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Abstract: Due to its low cost and privacy protection, Channel-State-Information (CSI)-based activity
detection has gained interest recently. However, to achieve high accuracy, which is challenging in
practice, a significant number of training samples are required. To address the issues of the small
sample size and cross-scenario in neural network training, this paper proposes a WiFi human activity-
recognition system based on transfer learning using an antenna array: Wi-AR. First, the Intel5300
network card collects CSI signal measurements through an antenna array and processes them with a
low-pass filter to reduce noise. Then, a threshold-based sliding window method is applied to extract
the signal of independent activities, which is further transformed into time–frequency diagrams.
Finally, the produced diagrams are used as input to a pretrained ResNet18 to recognize human
activities. The proposed Wi-AR was evaluated using a dataset collected in three different room
layouts. The testing results showed that the suggested Wi-AR recognizes human activities with
a consistent accuracy of about 94%, outperforming the other conventional convolutional neural
network approach.

Keywords: activity recognition; WiFi sensing; transfer learning; CSI; ResNet18

1. Introduction

A variety of scenarios have drawn intense attention to human activity recognition
(HAR), including health monitoring [1], smart homes [2], and fall detection [3]. In general,
traditional HAR systems are based on wearable devices [4–6] or cameras [7,8]. However, in
camera-based systems, users run the risk of compromising their privacy.

Due to the low cost and low equipment requirement of Received Signal Strength
Indication (RSSI) and Channel State Information (CSI), the RSSI and CSI from commer-
cial WiFi antenna array devices have become widely used in activity recognition. For
example, PAWS [9] and WiFinger [10] are RSSI-based [11] methods, whose recognition
accuracy is relatively low due to the limited perception performance of the RSSI. WiFall [12],
CARM [13], and TensorBeat [14] are CSI-based methods that have higher accuracy and data
resolution than the RSSI-based methods. The CSI-based works have been used widely in
WiFi sensing, such as gestures [15], gait [16], and breath rate [17], which is also considered
in the activity-recognition model proposed in this paper.

Due to the ubiquity of WiFi signals, CSI-based activity recognition utilizes only the
wireless communication function and does not require any physical sensors, which pro-
vides a great improvement in the security and protection performance of privacy. CSI-based
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activity-recognition schemes are often composed of four steps, i.e., data processing, ac-
tivity classification, feature extraction, and activity detection [12,18]. The corresponding
works use primitive signal features, which carry much information caused by human
activity and the environment changing with different layouts. At the same time, the CSI
extracted by the antenna array is affected by environmental changes, which results in
different impacts on the wireless link by human behavior in different scenarios, shown in
Figure 1, where two people are performing walking and squatting in two different rooms.
It is called the cross-scene problem. The cross-scene problem refers to the ability of the
model to generalize across different environments or scenarios and to handle the transition
from one scenario to another, which also means that the system needs to be adaptable
to recognize activities in multiple scenarios. The multipath channel caused by a specific
activity varies with changing environment deployment in different scenes [19,20]. Cur-
rent works have applied machine learning to solve this problem [21–24]. A hybrid image
dataset (ADORESet) has been proposed, which combines real and synthetic images to
improve object recognition in robotics, bridging the gap between real and simulation
environments [25]. The possibility of connecting object visual recognition with physical
attributes such as weight and center of gravity has been explored to improve object ma-
nipulation performance via deep neural networks [26]. However, much of this work relies
on many training samples to improve accuracy, which is unrealistic when collecting data
in reality. The experimental environments are all single scenes, which cannot verify the
generalization ability of the models. Therefore, more flexible methods need to be developed
for CSI-based human activity recognition with small samples and across scenes.

  
Tx Rx

  

The Meeting room The Resting room

TxRx

Figure 1. Cross-scene activity recognition.

Addressing the problem of recognizing human activity in cross-scenario and small
sample environments, this paper proposes a transfer-learning-based activity-recognition
system using an antenna array: Wi-AR. The proposed structure uses the pretrained network
to reduce the system’s computational complexity instead of training it from scratch [27],
which avoids the problem of overfitting. In the method we propose, the original CSI
data collected through the antenna array are first processed by a low-pass filter for noise
reduction. The purpose of the threshold-based sliding window technique is to determine
the beginning and conclusion of activity in a protracted signal. We can then extract the
valid segment of activity from the CSI data. Time–frequency diagrams are then created by
applying the short-time Fourier transform (STFT) on the four segmented datasets. Finally,
the time–frequency diagrams are fed into the pretrained ResNet18 for identification and
classification. Based on the simulation results, it is possible to reach 94.2% precision with
the proposed Wi-AR system, which is superior to other convolutional neural network
(CNN) models. This paper contributes the following:
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(1) This paper proposes a low-cost, non-intrusive human activity-recognition system
called Wi-AR, which uses antenna arrays to detect WiFi signals without the need for
any devices.

(2) An activity feature extraction algorithm is proposed to perform the feature segmen-
tation of different activities to detect start and end moments in noisy environments.
Using a threshold-based sliding window approach, activity periods can be extracted
from CSI data more efficiently.

(3) The transfer learning strategy employs the fine-tuning of the CNN for training small
samples in a changing environment, which improves the accuracy and robustness of
activity recognition and avoids overfitting during the training process.

This paper’s remaining sections are arranged as follows: Section 2 presents the pro-
posed scheme and the preliminaries. The data collection and preprocessing are investigated
in Section 3. In Section 4, the activity-recognition model is proposed. Section 5 shows the
experimental validation results, and the last section concludes the paper.

2. Proposed Scheme and Preliminaries
2.1. Proposed Scheme

Wi-AR uses WiFi devices to recognize human movement without the need for a device.
As shown in Figure 2, CSI is collected and then processed to reduce the noise. There
are four steps in Wi-AR, among which two steps are essential, i.e., activity segmentation
and activity recognition. More specifically, the whole Wi-AR system framework can be
concluded as follows:

CSI Collection: Wi-AR system collects CSI by Intel 5300 network interface card and
WiFi devices.

Data Preprocessing: In terms of amplitude information, the Butterworth filter is chosen
to reduce the noise.

Activity Segmentation: Utilizing the processed CSI series, Wi-AR divides the whole
CSI series into four segments, which represent four different activities. To determine the
beginning and conclusion of each action, Wi-AR uses a sliding window technique based
on thresholds.

Activity Recognition: The time–frequency diagram generated by STFT is used for
classification. For activity recognition, Wi-AR uses a deep convolutional neural network
that has been trained using ResNet18.

2.2. Preliminary

(1) Channel State Information: The proposed Wi-AR exploits commercial WiFi devices
to obtain CSI. In 802.11n, each multiple-input multiple-output (MIMO) link comprising
multiple subcarriers uses orthogonal frequency division multiplexing (OFDM) technology.
Each link has a unique channel frequency response caused by the CSI. Due to the 802.11n
protocol, the WiFi network has 56 OFDM subcarriers in a 20 MHz band. Using the de-
velopment tools of the Intel5300 network interface card [28], we can obtain the CSI from
30 subcarriers of the antenna array. Let the number of transmitter and reception antennae
be denoted by Nt and Nr. If Xi denotes the transmit signal vector of each packet i and
Yi denotes the receive signal vector of each packet i, the received signal of the network
interface card can be represented as:

Yi = HiXi + Ni, i ∈ [1, N] (1)

where Ni is the white Gaussian noise vector, Hi is the CSI channel matrix, and N is the
total number of received packets. Consequently, for every communication link, the total
30 subcarriers can be obtained, H=[H1, H2 . . . H30] is an expression for the CSI channel
matrix, and the total NT × NR × 30 CSI values are finally obtained. The CSI value for each
subcarrier, including amplitude and phase information, is denoted by Hi in Equation (1)
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and can be expressed as Hi = ‖Hi‖ej(2π fi+θi), where the magnitude frequency and phase
of the i-th subcarrier are represented by ‖Hi‖, fi, and θi.

CSI Collection

Stream 1

Stream 2

Stream N

:

Original CSI 

Stream

Low-pass filter

CSI Preprocessing

PCA

Threshold-based 

Algorithm

Activity Segementation

...
......

Conv1 Conv17Pooling

... ...

Pooling Fully connected

Pretrained ResNet18

Activity Recogniton

Data collection and preprocessing

Figure 2. System overview.
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(2) Reflection of Activity on CSI: In a WiFi system, the CSI is sensitive to environmental
changes, and thus, it can be used to describe the channel frequency response (CFR). Assume
H( f , t) characterizes the CFR. It can be described as follows:

H( f , t) =
K

∑
k=1

αk(t)e−j2π f τk(t), (2)

where e−j2π f τk(t) is the phase difference given by carrier frequency shift, αk(t) is the channel
attenuation, and K is the total of the multipath numbers. Human activity can impact
the WiFi signal on many pathways between the WiFi transmitter and the WiFi receiver.
Let λ and d(t) represent the signal length and the change in the reflection path length,
respectively, to better explain the link between human activity and the variations in the

WiFi signal. Given that fD = − 1
λ
· d

dt
d(t) is the frequency shift, we obtain:

H( f , t) = e−2π∆ f t(Hs( f ) + ∑
k∈pd

αk(t)e
j2π

∫ t
−∞ f Dk(u)du), (3)

where Pd denotes the dynamic pathways, Hs( f ) represents the total CFR of the static paths,
and ∆ f is the carrier frequency offset (CFO). Preprocessing can be used to filter out the
high-frequency components in static response, as the CFR power fluctuates mostly due to
human activity. Because of multipath effects, the value of CFR fluctuates with dynamic
components, which may be used to detect human activity. Based on the Friis free space
propagation equation [29], as illustrated in Figure 3, the power of receiver is defined as:

Pd =
ptGtGrλ2

(4π)2(d + 4h + ∆)2 , (4)

where d is the distance between the transceiver pair and λ is the signal wavelength. The
WiFi transmitter and reception powers are denoted by the variables Pt and Pr, respectively.
The transmitter and receiver gains are Gt and Gr, while the vertical distance is indicated by
h. The reflection path’s length is ∆. The receiving power varies with the distance between
the transceiver pair, as shown by Equation (4). As a result, the shift in CSI may be used to
identify human activities.

Wall

Reflected 

by the wall

LoS path

Sender

Receiver

Reflected 

by the body

Figure 3. WiFi signal reflection scenario.
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3. Data Collection and Preprocessing
3.1. CSI Collection and Denoising

The proposed Wi-AR collects the CSI with Nt transmitting antennae, Nr receiving
antennae, and 30 CSI subcarriers reported by Intel5300 network interface card, and it
can obtain 30× Nt × Nr CSI streams for all communication links. First, a Butterworth
low-pass filter is used to reduce noise and remove the high frequency. In our experiments,
we designed the Butterworth filter as a low-pass filter, in which case the noise is usually
considered to be a high-frequency signal, while the human activity signal that we wish to
preserve is a low-frequency signal. Specifically, the frequency response of the Butterworth
filter is smooth without abrupt jumps, which gives it an advantage in processing human
activity signals. Its main advantage is that it has the flattest frequency response within the
pass bandwidth, which means that it processes all frequencies consistently within this range.
The original CSI stream and the denoised CSI stream are depicted in Figures 4a and 4b,
respectively. It can be observed that CSI generated by human activity is covered by noise.
Since the Butterworth filter can maximize the passband flatness of the filter and reduce the
high-frequency noise, it is exploited before activity segmentation. The expression for the
Butterworth low-pass filter is

|H(ω)|2 =
1

1 + (
ω

ωc
)2n

=
1

1 + ε2(
ω

ωp
)2n

, (5)

where the filter order is denoted by n, the cut-off frequency is ωc, the passband edge
frequency is ωp, and the value of |H(ω)|2 at the passband edge is 1 + ε2.

Figure 4. CSI signal preprocessing. (a) The original CSI signal. (b) The low-pass filtering signal.
(c) The first-order difference signal.

While the high-frequency noise can be successfully reduced by the signal following
the Butterworth low-pass filter, it cannot reflect the characteristic change in the signal from
the waveform. To fully reflect the amplitude information of the low-pass filtering signal, it
is necessary to process the first-order difference of the signal. Figure 4b,c represents the
filtered CSI signal and the first-order difference CSI signal, respectively. It can be seen that
the signal after the first-order difference can reflect the signal characteristics of the four
behaviors, providing favorable conditions for the activity segmentation. The definition
of the first-order difference can be expressed as y(m) = x(m) − x(m − 1), where x(m)
represents the CSI value corresponding to the m-th sample index.

3.2. Activity Segmentation Based on Domain Adaptation

The purpose of activity segmentation is to truncate the start and end moments of
human activity from a long signal to extract the complete signal containing the whole
behavior. In this paper, to improve the robustness of the segmentation algorithm according
to different room layouts, a threshold-based sliding window method is adopted, shown
in Algorithm 1. First, principal component analysis (PCA) is used to extract features,
and then several components of PCA are chosen to calculate variance. The first PCA
component is not used as it contains very little useful information [13]. Second, the moving
variance of the total of the aforementioned primary components is computed using a
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sliding window. PCA can transform high-dimensional data into low-dimensional data
while retaining as much variation information as possible from the original data. This
allows us to reduce computational complexity while still retaining the main features of the
data. At the same time, PCA can effectively remove noise by retaining the main components
of the data. Moving variance can adapt to changes in the data in real time, and due to the
adjustability of the window size, this makes it very flexible when dealing with different
datasets. The variance of PCA components is shown in Figure 5a. Moving variance
depicts the difference of packets reflected by the activity. The variance of PCA is defined
as follows:

σ2
i =

∑m
1 (xi+j−1 − x̄)2)

m
, (i = 1, 2, . . . , n−m) (6)

where x̄ is the mean value of samples and m represents step size. Then, the median of
the variance is calculated by the sliding window, which also reflects the changing trend.
The threshold is calculated according to the data in the priority stationary environment.
In general, One-tenth of the maximum value of the data at static time is used as the stan-
dard. Large threshold standards are chosen to avoid the effects of static mutations, and
compensation needs to be made before the beginning and end of the behavior. For this
purpose, the compensation number is set to half of the sampling rate, i.e., 100 sampling
points. Therefore, the real start and the end are sta− 100 and f in + 100. In this way, we
finally obtain the result of activity segmentation in the original CSI amplitude, shown in
Figure 5b. The figure illustrates that the green dotted line and the red dotted line, respec-
tively, represent the beginning and the end of the activity, and the segmented signal contains
complete activities. To be suitable for different scenes, different thresholds are selected. The
activity extraction results in a time–frequency domain are shown in Figure 5c. The relevant
content of the time–frequency domain diagram will be introduced in Section 3.3.

Figure 5. Activity segmentation. (a) The variance of principal component sum. (b) Activity segmen-
tation on original CSI. (c) Time–frequency feature segmentation diagram.

Algorithm 1 Activity segmentation algorithm.
input: The amplitude α( f , t);
space The length of variance window and stride w1, s1;
space The length of the median window w2, s2;
space The Minimum interval between two actions;
space The variation between the maximum and
space minimum values of the stationary environment;
output: The start and finish time index sta, f in;
1: [ ,score] = pca(α)
2: pca(a) = score(:, 2) + score(; , 3) + score(:, 4)
3: n = 1;
4: for i = 1 : w1 : length(pcadata)− w1 do
5: pcavar(n) = var(pcadata(i : i− 1 + w1));
6: n = n + 1;
7:end
8:sta = [], f in = [];
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Algorithm 1 Cont.
9:n = 1;
10:for ii = 1 : s2 : length(pcavar)− s2 do
11: index(n) = median(pcavar(ii : ii + s2));
12: temp = 1 + (ii− 1)× w1;
13: if [length(sta) > lenghth( f in)]and

[index(n) > threshold] then
14: sta = [sta, temp]
15: if length(sta) > length( f in)and

index(n) < threshold then
16: if temp− sta(end) >= minint then
17: f in = [ f in, temp];
18: n = n + 1
19: end
20: end
21: end
22:end for
23: f in = f in + 100;
24:sta = sta− 100;

3.3. STFT Transform

Wi-AR converts the waveforms to time–frequency diagrams using the STFT to ex-
tract the signal’s combined time–frequency properties. Considering the trade-off of the
frequency-time resolution, Wi-AR sets the sliding window step size of 256 samples in
this paper.

4. Activity Recognition Model

The proposed Wi-AR adopts the ResNet18 trained by ImageNet as a classification
network combined with transfer learning. To avoid losing the source weights, the classifier
is first trained using the initial parameters to train all the network’s weights at a low
learning rate. Then, the last fully connected layer is modified to suit the target dataset.
More specifically, the learned features and weights in the pretraining process are transferred
to the recognition network of human activity. After that, the time-frequency diagrams of
the CSI are input into the pretrained ResNet18 to train the recognition model. In Figure 6,
the layer with a complete connection number is finally substituted with the categories of
human activity.

ResNet18

ImageNet

 data set

Residual network 

layer

Fine-tuning

Fully connected 

layer

Transfer learning

(weight initialization)

Activity label data 

set

Figure 6. Model flow chart.
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4.1. ResNet18

In deep learning, the complexity of traditional CNN increases with layers. It is sug-
gested to use a deep residual network (ResNet) to address this situation [30]. Compared
with traditional CNN, ResNet is easier to train and has a faster convergence since the
whole model only needs to pay attention to the difference between input and output.
Moreover, the increase in depth does not increase the amount of computation but increases
the accuracy and the efficiency of network training. ResNet combines a deep convolu-
tional neural network with a specially designed residual structure, which can achieve an
intense network [31]. To obtain the deep features in the image, which can have a better
characterization of the human activity, and considering the depth and calculation of the
network, the ResNet18 is finally chosen as the activity classification model, which includes
17 convolutional layers and one full connection layer. The learning process is simplified
because ResNet mainly learns residual rather than the complete output. The convolution
operation computation is described as

XL
j = f ( ∑

i∈Mj

XL
i × KL

i,j + bL
j ), (7)

where Mj is the input feature map, L denotes the number of layers in the neural network,
and KL

i,j suggests the convolution kernel. The activation function is f , and the unique offset
b is output for each layer of the feature graph.

To extract more features, the number of convolutional layers increases. However, with
an increasing number of convolutional layers, there is a risk of gradient dispersion and
gradient explosion. The residual unit in ResNet18 can effectively solve the above problem.
The core idea is to divide network output into two parts: identity mapping and residual
mapping. The definition of the residual unit is

Xk+1 = f (F(Xk, Wk) + h(Xk)), (8)

where Xk and Xk + 1 stand for the input and output of the k-th residual unit, respectively.
F(Xk, Wk) is the residual mapping that must be learned. The activation function is denoted
by f and the convolution kernel by W. Figure 7a displays the CNN learning block with
less stacked non-linear layers through a direct mapping x −→ y representing F(x) and x as
stacked non-linear layers and the identity function, respectively. Figure 7b shows the iden-
tity mapping through the residual function F(x), where y = F(x) + x, as proposed in [32].

Plain Block Residual Block

CNN with stacked 

non-linear layers

CNN with stacked 

non-linear layers

x

F

y=f(x)

x

F

y=f(x)+x

x

x

(a) (b)

Figure 7. (a) Direct mapping in plain CNN (b) Identity mapping in ResNet.

In ResNet18, both the max-pooling and the average-pooling techniques are used.
Reducing training parameters in the network is the aim of the max-pooling layer, which
comes after the convolutional layer [33]. The last completely linked layer, which consists of
four nodes symbolizing four distinct activities, is added to receive the output of the human
activity. Figure 8 illustrates this process.



Remote Sens. 2024, 16, 845 10 of 16

IMAGE

7*7，CONV,64

MAXPOOL

3*3，CONV,128

3*3，CONV,128

3*3，CONV,256

3*3，CONV,256

3*3，CONV,64

3*3，CONV,64

3*3，CONV,64
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3*3，CONV,256
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3*3，CONV,512

3*3，CONV,512

AVGPOOL

FULLY CONNECTERD

Figure 8. ResNet18 network structure.

4.2. Transfer Learning

One common deep learning technique that is frequently applied to tiny training
samples is transfer learning. To accomplish the migration, model-based transfer learning is
used [34], which looks for pretrained parameter weights that the network’s bottom layer
may share. After obtaining the pretrained model with the ImageNet dataset, we replace the
random initialization model parameters with the new parameters except for the last fully
connected layer. Since each CNN in the ImageNet dataset is trained using 1000 classes,
and our activities include four classes, fine-tuning is used to make sure that the network
weights will not change too quickly and will fit our data without altering the original model.
Therefore, a small learning rate is set to avoid gradient vanishing.

5. Experimental Evaluation

To show the model’s capacity for generalization, the performance of the suggested
Wi-AR is first assessed on a dataset that the user has collected, and then it is tested on
additional datasets. We also contrast our model’s accuracy with that of other CNN models
in this section.

5.1. Experiment Setup

In the experiment, we collected CSI from various rooms using a computer equipped
with an Intel 5300 network interface card and a commercial WiFi router. The router is
equipped with three antennae, and the reason for using three antennae is mainly related
to the working principle of the MIMO (Multiple-Input Multiple-Output) system. In a
MIMO system, multiple antennae can send and receive multiple streams of data at the same
time, therefore increasing the transmission rate and reliability of the system. Specifically,
three antennae can form three independent antenna links, each of which can receive an
independent data stream. These three links form 90 subcarriers, i.e., for each timestamped
data, they are composed of 90 subcarriers. In this way, by analyzing the CSI of each
subcarrier, we can obtain more detailed and accurate information about the channel state
and thus better understand and utilize the wireless channel. In addition, multiple antennae
can provide more spatial diversity and spatial multiplexing, thus improving the capacity
and anti-interference capability of the system. Spatial diversity improves the reception
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quality of the signal, while spatial multiplexing increases the system’s data transmission
rate. The router is equipped with three antennae, forming an antenna array. The room is
furnished with tables and chairs, as shown in Figure 9. The data gathered in the meeting
and rest areas serve as the training set for the experiment, while the data gathered in three
separate rooms serves as the testing set. A total of 120 pieces of data were randomly chosen
from the three scenarios, and 240 samples were chosen from each of the first two scenarios
to represent the model’s generalization. As a result, there are 480 samples in the training set
and 120 samples in the testing set. Three antennae are installed on the WiFi transmitter’s
receiving side and two on the transmitter side. The sampling rate is 200 packets/s, and
30 subcarriers from each transceiver pair are obtained. At the same time, three volunteers
with different body shapes are asked to perform four kinds of activities. Four behaviors
contain two coarse-grained activities (jumping and walking) and two relatively fine-grained
activities (squatting and leg lifting). The volunteers are asked to perform each activity one
by one and keep them for five seconds. Each task has a total of 150 samples split into a test
set and a training set. If the generated time–frequency diagrams are not normalized, the
ranges of feature value distribution will vary differently. To avoid such a problem, Wi-AR
first normalizes all time–frequency diagrams and further resizes them to suit the pretrained
model. Lastly, the amount of human activity changes the final completely connected layer.

RX

Food placing table Refrigerator

 

TX

experimenter

(a)
(c)

Figure 9. Different room layout for data collection. (a) The rest-room layout. (b) The meeting room
layout. (c) The class-room layout.

Before the experiment, several initial parameters need to be defined, which are listed
in Table 1. The batch size is set to 16, and the iteration value is 30. In this research, a reduced
starting learning rate of 0.001 is chosen to prevent overfitting.

Table 1. Training parameters.

Parameter Value

Image size 224 × 224

Epoch 30

Batch size 16

Initial learning rate 0.001

Lr-function StepLR

5.2. Experimental Validation

The proposed Wi-AR produces time-frequency diagrams by STFT. Figure 10 displays
the time–frequency diagrams for four different types of activities.

The scene’s computers are equipped with an NVIDIA GeForce GTX 1660S GPU, an
Intel 10500 CPU, and 32 GB of RAM. Then, use the cross-entropy loss function. If the
predicted value is the same as the true value, it approaches 0. If the predicted value
is different from the true value, the cross-entropy loss function will become very large.
Training and testing curves are, respectively, recorded in Figures 11 and 12, which repre-
sent the value changes in accuracy and loss in the training and testing process. Both can
converge after 20 iterations. In addition, a detailed evaluation of the classification result
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is conducted using three types of metrics. The metrics are defined as follows: (1) Pre-

cision is defined as
TP

TP + FP
, where the ratios of correctly marked activities (TP) and

erroneously marked activities (FP) are expressed. (2)
TP

TP + FN
is the definition of recall,

where FN represents erroneously promoted negative samples. (3) The formula for the

F1-score (F1) is F1 =
2× PR× RE

PR + RE
. Table 2 tabulates the testing data and shows the high

precision and F1-score. Figure 13a shows the confusion matrix whose rows represent the
predicted activity and columns refer to the actual activity. We find that the accuracy of
leg lifting and squatting can achieve 100% due to their obvious features, and the aver-
age accuracy is 94.2%. Walking and jumping have similar movements, so the accuracy
of recognition is not as good as it is for the other two activities. The dispersion of var-
ious activity data is displayed using the ResNet18 model under T-SNE visualization in
Figure 13b. It can be intuitively seen that the model can distinguish different activities well.

Figure 10. The time-frequency diagrams of four kinds of activities. (a) Jumping. (b) Walking.
(c) Squatting. (d) Leg lifting.

Figure 11. The training g accuracy and loss. (a) The accuracy of training. (b) The training accuracy
and loss.

Figure 12. The testing accuracy and loss. (a) The accuracy of testing. (b) The loss of testing.
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Table 2. Testing Results of the ResNet18.

Human Activity Precision Recall F1-Score

Jumping 0.90 0.87 0.93
Leg Lifting 1.00 0.97 0.98
Squatting 1.00 1.00 0.97
Walking 0.83 0.93 0.92

Figure 13. (a) The confusion matrix of human activity recognition. (b) T-SNE visualization after the
ResNet18 model for four kinds of activities.

To verify the generalization ability of the recognition model, the proposed Wi-AR is
also tested on the dataset collected by the team of Chunjing Xiao [35] for more evaluation.
The differences are that their sampling rate is 50 packets/s, and the WiFi router has only one
antenna. Ten different types of activities make up the dataset, five of which are fine-grained
and five of which are coarse-grained. The experiment is conducted using two relatively
fine-grained activities (hand swing and drawing O) and two coarse-grained activities
(running and squatting). The result of testing is tabulated in Table 3, from which we can
also see high accuracy, achieving more than 94% accuracy among each activity. And since
the drawing circle has unique movement characteristics, the recognition accuracy achieves
100% for the given dataset. As a result, the validation results show that the recognition
model has the capacity for generalization.

Table 3. Testing results of the ResNet18 on another dataset.

Human Activity Precision Recall F1-Score

Drawing O 1.00 1.00 1.00
Hand Swing 0.96 0.87 0.91

Running 0.94 0.97 0.95
Squatting 0.94 1.00 0.97

To compare the accuracy of the pretrained networks, we choose different CNN models,
such as Aexmet, VGG11, and ResNet34. Meanwhile, some classical machine learning
algorithms, such as decision trees, random forests, SVMs, etc., are also used as comparative
tests. The results of the CNN classifiers in terms of accuracy and time consumed are
shown in Table 4 to show the performance of the different CNN networks in compari-
son with the model in this paper. The accuracy of classical machine learning algorithms
is shown in Table 5. The experimental results show that the recognition accuracy of
classical machine learning algorithms is generally low because the action features car-
ried by CSI signals are significantly reduced after going through the wall, and ordinary
machine learning algorithms cannot accurately classify them, and more complex deep
networks are needed to extract their features. Among the CNN classifiers, the accuracy of
ResNet18 is 0.8% higher than that of VGG19, but the time consumed is about 25% of that of
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VGG19. In addition, ResNet18 shows higher accuracy and less time consumption than other
ResNet models.

Table 4. The accuracy of each CNN classification.

CNN Models Accuracy Rate Time Consumption

AlexNet 85.00% 4 m 22 s

Vgg11 91.67% 7 m 33 s

Vgg13 92.50% 9 m 16 s

Vgg16 92.67% 10 m 45 s

Vgg19 93.33% 13 m 10 s

ResNet18 94.17% 3 m 29 s

ResNet34 90.00% 5 m 23 s

ResNet50 84.17% 6 m 43 s

ResNet101 86.67% 8 m 17 s

ResNet152 92.50% 10 m 23 s

Table 5. Accuracy of classical machine learning algorithms

Machine Learning Algorithms Accuracy Rate

Naive Bayesian 44%

KNN 58%

Decision tree 65%

SVM 74%

Proposed 94%

Moreover, MF-ABLSTM [36] leverages attention-based long short-term memory neural
network and time–frequency domain features for small CSI sample-based activity recog-
nition, achieving 92% with 490 training and testing samples after 200 iterations. Due to
the proposed method being able to train very deep neural networks, it avoids the problem
of gradient vanishing and improves the model’s expressive power and performance. It
uses residual connections to preserve the original features, making the learning of the
network smoother and more stable, further improving the accuracy and generalization
ability of the model. During training, gradient vanishing and exploding problems can
be avoided, accelerating network convergence. Therefore, Wi-AR achieves 94.2% with
600 samples after 30 iterations. The results of the comparison are, respectively, shown in
Figure 14a,b, which demonstrate that our proposed Wi-AR scheme achieves higher accuracy
with fewer iterations for small sample-based activity recognition.

Figure 14. (a) The comparison of activity-recognition accuracy. (b) The comparison of training iterations.
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6. Conclusions

In response to the small sample size and cross-scenario issues in activity recognition,
this paper proposes the Wi-AR human activity-recognition system, which is based on
channel state data and antenna arrays. Wi-AR collects CSI data from an array of antennae
for a sequence of four kinds of activities, preprocesses the collected CSI signal, transforms
it into time–frequency diagrams, and marks samples for supervised machine learning. The
experimental results show that this method based on transfer learning can achieve 94%
accuracy with a small number of samples. We can see that Wi-AR is relevant in single-
person multi-scene environments. In future work, we will consider more realistic multi-user
human activity-recognition scene recognition. Meanwhile, it is also a challenging problem
to do effective differentiation for some similar actions. For the problem of difficult label
annotation of sensing data, semi-supervised learning is also an effective solution to deal
with this difficulty, which is also the focus of our future work.
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