be expressed as follows:

loss1 =
g(t)

∑
m=0

y
(

g−1(m)
)

12(g(t)/t)3 =

g(t)
∑

m=g(0)
y
(

g−1(m)
)

12l3 =
1− e−

t2

2σ2

12l3 (16)

loss2 =
e−

t2

2σ2 − e−
2552

2σ2

12(p)3 ≈ e−
t2

2σ2

12(p)3 (17)

For ease of expression, we design two variables l and p, where l is the average
derivative of the constructor function g within 0~t, and p is the average derivative of the
constructor function g from t to 255. The derivative of constructor function g is expressed as:

g′(x) =

{
g(t)/t while x < t

255
log( 255

k +1)∗ln(10)∗(x+k)
while x ≥ t (18)
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where l and p can be calculated as:

l = g(t)
t

p = 255−g(t)
255−t = 255−lt

255−t

(19)

The final simplified loss function losspro can be expressed as:

losspro =
1− e−

t2

2σ2

12l3 +
(255− t)3e−

t2

2σ2

12(255− lt)3 (20)

where losspro(l, t, σ) is a parsable loss function in the range of 1 < l < 255/t, 0 < t. The entire
parameter optimization solution problem can ultimately be attributed to minimizing the
loss losspro under the given parameters σ, l and t:

minl,t∈Dlosspro(l, t, σ)

subject to 1 < l < 255
t , 0 < t, l = g(t)

t
(21)

Through the optimization of parameters, we can determine the minimum quantization
loss parameters l, t. It is important to note that in the formulation of Equation (7), the
constructed function g introduces two parameters, k and t. The parameter k is embedded in
the expression g(t) presented in Equation (2). Despite the different expressions, the use of k
is simply for the sake of a concise description. In practical terms, the experiment continues
to employ the values of k and t used for parameter selection. According to the determined
σ, the optimal values of k and t are identified within the feasible domain to minimize
the loss function losspro. This process leads to the establishment of a bag-of-words model
corresponding to σ. We can choose the optimal parameters in this model and implement
input data processing.

3.2. The Quality-Map-Guided Image Compression Model

Current research on deep-learning-based SAR image compression mainly involves
global compression and reconstruction of the entire image using encoding and decoding
networks. However, these methods tend to focus primarily on the overall compression
performance and metrics at a global level [36–41]. Unfortunately, achieving a higher level
of information fidelity for specific local targets remains a challenging task, resulting in
redundant information in non-target regions. To address this limitation, we propose a novel
compression model incorporating a map aware of targets, enabling the preservation of a
high information content in specific regions of interest and thereby reducing the redundancy
in non-target areas. The proposed model is structured as a hyper-prior network, consisting
mainly of the main encoding–decoding network and the hyper-prior encoding–decoding
network. Rate allocation is performed utilizing quality map side information to effectively
minimize the redundancy in non-target regions. Figure 4 illustrates the architecture of the
overall network, wherein the importance guidance map is introduced into both the main
encoder–decoder and the hyper-prior encoder–decoder. Lateral concatenation is performed
whenever there is a change in dimensionality, followed by dimension transformation and
reduction. The importance guidance feature map is extracted using a pre-trained ViT
network [53], guiding rate allocation based on pre-trained feature maps to emphasize rate
weights for critical regions. Spatial feature fusion (SFT) [54,55] is employed to spatially fuse
the importance guidance map with the input data. Through upsampling, downsampling,
and spatial fusion of feature maps and guidance maps from different perspectives, the
model aims to deepen the significance of the guidance map within the network, thereby
achieving overall quality-guided image compression.
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The framework employed in this study is grounded in the Vision Transformer (VIT)
model, utilized as a pre-trained model for the extraction of multi-class image features.
The multi-head attention output is extracted into n feature sub-images before the ViT
model classification module. We take the mean of the feature maps to obtain the required
quality map. The pre-trained model can not only better extract image features, but also
can make up for the shortcomings of traditional learning-based networks that are prone to
under-fitting due to too few layers. In Figure 4, the quality map is input into the encoder
after feature fusion with the original data to deepen the importance of the guidance map
in the network. The SFT module used is shown in Figure 5. Compared with the model
in [55], the number of stacking layers is reduced to achieve a more lightweight network
model. The fusion module mainly includes two convolutions of the feature map and
activation function distribution representing α and β, which are linearly weighted with
the input features to obtain the feature fusion result. The model loss function is shown in
Equations (4) and (5).

Xi = α fi + β (22)
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4. Experimental Results and Analysis
4.1. Dataset and Indicators

The primary datasets employed in this study consist of SAR data from Sentinel-1 and
QiLu-1 satellites. Sentinel-1 data cover a diverse range of terrains, including both marine
and terrestrial landscapes. The detailed aspects include entities such as ships and houses,
while the textured components comprise features like roads and ocean ripples. Sentinel-1
data have an extensive coverage, a high complexity, and a resolution of approximately 5 m,
establishing them as quintessential examples of low-resolution SAR imagery. Therefore,
we undertook studies utilizing low-resolution data from Sentinel-1. Similarly, QiLu-1 data
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encompass diverse terrains, including roads, deserts, and vegetation, demonstrating a high
complexity and extensive coverage. With an azimuth resolution of better than 0.2 m, QiLu-1
data stand out as a valuable resource for high-resolution image studies. Therefore, this
study strategically uses both low-resolution Sentinel-1 data and high-resolution QiLu-1 data
for experimental validation, ensuring a comprehensive evaluation of the proposed model.

The assessment of the information-preservation capabilities of the compression–
reconstruction model primarily relies on image evaluation metrics. These metrics en-
compass subjective evaluation, objective evaluation metrics, and application-oriented
evaluation metrics. Subjective evaluation of image compression involves visual assessment
of both the original and reconstructed images. Objective evaluation metrics for image
compression predominantly include the PSNR, MS-SSIM, and BPP rate.

In the realm of image compression, application-oriented evaluation metrics are tailored
to SAR image characteristics, assessing indicators for subsequent SAR image applications,
such as recognition rates for maritime vessel identification. This study predominantly
utilizes the PSNR metric, quantifying the distortion between the original and reconstructed
images, as articulated in the following formula:

PSNR = 10 log10

(
MAX2

MSE

)
(23)

where MAX and MSE represent the maximum value of the pixel count in an image and
the Mean Squared Error between the original and reconstructed images, respectively. The
PSNR is measured in decibels (dB), and a higher PSNR value indicates a smaller difference
between the original and reconstructed images.

4.2. Experimental Results and Analysis of the Low-Frequency Suppression Algorithm

In the process of the low-frequency suppression algorithm, the first step involves
estimating the data distribution parameter σ, thus representing each data point with a
single σ parameter. The fitted results are depicted in Figure 6, with example curves for
Sentinel-1 images at σ = 6.42 and QiLu-1 images at σ = 0.32.
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According to the low-frequency suppression algorithm model described in Section 3.1,
we performed fitting under a given σ and selected the optimal parameters t and k to
minimize the PSNR loss. The results are illustrated in Figure 7a,b, depicting the loss
surface plots for low-resolution Sentinel-1 experimental images on the left (with t = 27 and
k = 1 × 10−8) and high-resolution QiLu-1 experimental images on the right (with t = 1.0
and k = 1 × 10−0.7). The curve depicted in Figure 6 can be interpreted as the probability
density function (PDF) of the original data, whereas Figure 7c,d represent the PDF after
undergoing low-frequency suppression transformations. It is evident that the contrast
has been enhanced, indicating a higher degree of preservation of information. Through
this method to achieve the optimal parameter selection, we can finally obtain the bag-of-
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words model of t and k corresponding to σ. Thus, based on the results of the sampling
bag-of-words model, the optimal k and t parameters corresponding to a given σ can be
directly identified and interpolated. For tasks demanding a higher precision, a more refined
selection of the optimal values of t and k can be conducted with a smaller interval around
the target point through the low-frequency suppression algorithm.
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Conventional processing methods encompass linear transformations, power trans-
formations, and histogram equalization. However, histogram equalization introduces
an excessive number of parameters, and its inverse transformation results in substantial
information loss, rendering it impractical. This study compares traditional linearization,
power transformation, and the proposed algorithms. Experimental trials were conducted
using images from Sentinel-1 and QiLu-1, and the preprocessing outcomes of the three
methods are depicted in Figures 8 and 9. The recommended algorithm, in comparison to
the other two, notably enhances the preservation of image information.
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We employed the PSNR metric for an objective quantitative assessment, and the results
of the PSNR values of the three processing methods are presented in Table 1. The proposed
algorithm consistently achieves superior PSNR results for both low-resolution and high-
resolution images, outperforming traditional algorithms by 3–22 dB. This demonstrates the
reduced quantization loss and enhanced information preservation in data processing.

Table 1. PSNR of the traditional linear method, traditional power method and proposed method.

Algorithm Sentienl-1/PSNR QiLu-1/PSNR

Traditional linear method 42.93 68.32
Traditional power method 58.92 87.46

Proposed method 65.38 90.53

4.3. Experimental Results and Analysis of the Quality-Map-Guided Image Compression Model

We conducted experiments on a selected subset of Sentinel-1 images, applying our low-
frequency suppression algorithm followed by quality map extraction and experimentation
with the compression model. In the actual process of perception map extraction, ViT
preprocessing models were employed to extract multi-head attention feature maps. The
resulting feature map is ultimately obtained by applying weighted processing to the
12 sub-maps. Figure 10 illustrates the feature maps of both traditional methods and the
low-frequency suppression algorithm. The experimental results demonstrate the efficacy of
this approach in preserving and integrating image features, consequently enhancing the
overall image quality.
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In our subsequent experiments, we employed a hyperprior as our baseline net and in-
tegrated the quality map with the input data to perform spatial feature fusion. Throughout
the training phase, we utilized the PyTorch framework and trained the model end-to-end
using the Adam optimizer. The batch size was set to 8, with an initial learning rate of
0.0001. Experimental training involved random cropping to a size of 256 × 256 pixels. All
experiments were conducted on an NVIDIA GeForce RTX 3080 Ti GPU, and the training
process extended over 100 epochs. For a beneficial understanding of the computational re-
quirements and efficiency of the framework, Table 2 contains the computational complexity
of the proposed algorithm.

Table 2. Model complexity of the proposed algorithm.

Algorithm Para/M FLOPs/G

Proposed method 5.06 133.28

Figure 11 presents a comparative illustration of the compression reconstruction perfor-
mance across different methods and scenarios. The second column illustrates more detailed
sub-images compared to the first column. The entire model is evaluated using a BPP of 1.2.
While the PSNR obtained with the JPEG method is 17.32 dB, our test results demonstrate a
higher PSNR of 19.97 dB, indicating a superior image quality. Notably, the second column
of detailed sub-images visibly demonstrates this superior performance.
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The quantitative results of the experiments, employing the PSNR metric, are presented
in Table 3. The findings suggest that around a BPP of 1.2, the recommended model
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demonstrates an better PSNR performance by approximately 3 dB compared to JPEG.
Additionally, the purpose of this algorithm is to investigate a universally applicable quality
map guidance network. Therefore, research was conducted based on a foundational
universal model. The results substantiate the effectiveness of this approach in preserving
and improving the performance of the image compression model.

Table 3. Compression performance comparison.

Algorithm Sentienl-1/PSNR

JPEG 18.58
Proposed method 21.51

5. Discussion

This paper introduces an SAR image compression model based on low-frequency sup-
pression and quality map guidance, validated through experiments conducted on Sentinel-1
low-resolution images and QiLu-1 high-resolution images. The primary innovations in-
clude the construction of two-stage transformation operators for the input data, aiming to
suppress low-frequency input data, achieve an optimal PSNR, and minimize the quantiza-
tion loss in the data input. Simultaneously, a quality map guidance compression model
is developed to guide the allocation of compression bit rates, exploring the redundancy
between focused and non-focused targets to attain higher levels of information fidelity.

However, in low-frequency suppression, it is important to note that some simplifi-
cations of loss calculations may introduce theoretical errors. Researchers are encouraged
to conduct more in-depth investigations into loss calculations and formula derivations to
establish a more comprehensive and theoretically sound experimental model. Additionally,
concerning quality map guidance, this paper primarily implements a more lightweight
quality map guidance network on the baseline network. While many existing models en-
hance the network complexity and time and material costs through layer stacking to achieve
optimal model performance, this paper leverages features extracted by a pre-trained model
for data fusion. This approach mitigates the drawbacks of the baseline model complexity. It
is worth mentioning that the pre-trained model utilized in this paper is essentially a natural
image feature extraction model, resulting in a suboptimal outcome. We look forward to
researchers being able to propose more pre-trained models in the SAR field for reference
and improvement in the future. Furthermore, it is hoped that researchers will conduct
more in-depth research on feature fusion modules in the future.

6. Conclusions

Firstly, we meticulously designed a two-stage transformation operator for input data,
enabling effective low-frequency suppression. This approach aims to optimize the PSNR
and minimize the quantization loss. It is crucial to emphasize that our proposed algorithm
transcends its application solely for compression tasks; it also demonstrates versatility
in detection, recognition, and various other applications. This adaptability is achieved
through meticulous data preprocessing, ensuring superior information retention in the
input data.

Subsequently, we formulated a compression model guided by a quality map, empha-
sizing the focus on the feature components extracted from the quality map. This guidance
aids in the judicious allocation of compression bit rates and delves into the redundancy
between focused and non-focused targets. The ultimate objective is to attain a heightened
level of information fidelity in compressing images with a specific emphasis on local targets
of interest. The experimental results unequivocally affirm the efficacy of this method,
demonstrating its proficiency in mitigating losses in the input data in SAR images and
improving the overall compression performance of the model.

The paramount significance of this study lies in the adept application of deep learning
techniques in SAR image processing. Our novel contributions include the introduction
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of a two-stage low-frequency suppression algorithm and a quality map guidance image
compression model. The efficacy of these contributions is substantiated through rigorous
experimental validation.
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