
Citation: Zhan, Y. ; Hu, D.; Yu, X.;

Wang, Y. Hyperspectral Image

Classification Based on Mutually

Guided Image Filtering. Remote Sens.

2024, 16, 870. https://doi.org/

10.3390/rs16050870

Academic Editors: Jaime Zabalza,

Yijun Yan and Jinchang Ren

Received: 13 January 2024

Revised: 25 February 2024

Accepted: 28 February 2024

Published: 29 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Hyperspectral Image Classification Based on Mutually Guided
Image Filtering
Ying Zhan 1,* , Dan Hu 2, Xianchuan Yu 3 and Yufeng Wang 1

1 School of Computer and Software, Nanyang Institute of Technology, Nanyang 473004, China;
wangyufeng@whu.edu.cn

2 Department of Radiology and BRIC, University of North Carolina, Chapel Hill, NC 27514, USA;
danhu0055@gmail.com

3 School of Artificial Intelligence, Beijing Normal University, Beijing 100875, China; yuxianchuan@163.com
* Correspondence: zhanying@live.com

Abstract: Hyperspectral remote sensing images (HSIs) have both spectral and spatial characteristics.
The adept exploitation of these attributes is central to enhancing the classification accuracy of HSIs.
In order to effectively utilize spatial and spectral features to classify HSIs, this paper proposes a
method for the spatial feature extraction of HSIs based on a mutually guided image filter (muGIF)
and combined with the band-distance-grouped principal component. Firstly, aiming at the problem
that previously guided image filtering cannot effectively deal with the inconsistent information
structure between the guided and target information, a method for extracting spatial features using
muGIF is proposed. Then, aiming at the problem of the information loss caused by a single principal
component as a guided image in the traditional GIF-based spatial–spectral classification, a spatial
feature-extraction framework based on the band-distance-grouped principal component is proposed.
The method groups the bands according to the band distance and extracts the principal components
of each set of band subsets as the guide map of the current band subset to filter the HSIs. A
deep convolutional neural network model and a generative adversarial network model for the
filtered HSIs are constructed and then trained using samples for HSIs’ spatial–spectral classification.
Experiments show that compared with the traditional methods and several popular spatial–spectral
HSI classification methods based on a filter, the proposed methods based on muGIF can effectively
extract the spatial–spectral features and improve the classification accuracy of HSIs.

Keywords: hyperspectral images classification; mutually guided image filter; band distance; deep learning

1. Introduction

Hyperspectral remote sensing image (HSI) classification is the process of attempting
to allocate class labels to pixels within a set of hyperspectral images utilizing classification
methods. It represents a primary application of hyperspectral remote sensing data and is a
crucial technique for interpreting and analyzing HSIs [1].

Through years of research and exploration, numerous scholars have proposed an
exceedingly diverse array of classification methods. Depending on the availability of class
knowledge, the classification methods are classified as unsupervised, supervised, or semi-
supervised learning approaches [2]. Unsupervised methods rely solely on the intrinsic
separability of the data and include clustering algorithms such as K-Means [3], spectral
clustering [4], Fuzzy C-Means (FCM) [5], hierarchical clustering [6], and density-based
spatial clustering (DBSCAN) [7].

Supervised methods, using labeled samples for training, generally achieve better
performance. Common supervised approaches include probability-based methods, kernel
transformations, random forests, and sparse representation [1].

Semi-supervised learning methods can be categorized into generative and discrimi-
native models. Generative models establish joint probability distribution between classes,
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reflecting similarity within the same class. Examples include a Markov random field (MRF)
model incorporating spatial and spectral features [8] and the S2MLR (Soft sparse multi-
nomial logistic regression) model [9]. Discriminative models directly learn conditional
probability distributions, such as a graph-based framework describing the importance
of labeled samples [10] and a transductive SVM method [11] implementing a weighting
strategy for unlabeled samples. These methods enhance classification by leveraging both
labeled and unlabeled data for improved performance.

In recent years, deep convolutional neural networks (CNNs) have achieved tremen-
dous success in various tasks on natural images and have also quickly garnered significant
attention from the hyperspectral remote sensing image-processing community [12,13]. An-
other highly significant representational learning model in deep learning is the generative
adversarial networks (GANs), first proposed by Goodfellow and colleagues in 2014 [14].
This network combines the characteristics of both generative and discriminative models.
Subsequently, a variety of GAN-based models have been continuously introduced [15–17],
leading to a series of semi-supervised and unsupervised learning methods based on
GANs [18]. For instance, Springenberg proposed Cat-GAN in 2015 [19], which is ca-
pable of handling image classification tasks and generating samples. This method offers an
approach to learning discriminative classifiers from unlabeled or partially labeled data. In
2016, Odena et al. introduced Semi-GAN [20], which forces the discriminative model to
output k + 1 labels (where k represents the number of classes) to perform semi-supervised
classification. He and co-authors presented a semi-supervised method for hyperspectral
images based on GANs named 3DBF-GANs [21], which learns and classifies hyperspectral
images after extracting spatial–spectral features using three-dimensional bilateral filter-
ing. In 2023, Zhan et al. proposed a hyperspectral image semi-supervised classification
method based on a one-dimensional GAN network with spectral angle distance (SADGAN),
achieving commendable performance with limited labeled samples [22].

Due to the inherent phenomena of “same material different spectrum” and “different
material same spectrum” in hyperspectral images [23], solely relying on spectral infor-
mation is insufficient for the effective identification of ground objects. Simultaneously,
pixels within hyperspectral images tend to belong to the same category as adjacent pixels
with a high probability, forming the foundation for classification methods based on spatial
features. Many scholars have proposed joint classification studies combining spectral and
spatial features on this theoretical basis [24].

According to the literature summary [23], the spatial–spectral classification framework
for hyperspectral images typically follows a series of steps. First, spectral and spatial
features are extracted from the data. Then, these features are either selected or fused
together. The selected or fused features are subsequently inputted into a classifier for the
purpose of classification. Finally, spatial regularization is performed using spatial features
to enhance the classification results. Depending on the stage at which the fusion of spectral
and spatial information occurs, spatial–spectral classification methods can be categorized
into three types [25]: preprocessing-based classification [26], integrated classification [27,28],
and postprocessing-based classification [29,30].

In the preprocessing-based spatial–spectral classification of hyperspectral images,
spatial-feature-extraction methods targeted at neighborhood pixels are commonly em-
ployed due to the converging characteristics between pixels and their surrounding neigh-
borhoods [25]. Techniques based on Markov random fields [31], spectral correlation [32],
morphological features [33], and superpixel segmentation [34] are prevalent in this context.

The utilization of filtering techniques for spatial feature extraction in preprocessing-
based classification is garnering increasing attention from researchers. Commonly used
filtering-based methods include the approach proposed by Bau et al. [35], which is based
on Gabor filtering. This method extracts features such as orientation, scale, and wavelength
of hyperspectral images through three-dimensional Gabor filtering. Another method, pro-
posed by Chen et al. [36], combines Gabor filtering with CNNs techniques. It employs
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Gabor filters for edge and texture feature extraction and, when combined with convolu-
tional filters, can mitigate the issue of model overfitting.

At present, researchers predominantly employ filtering-based methods to extract
spatial features [35,36], particularly the Guided Image Filter (GIF) proposed by He et al. [37],
which has demonstrated promising results in hyperspectral image classification [38–41].

GIF operates based on the Local Linear Model, computing the filter output by consid-
ering the content of the guidance image, enabling image smoothing while preserving edges.
However, while GIF can guide the filtering output by referencing the information of a guid-
ance image, it overlooks the structural inconsistency between the reference signal and the
target signal captured under different conditions, failing to adequately retain image edges
in complex image structures. Recently, Guo et al. proposed the mutually guided image
filter (muGIF) algorithm [42], which employs the concept of relative structure to measure
the similarity between the reference image and the target image. A global optimization
objective is designed on this basis to achieve high-quality image filtering.

Inspired by this, we propose a hyperspectral image classification model based on
the muGIF algorithm in this paper. Initially, considering the two-dimensional spatial
features and one-dimensional spectral features inherent in hyperspectral images, a spatial
feature extraction method based on mutually guided image filtering and band-distance-
grouped principal component is proposed. This method groups bands according to the
band distance in hyperspectral images, extracting the principal components of each group
of band subsets as the guidance map for the current band subset to carry out mutually
guided image filtering. Subsequently, deep CNN- and GAN-classification models are
constructed for the filtered hyperspectral images, selecting training samples for classifier
training and performing spatial–spectral classification of the hyperspectral images.

The main contributions of this paper are as follows.
(1) Proposing a hyperspectral image classification model based on the muGIF al-

gorithm. This model takes into account the two-dimensional spatial features and one-
dimensional spectral features inherent in hyperspectral images.

(2) Introducing a spatial feature extraction method based on mutually guided image
filtering and a band-distance-grouped principal component. This method groups bands
according to the band distance in hyperspectral images, extracting the principal components
of each group of band subsets as the guidance map for the current band subset to carry out
mutually guided image filtering.

The rest of the paper is organized as follows. Section 2 describes the proposed muGIF-
based classification method in detail. Section 3 describes the data sets used for the compari-
son experiments and the specific settings of the comparison methods in the experiments.
Section 4 reports the results of the experiments and the related analysis. Conclusions are
presented in Section 5.

2. Methodology

In this paper, a hyperspectral image-classification method based on mutually guided
image filtering is proposed. On this basis, the filtered images are classified by combining
deep learning models such as CNN and GAN.

Figure 1 describes the framework of the spatial–spectral classification method of
muGIF and deep learning. Firstly, the original hyperspectral image is grouped based on
band distance density, and principal component analysis is performed on each group of
images after grouping. Each group extracts a principal component as the guided image of
that group of band images; then, the muGIF filtering algorithm is used to filter all bands
in each group of images; finally, the filtered data set is trained through CNN models or
GAN models to obtain the corresponding classifiers for classification. Section 2.1 explains
how muGIF works. Section 2.2 provides an overview of how the proposed methods in this
paper work. Section 2.2.1 explains how to perform muGIF filtering after obtaining grouped
principal components through band distance density. On this basis, Section 2.2.2 and
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Section 2.2.3 present classification methods combining mutual conductive image filtering
with CNNs and GANs, respectively.

PCA by 
band distance

muGIF

HSIs Filtered HSIs

CNNCNN

G

D

GAN
G

D

GAN

Grouped By
band distance

Figure 1. Framework of the spatial–spectral joint classification method based on MuGIF and deep
learning.

2.1. Mutually Guided Image Filtering

Image filtering can generally be divided into two categories: frequency domain filter-
ing and spatial filtering. Spatial filtering, in particular, is a technique employed to modify
or enhance images according to specific rules. It can typically be formulated as follows:

min
T

Ψ(T, T0) + αΦ(T) (1)

T0 and T denote the input and output signals respectively, Ψ(T, T0) represents the
fidelity term, Φ(T) signifies the regularization term of the output, and α is a non-negative
coefficient balancing these two terms.

To better utilize the information from the guided image and reflect the corresponding
structural relationship between the reference image R and target image T, the relative
structure of T with respect to R is defined as follows [42]:

ℜ(T, R) = ∑
i

∑
d∈{h,v}

|∇dTi|
|∇dRi|

, (2)

where i denotes a pixel on the image (x, y) and ∇d represents a first-order derivative filter
comprising both the horizontal (h) and vertical (v) directions. The relative structure ℜ(T, R)
measures the structural difference of T with respect to R.

With the definition of relative structure, the optimization objective for muGIF can be
constructed as follows:

arg min
T,R

αtℜ(T, R) + βt∥T − T0∥2
2 + αrℜ(R, T)

+βr∥R − R0∥2
2,

(3)

αt, αr, βt, and βr are non-negative constants used to balance the corresponding terms;
∥ · ∥2

2 denotes the ℓ2 norm, |T − T0|22 and |R − R0|22 are employed to constrain T and R not
to deviate too much from T0 and R0.
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Directly solving the aforementioned optimization problem is quite challenging. Guo
et al. proposed an approximate solution method [42]: initially finding an approximate
substitute for the relative structure ℜ(T, R):

ℜ̃(T, R, ϵt, ϵr) = ∑
i

∑
d∈{h,v}

(∇dTi)
2

max(|∇dRi|, ϵr) · max(|∇dTi|, ϵt)
(4)

Herein, ϵt and ϵr are introduced to avoid division-by-zero errors. The corresponding
optimization objective can be replaced with the following form:

arg min
T,R

αtℜ̃(T, R, ϵt, ϵr) + βt∥t − t0∥2
2

+αrℜ̃(T, R, ϵt, ϵr) + βr∥r − r0∥2
2,

(5)

where t, t0, r and r0 are the vector forms of T, T0, R and R0 respectively. Let Qd and Pd
(d ∈ {h,v}) represent the diagonal matrices of the ith diagonal element 1

max(|∇dTi|,ϵt) and
1

max(|∇dRi|,ϵr) respectively. Correspondingly, the objective Function (5) is transformed into

arg min
T,R

αttT

(
∑

d∈{h,v}
DT

d QdPdDd

)
+ βt∥t − t0∥2

2

+αrrT

(
∑

d∈{h,v}
DT

d QdPdDd

)
+ βr∥r − r0∥2

2

(6)

Herein, Dd is the Toeplitz matrix of the discrete gradient operator in the d direction.
Equation (6) can be solved through Alternating Least Squares (ALS) to obtain the output
after muGIF filtering

t =
t0(

I + αt
βt

(
∑

d∈{h,v}
DT

d Q(k)
d P(k)

d Dd

))
(7)

r =
r0(

I + αr
βr

(
∑

d∈{h,v}
DT

d Q(k+1)
d P(k)

d Dd

))
(8)

2.2. Mutually Guided Image Filtering for Hyperspectral Images Classification
2.2.1. Principal Components of Band Distance Density

Similar to the GIF algorithm, the muGIF algorithm also requires a guidance image as a
reference to filter the target image. According to the concept of relative structure described
in Equation (2), when the guidance image R is in the edge region, the first-order gradient
is larger. Hence, the penalty term 1

|∇dRi|
for |∇dTi| is relatively more minor, achieving the

effect of preserving boundaries. Conversely, when the guidance image R is in a smooth
region with a smaller first-order gradient, the penalty term is relatively larger, resulting
in a more pronounced smoothing effect. Therefore, the choice of the guidance image is of
significant importance to the filtering effect of the muGIF algorithm.

In spatial–spectral classification methods of hyperspectral images using guided image
filtering, the primary components obtained from PCA decomposition of all band images
are usually used as the guidance images for filtering:

[c1, c2, . . . , cn] = PCA(H), (9)

where H represents the hyperspectral image data, PCA(H) denotes the PCA decompo-
sition of H using principal component analysis [43,44], and ci indicates the ith principal
component, and n represents the number of bands.
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Researchers often choose the first or the first three principal components as the guid-
ance image for filtering [38,40,41].

However, since hyperspectral images often contain multiple bands, and there is a
significant difference between different bands, using one or a few principal components
simultaneously as the guidance image for multiple bands cannot provide a good filtering
reference for different band images, which can easily lead to information distortion. This
paper proposes a principal component-extraction method based on band distance density
to address this question. By grouping all bands according to band distance density, one
principal component is extracted for each group, and this principal component is used as
the guidance image for filtering all band images in this group.

Band distance can be used to describe the sparsity level of features between bands:

di = |ri+1 − ri|, i ∈ [1, . . . , n − 1], (10)

where n is the total number of bands and ri is the spectral response value of the ith band.
The equation represents that di is the absolute value of the difference between the ith and
the i + 1th adjacent bands. From the Equation (10), we can derive that the total distance
between all adjacent bands in the hyperspectral image is

dall = ∑
j

∑
i

∣∣rj,i+1 − rj,i
∣∣, (11)

where j represents the pixel in the hyperspectral image. Next, the entire band needs to be
divided into p subgroups. Let pe0 = 1, pek be the band number of the ending position of
the kth group, and let sk denote the number of bands in each group. Then, we have

sk = pek − pek−1, k ∈ [1, . . . , p] (12)

and
p

∑
k=1

sk = n (13)

By sequentially solving Equation (14) from top to bottom, we can determine the
specific values of pe1, . . . , pep and thus obtain the specific division of the p subintervals.

∑
j

pe1

∑
i=1

∣∣rj,i+1 − rj,i
∣∣ = dall

p

∑
j

pe2

∑
i=pe1

∣∣rj,i+1 − rj,i
∣∣ = dall

p

. . .

∑
j

pep

∑
i=pep−1

∣∣rj,i+1 − rj,i
∣∣ = dall

p

(14)

Once the partitioning of each group in the hyperspectral image is established, we can
perform PCA decomposition on all bands of each group:

[ck,1, ck,2, . . . , ck,sk
] = PCA(Hk), k ∈ [1, . . . , p] (15)

PCA(Hk) represents the PCA decomposition of the data set Hk composed of bands
from the kth group. Finally, the first principal component ck,1 obtained after decomposition
for each group is used as the guide image for the muGIF filtering of that group:

Ti = muGIF(Hi, ck,1), i ∈ [pek−1, pek], k ∈ [1, . . . , p], (16)
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where Hi represents the image of the ith band, and Ti is the corresponding output image
after the muGIF filtering. All the filtered images corresponding to the bands are then
reassembled into a new data set H̃, which is subsequently involved in the classification
process.

2.2.2. Classification Algorithm Based on MuGIF and CNN with Spectral Angle Distance

After obtaining the data set H̃ that the algorithm above has filtered, a classifier can
be employed to categorize this data set. In this context, the convolutional neural network
is chosen as the classifier. We select training data for the training process, and ultimately,
the model with the highest accuracy is picked as the final classifier for classification. This
algorithm is named muGIF-CNN in this paper, as detailed in Algorithm 1.

Algorithm 1 muGIF-CNN

1: Data: Hyperspectral datas et H
2: Result: Classifier CNN
3: Initialize group count p, CNN training epochs ng, training sample ratio sp
4: Determine the starting position of each band grouping based on Equation (14)
5: Decompose each band group separately using PCA according to Equation (15), obtain-

ing the first principal component of each group as the guide image
6: Use different guide images for different band groups, compute the filtered image for

each band image based on Equation (16), and assemble them into the new data set H̃
7: Extract training samples from the hyperspectral data based on the training sample

ratio sp
8: for ng > 0 do
9: Train the CNN model using the training samples

10: Update the weights of the CNN using the gradient descent algorithm
11: Update ng;
12: end for
13: After training, save the model CNN with the highest accuracy and output;

2.2.3. Classification Algorithm Based on MuGIF and GAN with Spectral Angle Distance

Similarly, we choose the SADGAN algorithm [22], combined with muGIF filtering,
which will implement the spatial–spectral joint classification of hyperspectral images in a
semi-supervised manner. This algorithm is named muGIF-SADGAN in this paper, and the
specific description of the algorithm is shown in Algorithm 2.

Algorithm 2 muGIF-SADGAN

1: Data: Hyperspectral data set H
2: Result: Classifier finetuning CNN(FTCNN)
3: Initialize group number p, SADGAN training epochs ng, FTCNN training epochs nc,

extracted convolutional layer feature depth nl, training sample proportion sp
4: Calculate the starting position of each band grouping according to Equation (14)
5: Use PCA to decompose each band group separately based on Equation (15), and obtain

the first principal component of each group as the guidance image
6: Calculate the filtered image of each band based on Equation (16). Use different guidance

images for different band groups and form the new data set H̃
7: for ng > 0 do
8: Acquire m generated samples g(1), . . . , g(m) and m real samples x(1), . . . , x(m)

9: Feed both the generated and real data into model D of SADGAN for training and
update the weights of D using gradient ascent

10: Take m noise samples and feed them into model G of SADGAN for training, update
the weights of G using gradient descent

11: Update ng;
12: end for
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Algorithm 2 Cont.

13: After training, save models G and D
14: Select training samples from the hyperspectral data according to the proportion sp
15: Feed the training samples into model D, then extract features from nl convolutional

layers, flatten them, and concatenate them as inputs for CNN
16: for nc > 0 do
17: Train the FTCNN with the fused features of training samples
18: Update the weights of FTCNN using the gradient descent algorithm
19: Update nc ;
20: end for
21: After training, save and output the model with the highest accuracy

3. Datasets and Experimental Setting

This section discusses the details of the data sets chosen for the experiments and the
setup of the various methods used in the experiments for comparison with the methods
we propose.

3.1. Data Sets Description

To validate the effectiveness of the proposed muGIF-CNN and muGIF-SADGAN
methods, we conducted comparative experiments on the Indian Pines, Pavia University,
Salinas Valley, and Tianshan data sets. The first three datasets are widely used datasets
used to validate the proposed method, and Tianshan is an actual application data set. We
extracted 5%, 0.5%, 0.5%, and 10% of the data from them, respectively, as training data
(further divided into training and validation data sets at an 8:2 ratio), with the remaining
samples constituting the testing data set.

The first hyperspectral data set utilized in this study is the Indian Pines data set,
which was acquired in 1992 using the airborne visible/infrared imaging spectrometer
(AVIRIS) sensor over the Indian Pines region in northwestern Indiana. The image consists
of 145 × 145 pixels and encompasses 220 spectral bands, covering a wavelength range
from 400 to 2200 nm with a fine spectral resolution. The spatial resolution of the image
is approximately 20 m. Prior to the experiments, bands affected by water absorption and
noise were eliminated, resulting in a data set comprising 200 bands. For our experiments,
we employed a total of 10,249 pixels representing sixteen distinct classes. Figure 2 show-
cases the color composite of the Indian Pines image alongside the corresponding ground
truth data.

(a) (b)

(c)

Alfalfa 
Corn-notill 
Corn-mintill 
Corn 
Grass-pasture 
Grass-trees 
Grass-pasture-mowed 
Hay-windrowed 

Oats 
Soybean-notill 
Soybean-mintill 
Soybean-clean 
Wheat 
Woods 
Buildings-Grass-Trees-Drives 
Stone-Steel-Towers 

Figure 2. Indian Pines data set. (a) Three-band color composite. (b) Reference data. (c) Class names.
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The second data set used in this study was captured by the airborne Reflective Optics
System Imaging Spectrometer (ROSIS) sensor over the urban area of the University of
Pavia, located in northern Italy, in 2002. The image has dimensions of 610 × 340 pixels. It
possesses a high spatial resolution of 1.3 m and covers a spectral range from 430 to 860 nm.
The acquired image consists of 103 bands. In total, there are 42,776 samples across nine
distinct categories. Figure 3 displays the color composite of the Pavia University image
along with the corresponding ground truth data.

  
 

  
  
  
  
  
  
  

(a) (b) (c)

Asphalt
Meadows
Gravel
Trees
Painted metal sheets
Bare Soil
Bitumen
Self-Blocking Bricks
Shadows

Figure 3. Pavia University data set. (a) Three-band color composite. (b) Reference data. (c) Class
names.

The third data set was collected by the AVIRIS sensor over Salinas Valley in south-
ern California, USA, in 1998. The image size is 512 × 217 pixels, the coverage is 400 to
2500 nm, and the spatial resolution is 3.7 m. After the noisy and water absorption bands
were removed, the number of bands in the acquired image was 204. There are a total of
54,129 samples, including 16 classes. Figure 4 shows the color composite of the Salinas
image and the corresponding ground truth data.

 

 
  
  
 

  
  
  
  
  
  
  
  
  
  
  

(a) (b) (c)

Brocoli_green_weeds_1
Brocoli_green_weeds_2
Fallow
Fallow_rough_plow
Fallow_smooth
Stubble
Celery
Grapes_untrained
Soil_vinyard_develop
Corn_senesced_green_weeds
Lettuce_romaine_4wk
Lettuce_romaine_5wk
Lettuce_romaine_6wk
Lettuce_romaine_7wk
Vinyard_untrained
Vinyard_vertical_trellis

Figure 4. Salinas Valley data set. (a) Three-band color composite. (b) Reference data. (c) Class names.

The fourth data set used in this study is the airborne HyMap data collected over
Tianshan, China. The HyMap imaging spectrometer operates within a spectral range of
400–2480 nm. The spectral bandwidth of the data is not fixed and typically falls between
15 nm and 18 nm, with an average bandwidth of approximately 16 nm. The data set
possesses a spatial resolution of 9 m and a pixel resolution of 1090 × 1090. The spectral
response values of the features span from 1 to 10,000. The experimental data were sub-
jected to atmospheric and geometric correction. After removing bands affected by water
absorption and noise, the data set was reduced to 123 bands. Figure 5a represents the
color composite map of the Tianshan data. Based on the existing local geological map,
the reference data are depicted in Figure 5b. Figure 5c provides the name of each class,
accompanied by the color legend.
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Purple-red conglomerate, 
sandstone and mudstone

Dark gray black-silica schist

Gray biotite quartz schist

Orange-red silty mudstone with 
fine conglomerate

Light gray granodiorite

Lacustrine deposits of 
Holocene Series of Forth 
System: Gravel, sand

ChX2

E2b2

Qhl

γδC

(E3-N1)t

C1g1

Gravel

Gray-dark gray feldspar mylonite

Gray quartz diorite

Sandy soil

Light red potassium 
long granite

Siliceous silty slate

Mauve conglomerate 
sandstone, Gray-green 
conglomerate sandstone

δοC

Qp3
apl

C1g2

Qhapl

ξγC

E2b1

C1g3sl

              （b） 

              （c） 

              （a） 

Figure 5. Tianshan data set. (a) Three-band color composite. (b) Reference data. (c) Class names.

Table 1 presents the sample sizes for the Indian Pines, Pavia University, Salinas, and
Tianshan data sets. The Tianshan data set has a large number of data and small inter-
class differences, which significantly differ from the first three datasets. This difference
can verify the applicability of the proposed method on different sensor datasets in the
experiments. This disparity also implies that the computational processing time for the
same algorithm will be longer when applied to the Tianshan data set. To mitigate this
issue, we employed a band selection algorithm to downscale the Tianshan data set, thereby
reducing the processing time for subsequent experiments.

Table 1. Scene size, sample size, and number of bands for the Indian Pines, Pavia University, Salinas
Valley, and Tianshan data sets.

Data Set Scene Size Sample Size Number of Bands

Indian Pines 145 × 145 10,249 200
Pavia University 610 × 340 42,776 103

Salinas Valley 512 × 217 54,129 204
Tianshan 1090 × 1090 1,188,100 123

Figure 6 depicts the average spectral curves for each class within the four data sets
mentioned. A notable observation is that the Tianshan data set showcases smoother intra-
class spectral features and smaller inter-class differences when compared to the other
publicly available data sets. This suggests that the Tianshan data set exhibits relatively
limited variations between different classes of geologic bodies. Consequently, classification
algorithms employed for this data set must possess enhanced performance to effectively
differentiate between the various classes and facilitate efficient geologic mapping.

Moreover, obtaining corresponding training samples for hyperspectral images, par-
ticularly in geologic mapping regions characterized by complex environments, presents
significant challenges. Therefore, reducing reliance on labeled samples in classification
becomes crucial. To address this challenge, in addition to a supervised classification ap-
proach, we also adopt a semi-supervised classification approach utilizing GANs for spectral
classification and the muGIF algorithm for spatial–spectral classification.
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Figure 6. Average spectral curves for each class of the data sets. (a–d) represent the average curves
for each class of Indian Pines, Pavia University, Salinas Valley, and Tianshan data sets respectively.
Different colors represent the mean values of different classes.

3.2. Methods of Comparison and Experimental Setup

Methods compared with muGIF-CNN and muGIF-SADGAN include 1DCNN, EMP-
SVM, GIF-FSAE, Gabor-CNN, SSGAT, and GIF-CNN, where those with CNN indicate that
the method uses the convolutional neural network as the classifier. Unless expressly noted,
relevant parameters in the methods are determined through five-fold cross-validation in
the experiments.

Details of the setup of these methods in the experiment are described below:
(1) 1DCNN [45]: The method 1DCNN employs a one-dimensional deep convolutional

neural network to classify spectral features. For consistency in comparison standards,
unless otherwise specified, other methods in this experiment that use CNN as a classifier
all adopt the structure of 1DCNN.

(2) EMP-SVM [33]: For the method, several principal components of the hyperspectral
image are first extracted using the principal component analysis (PCA) method (four
principal components in this experiment). Subsequently, the EMP algorithm is employed
to extract spatial–spectral features, with a window radius size of 4. We performed four
opening and closing operations on each principal component, resulting in 4× (2× 4+ 1) =
36 spatial–spectral features derived from the four principal component images. Finally, we
employed the Support Vector Machine (SVM) to classify these features.

(3) GIF-FSAE [46]: This is a method for hyperspectral image classification that com-
bines guided image filtering and sparse autoencoders, integrating unsupervised and super-
vised feature learning. Initially, the raw hyperspectral image undergoes PCA decomposi-
tion. On one hand, the first three principal components are used as guide images, while on
the other, the initial 30 principal components are stacked to serve as input images. Guided
image filtering utilizes two window radius sizes for spatial feature extraction. These spatial
features are then fused with spectral features and introduced to the sparse autoencoder for
model training.

(4) Gabor-CNN [36]: This method combines Gabor filtering with CNNs. Initially,
spatial features are extracted from the three principal components obtained through PCA
decomposition of the hyperspectral image using Gabor filters. These Gabor filters consist
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of four different orientations. The resulting spatial features are then stacked together to
form a new data set, which is subsequently fed into the CNN for training.

(5) SSGAT: The SSGAT method [47] utilizes the aggregation of features from both
labeled and unlabeled samples by computing attention coefficients between a node and its
neighboring nodes. This approach effectively combines spectral and spatial information
from all the samples. In this experiment, the weight parameters of the SSGAT method were
optimized using the Adam optimizer. The learning rate was set to 0.01, and the number of
training epochs was set to 300.

(6) GIF-CNN: The GIF-CNN method [41] is a hyperspectral image classification ap-
proach that combines multi-scale guided image filtering with CNNs.

(7) muGIF-CNN-1PC: This is a method proposed in this paper for hyperspectral image
classification based on mutually guided image filtering and CNNs, using the first principal
component as the guide image. As defined in Equation (5), the muGIF algorithm itself
comprises six parameters: ϵr, ϵt, αr, αt, βr, βt. Among them, ϵr and ϵt are utilized to
prevent division-by-zero errors and are set to ϵr = ϵt = 0.01 in this paper. As indicated
by Equations (7) and (8), the performance of muGIF is determined by αt

βt
and αr

βr
. Initially,

we set βt = 1 and βr = 1, thus only considering the parameters αt and αr. According to
Equation (6), αt and αr influence the input image and the guide image, respectively. Larger
values result in smoother output images. Since our emphasis is on filtering the input image,
we only consider the setting of the αt parameter. The specific value of αt is determined
through five-fold cross-validation, and in our experiments, we set αt = 0.01.

(8) muGIF-CNN: In the muGIF-CNN method, the guiding image is obtained using a
band distance grouping method. For each data set, the bands are divided into five groups.
Each band group undergoes PCA decomposition, and the first principal component is
selected as the guiding image for filtering that particular band group. The remaining
parameters and settings of muGIF-CNN are consistent with the muGIF-CNN-1PC method.

(9) muGIF-SADGAN: Another hyperspectral image-classification method proposed in
this paper is muGIF-SADGAN. This method combines mutually guided image filtering
with the SADGAN algorithm [22]. The parameters used for muGIF in muGIF-SADGAN
are consistent with those of the muGIF-CNN-1PC method.

The experimental hardware environment for this section consisted of an Intel Core
i5-4590 3.3 GHz CPU, 20 GB of RAM, and a TitanX GPU. The computer operating system
used was Ubuntu 16.04. The algorithms were developed using TensorFlow, the Keras deep
learning library, and the Scikit-learn machine learning library. To quantitatively evaluate
the experimental results, the confusion matrix was utilized as the basis. Key performance
metrics such as Overall Accuracy (OA), Average Accuracy (AA), and the kappa coefficient
κ (%) were calculated to compare the classification performance of different methods.

4. Experimental Results and Analysis

This section discusses the classification results of various comparative methods dis-
cussed in the Section 3 and the proposed methods on four datasets. Finally, an analysis and
discussion are conducted on the impact of muGIF parameters’ settings on the classifica-
tion results.

4.1. Experimental Results for the Indian Pines Data Set

Table 2 presents the Overall Accuracy (OA), Average Accuracy (AA), and kappa
coefficient κ (%) achieved by different comparison methods on the Indian Pines data set.
For this evaluation, 5% of the samples from each class were randomly selected as training
samples. Additionally, Figure 7 showcases the classification results obtained by each
method. The experimental findings clearly demonstrate the superior performance of the
methods proposed in this paper, which are based on the combination of muGIF and deep
learning, for spatial–spectral classification of hyperspectral images.



Remote Sens. 2024, 16, 870 13 of 22

Table 2. Comparison of the classification accuracies (%) of various methods for the Indian Pines data
set (with 5% of training samples; bold numbers indicate the best results).

Class 1DCNN EMP
-SVM

GIF
-FSAE

Gabor
-CNN

SSGAT GIF
-CNN

muGIF
-CNN-1PC

muGIF
-CNN

muGIF
-SADGAN

1 71.74 80.43 97.83 95.65 93.48 95.65 99.55 95.65 99.55
2 62.32 83.26 86.69 91.32 89.99 93.91 89.92 94.61 97.27
3 54.7 84.94 93.98 91.08 94.46 92.77 90.12 99.04 97.11
4 43.88 64.14 91.14 97.47 100 97.89 100 97.05 100
5 75.36 79.09 92.34 92.55 86.13 91.3 95.45 86.13 92.96
6 93.15 92.19 97.81 97.26 97.67 97.67 99.45 99.86 99.45
7 75.00 85.71 92.86 92.86 100 92.86 28.57 100 100
8 91.84 99.16 98.12 98.74 99.79 98.95 100 100 99.79
9 0 0 70 80 100 100 100 100 100

10 76.03 84.77 96.3 95.78 96.40 96.09 95.78 98.05 98.87
11 78.78 94.09 96.7 96.7 97.84 96.82 98.29 97.27 97.56
12 73.86 80.61 96.63 92.92 97.98 95.11 98.15 93.25 98.48
13 99.51 99.51 99.02 99.02 99.51 99.51 99.51 99.02 99.02
14 91.23 92.41 100 99.76 99.92 99.37 99.6 99.76 100
15 52.85 94.3 71.76 82.9 97.93 88.86 97.93 98.45 97.93
16 78.49 94.62 97.85 97.85 97.85 97.85 97.85 97.85 97.85

OA 75.43 88.53 94.32 95.01 96.20 95.91 96.25 97.06 98.08
AA 69.92 81.83 92.44 93.87 96.81 95.91 92.89 97.25 98.11

κ 71.94 86.91 93.51 94.31 95.67 95.34 95.72 96.65 97.81

(b)   (e) (c) (d)   (a)  

(g)   (j) (h) (i)   (f) 

Figure 7. Classification results obtained by different methods on the Indian Pines data set. (a) Ref-
erence data. (b) 1DCNN. (c) EMP-SVM. (d) GIF-FSAE. (e) Gabor-CNN. (f) SSGAT. (g) GIF-CNN.
(h) muGIF-CNN-1PC. (i) muGIF-CNN. (j) muGIF-SADGAN.

From Table 2, it is evident that methods integrating both spatial and spectral fea-
tures exhibit significant improvements compared to the 1DCNN method, which relies
solely on spectral features for classification. This indicates that models incorporating
both spatial and spectral features are better suited for the spatial–spectral characteristics
of hyperspectral images. Furthermore, deep-learning-based algorithms outperform the
traditional classic spatial–spectral classification algorithm EMP-SVM, achieving higher
accuracy. Specifically, the proposed muGIF-CNN and muGIF-SADGAN methods in this
paper show an improvement of 8.53% and 9.55% in Overall Accuracy (OA) compared to
EMP-SVM, respectively.

Methods such as Gabor-CNN and guided-image-based methods (GIF-FSAE, GIF-CNN,
muGIF-CNN-1PC, muGIF-CNN, muGIF-SADGAN), thanks to their edge-preserving effect,
generally outperform EMP-based methods. Among these, muGIF-based methods have an
edge over GIF-based methods as muGIF can handle different structures between the guided
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image and target image separately, leading to better edge preservation and homogenous
area smoothing. Consequently, methods based on muGIF demonstrate superior classifica-
tion accuracy. Specifically, compared to GIF-CNN methods, the muGIF-CNN-1PC method
achieves an increase in OA of 0.34%, the muGIF-CNN method improves by 1.15%, and
the muGIF-SADGAN method improves by 2.17%. Compared to the latest SSGAT method,
muGIF-CNN-1PC, with only the first principal component, has mediocre performance, but
muGIF-CNN and muGIF-SADGAN also achieve better classification results.

The muGIF-CNN method, which utilizes band distance grouping to obtain multiple
principal components as guided images, shows a slight increase in accuracy compared
to the muGIF-CNN-1PC method, which uses a single principal component as a guiding
image. This suggests that guiding with grouped principal components is beneficial for
feature extraction. Additionally, muGIF-SADGAN, which learns features from unlabeled
samples in a semi-supervised manner, achieves slightly higher classification accuracy
compared to muGIF-CNN. However, it is worth noting that as the spatial feature extraction
of muGIF becomes more refined, the difference between semi-supervised and supervised
classification methods becomes narrower.

Referring to the classification results depicted in Figure 7, it is evident that the muGIF-
CNN-1PC, muGIF-CNN, and muGIF-SADGAN methods exhibit fewer noisy points com-
pared to other classification methods. This observation highlights the notable filtering effect
of the muGIF algorithm prior to classification. Specifically, when comparing the central
region of Figure 7h–j, it becomes apparent that the muGIF-CNN and muGIF-SADGAN
methods accurately identify class 2 objects surrounded by class 11 objects. This implies that
utilizing the first principal component as the guiding image in muGIF-CNN-1PC results
in excessive information loss from the original bands. In contrast, the muGIF-CNN and
muGIF-SADGAN methods, which employ band distance grouping principal components
as guiding images for each band group, can better preserve useful information during the
filtering process, consequently enhancing classification accuracy.

4.2. Experimental Results for the Pavia University Data Set

Table 3 presents the overall classification accuracy (OA), average classification accuracy
(AA), and kappa coefficient κ (%) achieved by different comparison methods on the Pavia
University data set. For this evaluation, 0.5% of samples from each class were randomly
selected as training samples. Additionally, Figure 8 showcases the classification result maps
obtained using each method. The experimental findings unequivocally demonstrate the
superior performance of the proposed muGIF-CNN and muGIF-SADGAN methods in the
spatial–spectral classification of hyperspectral images.

Table 3. Comparison of the classification accuracies (%) of various methods for the Pavia University
data set (with 0.5% training samples; bold numbers indicate the best results).

Class 1DCNN EMP
-SVM

GIF
-FSAE

Gabor
-CNN

SSGAT GIF
-CNN

muGIF
-CNN-1PC

muGIF
-CNN

muGIF
-SADGAN

1 65.86 93.45 94.21 93.71 99.49 95.17 99.55 99.55 99.55
2 95.7 98.74 98.54 99.27 99.98 99.67 99.44 99.98 99.92
3 44.69 86.52 62.17 59.6 99.67 62.6 96.9 80.23 83.28
4 55.71 93.11 88.74 86.65 86.00 78.62 84.73 83.91 86.52
5 96.58 98.59 98.59 98.88 96.73 98.88 95.32 98.74 98.88
6 72.38 63.97 92.78 95.11 93.02 93.08 96.48 99.44 99.70
7 58.5 92.26 38.87 61.95 93.76 77.67 76.54 90.53 92.48
8 89.05 79.82 95.06 96.69 74.93 95.87 86.01 91.99 93.37
9 98.1 80.99 85.85 93.45 38.86 94.51 55.86 74.97 82.05

OA 81.32 90.6 92.27 93.55 94.26 93.72 94.93 96.15 96.84
AA 75.17 87.49 83.87 87.26 86.94 88.45 87.84 91.03 92.86

κ 74.79 87.29 89.68 91.39 92.33 91.59 93.23 94.86 95.79
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 (b)   (e) (c) (d)   (a) 

(g)   (j) (h) (i)   (f) 

Figure 8. Classification results obtained by different methods on the Pavia University data set.
(a) Reference data. (b) 1DCNN. (c) EMP-SVM. (d) GIF-FSAE. (e) Gabor-CNN. (f) SSGAT. (g) GIF-
CNN. (h) muGIF-CNN-1PC. (i) muGIF-CNN. (j) muGIF-SADGAN.

Table 3 reveals that the performance of different methods on the Pavia University data
set is similar to that on the Indian Pines data set. Notably, the 1DCNN method, relying
solely on spectral features, exhibits significantly lower performance compared to methods
integrating spatial–spectral features. The proposed muGIF-CNN and muGIF-SADGAN
methods achieve improvements of 5.55% and 6.24% in OA accuracy, respectively, when
compared to EMP-SVM.

Methods utilizing guided images, such as Gabor-CNN and those based on guided im-
age filtering (GIF-FSAE, GIF-CNN, muGIF-CNN-1PC, muGIF-CNN, and muGIF-SADGAN),
generally outperform EMP-SVM methods due to their edge-preserving effect. Among
these, the muGIF-CNN and muGIF-SADGAN methods demonstrate notable advantages
over GIF filtering methods GIF-FSAE and GIF-CNN.

The accuracy of the muGIF-CNN-1PC method, which uses the first principal compo-
nent as a guiding image, is 1.22% lower than that of the muGIF-CNN method, which adopts
band distance grouping principal components. Meanwhile, the semi-supervised muGIF-
SADGAN method exhibits slightly higher accuracy than the muGIF-CNN and SSGAT.

Figure 8 shows that, similarly to the classification result maps on the Indian Pines data
set, the muGIF-based methods do not exhibit as many noisy points as other classification
methods. This observation further emphasizes the significant smoothing effect of muGIF
prior to the classification process.

4.3. Experimental Results for the Salinas Valley Data Set

Table 4 presents the overall classification accuracy (OA), average classification accuracy
(AA), and kappa coefficient κ (%) achieved by different comparison methods on the Salinas
Valley data set. For this evaluation, 0.5% of samples from each class were randomly
selected as training samples. Additionally, Figure 9 showcases the classification result
maps obtained using each method. Consistent with the experiments conducted on the
previous two data sets, the results once again highlight the superior performance of the
proposed muGIF-CNN and muGIF-SADGAN methods in the spatial–spectral classification
of hyperspectral images.
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Table 4. Comparison of the classification accuracies (%) of various methods for the Salinas Valley
data set (with 0.5% training samples; bold numbers indicate the best results).

Class 1DCNN EMP
-SVM

GIF
-FSAE

Gabor
-CNN

SSGAT GIF
-CNN

muGIF
-CNN-1PC

muGIF
-CNN

muGIF
-SADGAN

1 99.55 99.4 91.64 96.86 95.12 99.85 99.55 99.55 99.9
2 99.49 99.62 100 100 99.95 99.95 89.92 99.87 99.57
3 80.82 72.57 100 93.62 99.65 100 90.12 99.85 99.95
4 93.4 98.64 96.48 97.56 87.52 97.2 100 84.65 88.95
5 93.88 98.13 98.77 97.83 96.15 99.74 95.45 96.98 95.59
6 99.75 99.6 99.75 99.85 99.82 100 99.45 99.82 99.82
7 99.16 99.69 99.27 99.41 98.74 99.66 28.57 99.19 98.88
8 50.32 90.63 85.69 88.86 99.65 86.55 100 98.48 99.71
9 97.84 99.94 99.89 99.81 100 99.94 100 100 100

10 83.13 97.86 89.66 90.33 99.54 93.26 95.78 99.76 99.51
11 79.49 89.51 83.61 81.37 98.78 96.44 98.29 98.31 97.28
12 99.43 100 99.9 100 98.55 100 98.15 99.01 99.53
13 98.36 98.91 96.83 98.58 77.73 97.71 99.51 86.90 91.16
14 92.52 92.06 95.79 97.29 98.97 98.04 99.6 98.79 98.79
15 78.71 58.2 88.29 77.93 93.34 92.41 97.93 94.43 97.03
16 76.43 98.4 96.4 86.05 83.18 97.18 97.85 93.69 99.45

OA 82.52 90.64 93.7 92.63 97.16 95.41 96.25 97.62 98.62
AA 88.35 93.32 95.12 94.08 95.42 97.37 92.89 96.68 97.82

κ 80.62 89.54 92.98 91.77 96.84 94.89 95.72 97.39 98.47

 
          

(b)   (e) (c) (d)   (a)  

(g)   (j) (h) (i)   (f) 

Figure 9. Classification results obtained using different methods on the Salinas Valley data set.
(a) Reference data. (b) 1DCNN. (c) EMP-SVM. (d) GIF-FSAE. (e) Gabor-CNN. (f) SSGAT. (g) GIF-
CNN. (h) muGIF-CNN-1PC. (i) muGIF-CNN. (j) muGIF-SADGAN.
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Table 4 reveals that the classification accuracy of the 1DCNN method, which relies
solely on spectral features, is generally lower compared to methods incorporating spatial–
spectral features. The OA accuracy of the proposed muGIF-CNN and muGIF-SADGAN
methods surpasses that of EMP-SVM by 6.98% and 7.98%, respectively. Furthermore, when
compared to GIF-based method GIF-FSAE, the muGIF-SADGAN method demonstrates
improvements in OA accuracy by 4.92%.

Furthermore, as depicted in Figure 9, both the muGIF-CNN and muGIF-SADGAN
methods exhibit exceptional performance, achieving desirable accuracy results even with
limited labeled samples. Notably, the result maps generated by these methods are free of
excessive noise points.

4.4. Experimental Results for the Tianshan Data Set

The Tianshan data set offers insights into the classification characteristics of hyperspec-
tral remote sensing specifically in geological bodies, setting it apart from the previous three
hyperspectral data sets that focused on agriculture. In the experiments, we aim to evaluate
various algorithms for classifying geological bodies in hyperspectral images, highlighting
their performance in applications of the real-world classification of geological bodies.

For the task of hyperspectral image classification, we have selected several algorithms,
namely SVM [33], 1DCNN [45], HSGAN [48], and SADGAN [22]. These algorithms
primarily focus on spectral classification.

In addition to these spectral algorithms, we have also employed the SVM-EMP [33],
GIF-CNN [41], SSGAT [47], muGIF-CNN, and muGIF-SADGAN algorithms for spatial–
spectral classification. These algorithms incorporate both spectral and spatial information
for enhanced classification accuracy.

Table 5 provides a comparison of the classification performances of various methods
using only 10% of the training data. Upon analyzing the classification results of the first
four spectral classification methods, it is observed that, among the deep learning methods,
namely 1DCNN, HSGAN, and SADGAN, the semi-supervised learning methods HSGAN
and SADGAN, which effectively utilize both labeled and unlabeled samples, outperform
the 1DCNN method.

Table 5. Comparison of the classification accuracies (%) of various methods for the Tianshan data set
(with 10% training samples; bold numbers indicate the best results).

Class 1DCNN EMP
-SVM

GIF
-FSAE

Gabor
-CNN

SSGAT GIF
-CNN

muGIF
-CNN-1PC

muGIF
-CNN

muGIF
-SADGAN

1 16.98 71.23 70.58 59.31 41.72 75.16 82.92 81.75 92.81
2 0.39 39.13 26.21 27.49 44.07 79.26 83.47 80.02 86.83
3 93.29 93.67 92.28 90.13 93.2 96.35 96.68 96.70 96.30
4 57.95 85.16 77.62 89.1 80.94 91.93 93.44 96.78 96.35
5 75.38 84.04 79.73 81.23 85.35 89.94 90.33 95.88 95.15
6 0.24 52.11 45.07 57.4 48.79 88.90 86.59 88.15 89.72
7 7.56 62.93 44.77 50.8 48.76 75.07 82.18 76.18 91.04
8 69.33 82.6 82.5 67.68 80.09 85.84 86.77 94.27 91.38
9 6.17 68.83 59.33 61.5 62.55 84.11 87.18 89.24 88.66

10 60.23 72.33 71.72 67.78 69.54 81.55 75.78 82.95 83.83
11 39.67 74.96 73.53 72.83 78.3 87.05 89.16 91.82 94.99
12 92.03 93.11 92.71 88.27 94.75 94.42 94.79 95.38 97.05
13 15.68 61.56 39.28 42.84 55.47 71.26 87.73 86.25 88.96

OA 76.59 82.31 85.04 86.58 85.88 91.74 92.80 94.14 95.19
AA 41.15 65.87 65.8 70.91 67.97 84.68 87.46 95.38 91.77

κ 67.46 77.53 80.06 82.08 81.04 89.06 90.49 86.24 93.7

In terms of spatial–spectral joint classification, the non-deep-learning traditional clas-
sification method SVM-EMP leverages spatial features. However, its Overall Accuracy
lags behind that of other deep learning-based spatial–spectral classification methods and is
even slightly lower than that of the spectral-only classification method SADGAN.



Remote Sens. 2024, 16, 870 18 of 22

Benefiting from the excellent filtering properties of muGIF, the muGIF-CNN method
outperforms GIF-CNN and SSGAT, showcasing improvements in OA accuracy of 2.40% and
1.34%, respectively. The superior performance of muGIF-CNN highlights the effectiveness
of muGIF in enhancing classification accuracy in comparison to other methods.

Additionally, the Kruskal–Wallis test [49] was used to analyze the statistical signifi-
cance of differences in performance obtained by the different methods being compared.
The results of the Kruskal–Wallis test are a test statistic value and a p-value. The test
statistic indicates the degree of difference between the results, and the p-value represents
the probability of obtaining such a difference by chance alone, assuming the null hypothesis
is true.

The p-value obtained from the test of the eight methods in this experiment is 1.38× 10−9,
which is significantly lower than the significance level of 0.05. This indicates a substan-
tial difference in the median performance among the methods used in the experimental
comparisons. Therefore, we can confidently conclude that the comparison methods are
statistically distinct and can serve as reliable benchmarks for evaluating the performance of
image classification.

Figure 10 showcases the maps comparing the classification results obtained from the
experiments conducted on the Tianshan data set. In these experiments, 50 bands were
selected as the final data set using the BSCNN band selection method [50].

 (b)   (e) (c) (d)   (a)  

(g)   (j) (h) (i)   (f) 

Figure 10. Classification results obtained using different methods on the Tianshan data set. (a) Refer-
ence data. (b) SVM. (c) CNN. (d) HSGAN. (e) SADGAN. (f) EMP-SVM. (g) GIF-CNN. (h) SSGAT.
(i) muGIF-CNN. (j) muGIF-SADGAN.

The classification result maps of SADGAN, which benefit from the generator-generated
(augmented) samples and multilayer convolutional features provided by GAN, demon-
strate more detailed information. However, it is noticeable that many cluttered spots are
present in homogeneous regions, as this method does not utilize spatial features.

Upon analyzing the classification results of the GIF-CNN, SSGAT, muGIF-CNN, and
muGIF-SADGAN methods, it becomes evident that the integration of a spatial feature-
extraction method aids in correctly categorizing most of the clutter in homogeneous regions,
unlike SADGAN. This observation highlights the importance of incorporating spatial
features in achieving accurate classification results.

Indeed, it is crucial to acknowledge that the ground truth data, although manually
created, may still contain errors and uncertainties. These errors can impact the evaluation of
classification methods and introduce challenges in accurately assessing their performance.

While spectral classification methods, such as 1DCNN and SADGAN, often exhibit
lower accuracy compared to spatial–spectral joint classification methods, they have the
advantage of providing a more detailed representation of ground features. These spectral
methods can capture fine spectral variations and subtle differences in the data, resulting in
a more granular classification output.
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On the other hand, spatial–spectral joint classification algorithms tend to smooth
out homogeneous regions by leveraging spatial information. This smoothing effect can
potentially lead to the loss of some detailed information present in these regions.

To gain meaningful insights and perform a comprehensive analysis, it is recommended
to conduct simultaneous spectral-based classification and spatial–spectral joint classifi-
cation on the same hyperspectral image data within the same region. By comparing the
classification results obtained from both approaches, a more holistic understanding of the
data can be achieved, taking into account the strengths and limitations of each method.

4.5. Influence of Mutually Guided Image-Filtering Parameters

Figure 11 depicts the influence of variation in the parameter αt on image filtering in
muGIF-CNN. In Figure 11a, the original image of the 95th band of the Indian Pines data set
is presented. As the value of αt steadily increases, it becomes apparent that the original
image progressively becomes smoother or more blurred.

Figure 12 demonstrates the influence of the αt parameter on the final classification
results of the Indian Pines data set. To clearly illustrate its impact on the classification
performance, the x-axis in the graph is presented on a logarithmic scale.

From Figures 11 and 12, it can be inferred that, for hyperspectral image classification,
the gradual smoothing of images while preserving edges is beneficial for extracting spatial
features. This process helps to enhance the representation of spatial information in the classi-
fication task. However, it is important to note that excessive smoothing can cause hyperspec-
tral image samples to converge, ultimately affecting the overall classification performance.

In the comparative experiment conducted in this paper, a value of αt = 0.01 corre-
sponds to the filtering effect depicted in Figure 11f. At this specific parameter setting,
the edge portions in the original image are well preserved, while the interior becomes as
smooth as possible. This optimal balance between smoothing and edge preservation results
in the highest classification accuracy among the different parameter values tested.

These findings highlight the significance of selecting an appropriate value for the αt
parameter in muGIF-CNN. It is crucial to strike a balance between smoothing and edge
preservation to achieve the best classification performance for hyperspectral images.

(a) 95th band   (d) 0.001(b) 0.0001  (c) 0.0005  

(e) 0.005 (f) 0.01  (g) 0.05  (h) 0.1  

Figure 11. Different filtering effects of different αt parameters. (a) represents the image of the 95th
band of Indian Pines data set. (b–h) represent the filtered images of the 95th band with αt parameters
ranging from 0.0001 to 0.1.
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Figure 12. Impact of different αt parameters on classification accuracy. For clarity, the x-axis in the
graph is set to a logarithmic scale. There are a total of 8 values for αt. From left to right, they are
0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, and 0.2.

5. Conclusions

In this study, we propose a method for HSI spatial feature extraction based on a muGIF
and combined with the band-distance-grouped principal component, which aims to fully
exploit the spatial–spectral features of hyperspectral images and enhance their classification
performance.

The method extracts the principal components of hyperspectral image band groups
based on band distance and uses them as guided images for the muGIF algorithm. Each
band group of the hyperspectral image is individually filtered to extract spatial features
from the data. Finally, deep learning models, specifically CNNs and GANs, are employed
to classify the filtered hyperspectral images.

The key innovation of our approach lies in the application of muGIF with gouping
principal components in hyperspectral image classification. Unlike traditional methods
that use a single principal component as the guided image, we introduce a novel approach
for principal-component segmentation extraction based on band-distance density. This
method enriches the theoretical content of hyperspectral image spatial filtering, leading to
improved classification results.

Experimental results demonstrate that our proposed muGIF-based approach effec-
tively extracts the spatial–spectral joint features of hyperspectral images, thereby elevating
the classification accuracy of hyperspectral imagery. Comparative evaluations against con-
ventional techniques and several recently popular spatial–spectral classification methods
validate the superior performance of muGIF-CNN and muGIF-SADGAN.
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