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Abstract: Invasive plants are a serious problem in island ecosystems and are the main cause of the
extinction of endemic species. Cuba is located within one of the hotspots of global biodiversity, which,
coupled with high endemism and the impacts caused by various disturbances, makes it a region
particularly sensitive to potential damage by invasive plants like Dichrostachys cinerea (L.) Wight &
Arn. (marabú). However, there is a lack of timely information for monitoring this species, as well as
about the land use and land cover (LULC) classes most significantly impacted by this invasion in the
last few decades and their spatial distribution. The main objective of this study, carried out in Central
Cuba, was to detect and monitor the spread of marabú over a 28-year period. The land covers for
the years 1994 and 2022 were classified using Landsat 5 TM and 8 OLI images with three different
classification algorithms: maximum likelihood (ML), support vector machine (SVM), and random
forest (RF). The results obtained showed that RF outperformed the other classifiers, achieving AUC
values of 0.92 for 1994 and 0.97 for 2022. It was confirmed that the area covered by marabú increased
by 29,555 ha, from 61,977.59 ha in 1994 to 91,533.47 ha in 2022 (by around 48%), affecting key land
covers like woodlands, mangroves, and rainfed croplands. These changes in the area covered by
marabú were associated, principally, with changes in land uses and tenure and not with other factors,
such as rainfall or relief in the province. The use of other free multispectral imagery, such as Sentinel
2 data, with higher temporal and spatial resolution, could further refine the model’s accuracy.

Keywords: Dichrostachys cinerea; Landsat; classification; maximum likelihood; support vector machine;
random forest

1. Introduction
1.1. Invasive Plant Species in Cuba: The Case of Dichrostachys cinerea (L.)

Invasive exotic plants are non-native species that establish and disperse in areas
outside their region of origin, generating a negative impact on their ecosystem, economy,
and social well-being [1]. According to [2], these introduced species have been named in
various ways: non-indigenous, alien, non-native, foreign, exotic, transplanted, and non-
native species. These species are considered to be the second greatest threat to biodiversity
and the cause of the extinction of numerous species around the world [3,4].

Human migration is considered one of the main causes of the introduction of species
outside their regions of origin [5]. Globalization has accelerated the dispersal of species
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thanks to animal trade and exports of agricultural products [6]. Most of these species
have been scattered to many parts of the world, including small islands (such as Cuba).
The greatest manifestation of endemism is shown on islands, which, being surrounded
by oceans, act as a barrier to the dispersal of continental plants [7]. According to [8],
invasions on islands are linked to the threat suffered by endemic species; however, a notable
information gap has been observed on most islands and archipelagos. The Bahamas, the
Greater Antilles, and the Lesser Antilles, which make up the largest group of Caribbean
islands, represent the most important island system in the New World and are considered
to be a global priority for conservation [9].

Cuba is located within one of the hotspots of global biodiversity, which, coupled
with high endemism and the impacts caused by various disturbances, makes it a region
particularly sensitive to potential damage by invasive plants [10]. Marabú is a species
native to Africa and Asia which, in the mid-19th century, was introduced to Cuba [10]. It
is a shrub about five meters high, with a solid trunk, made of very hard wood. This is an
invasive plant that spreads and grows rapidly, even in irregular or unfertile terrain, and
therefore ends up occupying large areas [11].

Presently, Cuba is greatly affected by the invasion of three species belonging to the
Fabaceae family: Dichrostachys cinerea (L.) Wight & Arn., Mimosa pigra (L.), and Vachellia
farnesiana (L.) [12]. The first, colloquially known as marabú, constitutes a unique example
of the devastating consequences caused by invasive species [13–15]. According to [16],
marabú has posed a threat to agricultural production in Cuba since 1911. The marabú
scrubland is currently one of the greatest concerns in the country since in 1996 it already
occupied approximately 1.5 million hectares of land in Cuba [10], including 18% of the
agricultural areas and 56% of the livestock areas. The same author pointed out that there
was a significant increase in the infected areas of marabú in Cuba, which grew from
around 268,000 ha in 1946 to 402,000 ha in 1958. However, despite the fact that for 30 years
(1960–1990) different methods were used to eradicate this plant, the area covered by marabú
in Cuba remained between 528,000 and 660,000 hectares. [10]. Starting in 1990, the economic
crisis on the island worsened and therefore the means and techniques used for its control,
which were generally expensive, were no longer implemented, so the speed of expansion
of marabú multiplied throughout the country [10]. Some authors [17–19] have reported
that the development and expansion of marabú in Cuba are related to some environmental
factors (precipitation distribution, relief, soil type, etc.) and human factors (deforestation,
changes in land use, etc.), but there were no clear conclusions. Furthermore, estimates of
the area occupied by marabú have been very inaccurate, mainly using direct observational
methods in representative plots [17].

Early identification and cartographic representation of the invasive species are of
paramount importance in the formulation of efficient management strategies and the
mitigation of further expansion into non-invaded areas [19]. In addition, using remote
sensing enables the quantification of invasion spread rates and patterns and facilitates the
evaluation of the effectiveness of various management approaches [20,21]. Some studies
of marabú have been conducted by various researchers using remote sensing in parts of
Cuba, such as in the Sancti Spíritus province [18,22], in the Havana province [17], and
the Camagüey and Granma provinces [23]. In the Ciego de Ávila province, [24] a remote
sensing methodology to study areas covered by marabú was proposed; however, the
authors of that study did not show any results related to the spatial distribution of the
species nor temporal changes. Thus, there is a lack of timely information for monitoring
marabú, as well as about the LULC classes most significantly impacted by this invasion in
the last few decades and their spatial distribution.

1.2. Remote Sensing for Invasive Species Monitoring

The objective of remote sensing and image photointerpretation is to identify and
evaluate those elements found on the Earth’s surface [25]. The mapping of invasive species
using remote sensing techniques was not common until the 1990s. Moderate spatial
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resolution images (those with pixel size greater than 10 m) have been the most commonly
used [3], although it should be noted that these are only effective for large areas where
these plants exist, and when large-scale management is desired [26,27], as is the case in
this case study. Refs. [5,28–30] suggest that the key to the success of this type of approach
is to take into account the unique characteristics of the plant (e.g., flowering and fruiting
seasons), using a single image or a multitemporal approach. In general, multispectral free
imagery used for mapping and monitoring of alien invasive plant species can be employed
for applications on local to regional scales and provide accuracies ranging from very low
to moderate [31–33].

At certain times, multispectral products have shown difficulties in detecting invasive
species that exhibit similar characteristics to their environment, so the field of invasive
species detection is shifting towards hyperspectral products or the use of hyperspectral
products in combination with multispectral products [8]. In particular, data from both mul-
tispectral and hyperspectral sources from satellites and unmanned aerial vehicles (UAVs)
coupled with machine learning algorithms have been used to discriminate invasive species
from other species. Areas covered by the invasive species Hakea saricea were mapped using
high spatial resolution imagery from multispectral UAVs and WorldView-2, and accuracies
were achieved which allowed its eradication at a local scale to be monitored [3]. Meanwhile,
Ref. [29] successfully mapped and identified the aggressive invasive species Acacia salicina
and Acacia saligna using WorldView-2 imagery as well as the random forest algorithm.
The authors of [30] analyzed the possibility of detecting and monitoring the spread of
Asclepias syriaca in Hungary with hyperspectral images from UAVs. While hyperspectral
data yield more accurate results (generally above 80% accuracy), they are mainly limited to
airborne products, such as HyMap and the airborne visible/infrared imaging spectrometer
(AVIRIS) [28]. However, these aerial products have a major disadvantage in large-scale
mapping since the acquisition cost is high, making the economic advantage of remote
sensing less obvious.

To overcome these limitations, researchers have been applying traditional machine
learning techniques to land use land cover (LULC) mapping using remote sensing, such
as spectral angle mapper (SAM), fuzzy adaptive resonance theory supervised predic-
tive mapping (Fuzzy ARTMAP), or other more advanced ones, which in recent years
have gained wide acceptance, such as artificial neural networks (ANNs), support vector
machine (SVM), or random forest (RF) [34,35]. The three latter techniques generally pro-
vide better accuracy [36] than other traditional classification techniques, such as distance
measurement [37], clustering [38], or logistic regression [39]. These advanced models often
exhibit significantly higher processing speeds compared to the original physically based
models, and, additionally, when given precise and representative training datasets, these
models can surpass the accuracy of conventional efficient parameterizations [40]. In com-
parison with deep learning techniques, machine learning algorithms also achieve high
accuracy with limited samples [41]. Furthermore, machine learning techniques possess the
ability to incorporate variables excluded from, or unsuited for, physically based models,
including nonlinear processes [40].

The development of robust and advanced non-parametric image classification algo-
rithms represents a significant advancement in the field of mapping invasive species [31].
As satellite sensor technology continues to evolve, it is essential to explore the utilization of
these advanced classifiers in conjunction with data from the latest generation of multispec-
tral sensors, which offer improved spatial and spectral resolutions [42]. This approach is
crucial for overcoming the challenges associated with invasive species classification using
remote sensing. One of the many difficulties is the spectral similarity between invasive
and native species, making it hard to differentiate them accurately [42]. Additionally, the
heterogeneous nature of the landscape and the varying growth stages of different species
further complicate the classification process [31]. Furthermore, limited spatial resolution
and spectral range of remote sensing data can hinder the identification of invasive species,
especially in complex environments [43]. Another challenge is the need for extensive
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ground truth data for training and validating classification models, which can be resource-
intensive and time-consuming [44]. Moreover, the dynamic nature of invasive species and
their interactions with the environment requires continuous monitoring, which may be
limited by the revisit time of remote sensing platforms [43].

1.3. Objective and Aims of This Work

The works described above regarding the mapping of invasive species using remote
sensing indicate that, until now, there is no precise method for mapping most of these
species [3,45–47]. Moreover, the increasing reliance on high spatial and hyperspectral
datasets for alien invasive species detection and mapping poses challenges due to the
prohibitive acquisition costs, particularly for repeated and large-scale estimation and
monitoring in resource-limited regions like Cuba. To optimize the detection and mapping
of invasive species in these regions, it is necessary to explore the capabilities of freely
available improved spatial and spectral resolution multispectral datasets, such as Landsat
8–9, in conjunction with robust and advanced machine learning algorithms [31]. Hence,
three machine learning classifiers were used in this study in combination with Landsat
imagery to map the invasive species. The three classifiers used were maximum likelihood
(ML), support vector machine (SVM), and random forest (RF); all of them are supervised
classifiers, the first being parametric and the latter two non-parametric. The ML algorithm
explains each of the categories using a Gaussian function, assuming that the data follow a
normal distribution; this makes it a very complex algorithm [48], but it has been widely
used in the past and therefore is considered a benchmark [46]. The non-parametric SVM
classifier was introduced by Vapnik [49] as a machine learning model, which is based on
kernel functions to perform regression and classification tasks [50] and has been also used in
previous works in the field, along with RF [45,51]. RF is a non-parametric machine learning
algorithm that constitutes an ensemble of decision trees grown with a randomization
process, which makes it robust against overfitting and less sensitive to noise in the data
and outliers [52].

Therefore, in this study, our main objective was to find an accurate method based on
remotely sensed imagery to map and monitor the marabú (Dichrostachys cinerea) invasion
within the Ciego de Ávila province (Central Cuba) between 1994 and 2022. Also, another
aim was to determine the LULC classes most significantly impacted by this invasion and
analyze the spatial distribution and dynamics of marabú in that period of time. To achieve
these goals, we used Landsat data from two different dates in combination with other
auxiliary data and tested three machine learning classifiers.

2. Materials and Methods
2.1. Study Area

The Ciego de Ávila province is located in the central part of the island of Cuba
(WGS84 UTM 2417694 731183 17Q), bordered to the west by the province of Sancti Spíritus,
to the north by the Canal Viejo de the Bahamas, to the east by the province of Cam-
agüey, and to the south by the Gulf of Ana María (Figure 1). It is the seventh largest
province by area (6946.9 km²), representing 6.3% of the total surface area of Cuba [53].
Its political-administrative division consists of ten municipalities: Chambas, Morón, Bo-
livia, Ciro Redondo, Florencia, Majagua, Primero de Enero, Ciego de Ávila, Venezuela,
and Baraguá [54].

The province has a predominantly flat relief, and it is one of the provinces where
agroindustry and livestock are the main pillars of the economy, representing 50% of the
economy of this region. The production of sugar and its derivatives is the main economic
industry in the province [53]. The scarcity of studies on this province related to the impact
of marabú on these sectors of the economy, as well as those aimed at its spatiotemporal
expansion since the economic crisis of the 1990s, led us to carry out a study of this type of
invasive species using remote sensing techniques.
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This research work was conducted following the approach summarized in the flowchart
shown in Figure 2. The main elements of the flowchart are described in the sections be-
low, as follows: imagery (input) data (Section 2.2), reference data for calibration and
validation of the classification (Section 2.3), classification process (separability, algorithm
description) (Section 2.4), independent validation of the classifications and classifier choice
(Sections 2.5 and 2.6), and land use and land cover change analysis using the LULC maps
obtained in the previous sections (Section 2.7).
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2.2. Satellite Data

The LULC changes between 1994 and 2022 were analyzed, so one scene from 29 January
1994 from the Landsat 5 TM sensor and one scene from 26 January 2022 from Landsat 8 OLI
were selected, both with path 013 and row 045. The images were obtained for January since
this corresponds to the phenological flowering period of the species (Figure 3), when it
is more likely to be differentiated from other land covers [18] and therefore the spectral
signature of marabú would be easier to identify. The images chosen were the ones with the
least cloud cover in the flowering period for those years. There were no clouds or cloud
shadows in the study area in any of the images, and no quality issues were reported in the
imagery metadata.
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Figure 3. In Cuba, the D. cienerea is an invasive species that has spread rapidly throughout the country.
(A) = young plants of D. cinerea, (B) = internal structure of a D. cinerea forest, (C) = expansion of a
D. cinerea forest in a savannah in the province of Ciego de Ávila, and (D) = the D. cinerea plant in bloom.

Both the Landsat 5 TM and Landsat 8 OLI images are at-surface reflectance prod-
ucts (Collection 2 Level 2), geometrically corrected to WGS 84/UTM zone 17N, so it
was not necessary to make any radiometric or geometric corrections. The bands used
in both cases were blue (B), green (G), red (R), near-infrared (NIR), and short-wave in-
frared (SWIR1 and SWIR2), which in Landsat 5 TM are 1 to 5 and 7, and in Landsat
8 OLI, from 2 to 7, with a spatial resolution of 30 m and radiometric resolution of 16 bits.
The images were downloaded from the United States Geological Survey (USGS) website
(https://earthexplorer.usgs.gov/, accessed on 1 January 2020) in TIF format.

For each image, the visible and infrared bands were grouped together so that we could
work with a single composition of bands. To avoid working with the entire image, a square
cutout that included the study area was made.

2.3. Field Reference Data

In this study, one of the aims was to identify the 10 land/water cover classes shown
in Table 1, with a special focus on the marabú class. These classes were chosen in order to

https://earthexplorer.usgs.gov/
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determine if the marabú had spread over areas of environmental importance (wetlands,
grasslands) and/or economic relevance (i.e., crops).

Table 1. Land use and land cover classes located in the study area and the number of training areas
for each class.

LULC Description
Training Areas

(Polygons/Pixels)

1994 2022

D. cinerea (marabú) Refers to wooded and scrub areas of D. cinerea 44/308 62/310
Grassland Includes areas of natural herbaceous vegetation or grass cover 63/504 54/432

Irrigated crops Includes herbaceous and woody crops under irrigated conditions 161/966 71/726
Rainfed crops Includes dryland herbaceous crops that depend on rainfall for water 69/552 44/564

Woodland Natural areas of tree vegetation, such as forests of any species 64/743 82/738
Mangrove Includes coastal areas of mangroves as the main vegetation 166/1358 147/1323

Flood-prone areas Includes flooded crops and areas near the coast with a high potential for flooding 152/1912 128/1152

Bare soil Includes areas devoid of vegetation, dirt roads, fallow lands, mining deposits, etc.
(uncovered soils) 130/912 81/648

Infrastructure Includes built-up areas, generally with urban or industrial use, and paved roads 86/516 94/658
Water Bodies of water such as rivers, ponds, or reservoirs. 64/384 68/544

Field reference data (LULC) were obtained corresponding to the 1994 and 2022 ref-
erence years (Figure 2). For the 1994 data, the land cover information involved the visual
interpretation of Landsat satellite data coupled with on-site verification conducted by local
long-term residents who possessed intimate knowledge of the study area and its historical
LULC. To distinguish the marabú from the tree species present in the study area, the NIR
SWIR1 RED bands were mainly used; given that, with this combination, the marabú could
be differentiated from the native species because the marabú showed up on the image as
intense red and the native species in the area as light red. The reference points correspond-
ing to the 2022 image were collected across the study area using VHR satellite imagery
available via Google Satellite images (https://www.google.com/maps/@22.0518467,-78.35
43797,228031m/data=!3m1!1e3?entry=ttu, accessed on 1 January 2023) and verified in the
field. The selection of reference data was guided by the unique characteristics of species
occurrence, including elevation-induced vegetation distinctions, contiguity, homogeneity,
and proximity to settlements. After the visual interpretation, small polygons were digi-
tized for each LULC class to be used as training data in the classification process (Table 1).
The approach followed to obtain the reference data for the independent validation of the
classification is explained in Section 2.5.

2.4. Classification of Satellite Imagery

As a first step in the classification process (Figure 2), the spectral separability among
classes was calculated to observe whether the classes defined above presented significantly
different spectral signatures in the selected feature space. Separability analysis calculates
the statistical distance between spectral classes [55]. In this study, the Jeffries–Matusita
distance was used to evaluate the separability, giving a value of less than 1.5 when the
classes are spectrally similar and a maximum value of 2 when they are very different [55].
In case of low values, the training samples should be reviewed and/or the definition of the
classes, since the spectral classes would not match the classes defined in the legend.

For the classification of each image, we used three algorithms: maximum likelihood
(ML), support vector machine (SVM), and random forest (RF). ML and SVM were run on
ENVI 5.3.1 software, while RF was applied using the function provided in the randomForest
package in the R statistical software version 4.2.3 [56].

ML works on the principle of calculating the probability distribution of each pixel. If
the probability of a pixel belonging to class i is greater than the probability of it belonging
to class j, it is classified as belonging to class i [55].

https://www.google.com/maps/@22.0518467,-78.3543797,228031m/data=!3m1!1e3?entry=ttu
https://www.google.com/maps/@22.0518467,-78.3543797,228031m/data=!3m1!1e3?entry=ttu
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The non-parametric SVM algorithm identifies a single boundary between two classes,
assuming that the multidimensional data are linearly separable in the input space. Specifi-
cally, it determines an optimal hyperplane to separate the data set into a discrete number of
predefined classes, using the training data. To maximize separation, the algorithm uses a
portion of the training sample that is closest in the feature space to the optimal decision
boundary, acting as support vectors [57]. The following settings were used in this study:
a kernel of the radial basis function (RBF) type and a Gamma value of 0.165; all other
parameters were kept at their default values.

RF is a non-parametric machine learning algorithm employing an ensemble of ran-
domly grown trees, where individual tree predictions are subsequently aggregated [31].
During training, each tree is exposed to a different subset of the data, and the remaining
data are used for testing. In this case, 70% of the sample described in Section 2.3 was
dedicated to the development of the random forest model, and the remaining 30% was
allocated for the prediction estimation, yielding the ‘out-of-bag’ (OOB) error estimate [58].
The importance of each one of the input variables in the model was also calculated. Each
RF model consisted of 500 trees. The rest of the parameters of the randomForest were kept
as default.

2.5. Validation

In order to compare the results of the classifications using the different algorithms,
an independent validation was performed using the same data for the three classifiers
(Figure 2). The sample size was calculated using Equation (1), which considers the binomial
probability theory [59]. An expected accuracy of 85% was established for all classes, as well
as an allowable error of 10%. So a sample size of 51 points was obtained for each class,
to which 4 more were added for a total of 55. Therefore, 550 points in total were used to
calculate the accuracy of each classification.

N = Z2 × (p) × (q)/E2 (1)

where
p: expected accuracy of the validation sample for that class (p) (p = 0.85);
q = (100-p);
E = allowable error in the classification of that class (E = 0.10);
Z = 2, approximation of the normal standard deviation of 1.96 for the 95% confidence

interval (two-tailed).
The method to locate the validation points was a stratified sampling [60,61]. With this

procedure, the points were generated randomly on the classified images, and the actual
LULC class was assigned using the same methods as to assign the LULC classes for the
training samples (Section 2.3). It was verified that none of the points of the validation
sample overlapped the areas used for training. The spatial distribution of the validation
points is shown in Figure 4.

Finally, to compare the results of each classification, a confusion matrix was obtained
for each year and classification, and the overall accuracy, as well as the user and producer
accuracies [59,62]. For each statistic, the 95% confidence interval was calculated using the
adjusted Wald method [63], which is the most widely used when the sample size is smaller
than 100 for each class [63]. The F-score (see Equation in [64]) for the target class (marabú)
was also calculated, as a harmonic mean of the user and producer accuracy. In addition,
the ROC curve (receiver operating characteristic curve) for marabú was calculated, to show
visually the performance of each classification model for that class [65], as well as the
AUC (area under the ROC curve) [66]. The latter quantifies the overall performance of
the classifier. A higher AUC value indicates better classification accuracy, with a value
of 1 indicating a perfect classification. According to [66] AUC should be used instead of
overall accuracy for the evaluation of machine learning algorithms (i.e., ML, RF).



Remote Sens. 2024, 16, 798 9 of 20

Remote Sens. 2024, 16, x FOR PEER REVIEW 9 of 21 
 

 

study: a kernel of the radial basis function (RBF) type and a Gamma value of 0.165; all 
other parameters were kept at their default values. 

RF is a non-parametric machine learning algorithm employing an ensemble of ran-
domly grown trees, where individual tree predictions are subsequently aggregated [31]. 
During training, each tree is exposed to a different subset of the data, and the remaining 
data are used for testing. In this case, 70% of the sample described in Section 2.3 was ded-
icated to the development of the random forest model, and the remaining 30% was allo-
cated for the prediction estimation, yielding the ‘out-of-bag’ (OOB) error estimate [58]. 
The importance of each one of the input variables in the model was also calculated. Each 
RF model consisted of 500 trees. The rest of the parameters of the randomForest were kept 
as default. 

2.5. Validation 
In order to compare the results of the classifications using the different algorithms, 

an independent validation was performed using the same data for the three classifiers 
(Figure 2). The sample size was calculated using Equation (1), which considers the bino-
mial probability theory [59]. An expected accuracy of 85% was established for all classes, 
as well as an allowable error of 10%. So a sample size of 51 points was obtained for each 
class, to which 4 more were added for a total of 55. Therefore, 550 points in total were used 
to calculate the accuracy of each classification. 

N = Z2 x (p) × (q)/E2 (1) 

where 
p: expected accuracy of the validation sample for that class (p) (p = 0.85); 
q = (100-p); 
E = allowable error in the classification of that class (E = 0.10); 
Z = 2, approximation of the normal standard deviation of 1.96 for the 95% confidence 

interval (two-tailed). 
The method to locate the validation points was a stratified sampling [60,61]. With this 

procedure, the points were generated randomly on the classified images, and the actual 
LULC class was assigned using the same methods as to assign the LULC classes for the 
training samples (Section 2.3). It was verified that none of the points of the validation sam-
ple overlapped the areas used for training. The spatial distribution of the validation points 
is shown in Figure 4. 

 
Figure 4. Spatial distribution of the validation points for 1994 (a) and 2022 (b). 

Finally, to compare the results of each classification, a confusion matrix was obtained 
for each year and classification, and the overall accuracy, as well as the user and producer 

Figure 4. Spatial distribution of the validation points for 1994 (a) and 2022 (b).

To further evaluate the results estimated from the classifiers and compare the overall
performance of the classifiers, the McNemar nonparametric statistical test [67,68] was
two-tailed and computed at a 95% confidence level. This test is based on the calculation of
the χ2 distribution and is commonly used to compare the classification errors between two
classifiers, and test values > 3.84 show a statistical difference at a 95% confidence level [69].

2.6. Classifier Choice

The criteria to choose the most suitable algorithm for the mapping of marabú using
Landsat imagery were as follows (in this order of priority): (i) the highest AUC for the
marabú, (ii) the highest producer accuracy for the marabú class (lowest omission error),
and (iii) the highest user accuracy for the marabú class (lowest commission error). The
classifications will be used to locate the invasive species with the aim of controlling it;
therefore, it is more important to minimize the omission error than the commission error.

If the results of two or more algorithms were not significantly different considering
the first criterion, the second was tested, and, if needed, the following ones.

2.7. Land Use and Land Cover Change Analysis

Once the most accurate algorithm for each image was chosen, the calculation of the
area occupied by each land cover was carried out in QGIS for each class of the vectorized
and cropped file with the classification information for each year, 1994 and 2022 (Figure 2).
Firstly, we determined the marabú spatial coverage during the period of time of the study.
Then, we assessed the LULC change by constructing a cross-tabulation matrix for the time
interval 1994–2022. This analysis involved the computation of gains, losses, net changes,
and rates of change (Figure 2). Visual representations of LULC gains and losses were
generated through the utilization of tables. In order to determine the influence of the
marabú invasion on each LULC class, we subtracted the contributions of each class to
marabú (losses to Marabú) from their respective gains from marabú (gains from Marabú).

To gain insights into the pattern of the invasion, we carried out an analysis of change
statistics and conducted a visual assessment of the LULC maps. Our interpretation of
the change output and distribution patterns was further enhanced by a comprehensive
understanding of seasonal socioeconomic activities, including irrigation farming, charcoal
production, and flood events. This knowledge was acquired through on-site field observa-
tions, facilitated focus group discussions, and interactions with the local community.
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3. Results
3.1. Spectral Characterization of D. cinerea

The spectral separability results obtained using the Jeffries–Matusita distance were
equal to or more than 1.96 for the 1994 image and 1.98 for the 2022 image for all of the
classes compared to D. cinerea. For the 1994 data, the lowest separability value was obtained
with rainfed crops (1.96). For the 2022 data, the lowest separability obtained was also with
rainfed crops (1.98), followed by woodlands (1.99). These values showed the suitability of
the selected feature space (VIS, NIR, SWIR) for differentiating marabú from the other LULC
classes. The spectral signature of marabú is clearly distinct from the spectral signatures of
rainfed crops and woodlands, as shown in Figure 5, for the Landsat images from January
1994 and 2022. In both cases, the NIR band showed the largest differences in reflectance.
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3.2. Dichrostachys cinerea Detection with Landsat 5 TM and Landsat 8 OLI images

The combination of Landsat imagery obtained during the flowering season and the
RF algorithm was proven to be very efficient in detecting D. cinerea in the study area, with
highly accurate results (AUC > 0.90 for both dates, producer accuracy (PA) > 83%, user
accuracy (UA) > 93%) (Table 2). The PA and UA values for each one of the other nine LULCs
also showed that RF performed better compared to ML and SVM (Tables S1 and S2 in the
Supplementary Materials). The confusion matrix for the 1994 RF showed that the main sources
of confusion were the woodland and grassland classes, while for 2022 they were the woodland
and mangrove classes, in that order (Tables S3 and S6 in the Supplementary Materials).

The results of McNemar’s test (Table 3) confirmed that the differences in the clas-
sification performance were statistically significant for all algorithms in pairwise com-
parison except for ML and SVM classifiers for 1994, where χ2 0.05= 1.39 (lower than the
test value 3.84; values lower than this critical value indicate that there is no statistical
difference) [67,69]. This confirms that the overall accuracy of RF (Table 2) was significantly
higher than the accuracies obtained with SVM and ML, for both years.

Taking into account the results shown above (Tables 2 and 3), the RF model was chosen
for mapping and estimating the area covered by Dichrostachys cinerea in 1994 and 2022.
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Table 2. General accuracy results for the 1994 and 2022 classifications. Producer accuracy (PA), user
accuracy (UA) for Dichrostachys cinerea, and overall accuracy (OA) values are expressed in %. The
Wald-adjusted confidence intervals (p < 0.05) are shown for OA, PA, and UA. The area under the
ROC curve (AUC) and F-score is shown for the target class Dichrostachys cinerea.

D. cinerea All Classes

Year Algorithm PA (%) UA (%) AUC F-Score OA (%)

1994
RF 83.64 (71.51–91.37) 93.88 (82.85–98.52) 0.92 0.88 90.91 (88.20–93.05)
ML 58.18 (45.02–70.27) 86.49 (71.55–94.56) 0.72 0.69 78.18 (74.54–81.44)

SVM 56.36 (43.26–68.63) 83.78 (68.48–92.73) 0.69 0.67 74.73 (70.93–78.18)

2022
RF 98.18 (89.49–99.99) 96.43 (87.18–99.72) 0.97 0.97 95.09 (92.93–96.63)
ML 80.00 (67.46–88.62) 74.58 (62.11–84.04) 0.87 0.77 77.63 (73.96–80.93)

SVM 80.00 (67.46–88.62) 64.71 (52.81–75.02) 0.72 0.71 71.27 (67.35–74.90)

Table 3. McNemar’s comparison of classifier performances. Note: test values > 3.84 show that there
is a statistical difference at a 95% confidence level. Bold values show calculated statistics smaller than
the critical value (χ2 0.05) = 3.84).

Year Pairwise Comparison McNemar´s

1994
RF vs. ML 28.82

RF vs. SVM 41.91
ML vs. SVM 1.39

2022
RF vs. ML 61.44

RF vs. SVM 92.76
ML vs. SVM 4.35

3.3. Dichrostachys cinerea Spread from 1994 to 2022

In 1994, the total area covered by D. cinerea was 61,977.59 ha, while in 2022 it reached
approximately 91,533.47 ha (Table 4). In 1994, the marabú was more widespread to the east
(Primero de Enero municipality), northeast (municipality of Bolivia), center (Ciro Redondo
municipality), and northwest (Chambas municipality) of the province. The areas that had
less coverage of D. cinerea were in the south (municipalities of Venezuela and Baraguá)
of the province and in the Morón municipality (in the north of the province) (Table 5,
Figure 6a). The results from 2022 showed an increase in the area covered by marabú in all
the municipalities except for two (Table 4) and a change in the spatial distribution of the
species, being most prevalent in the northeast and south of the province (municipalities
of Bolivia, Primero de Enero, and Venezuela) (Figure 5b). The largest densities of the
D. cinerea species were found in the municipality of Bolivia, Primero de Enero (northeast of
the province), and in the south of Venezuela. It should be noted that during this period
of time, D. cinerea was not present in both coastal areas of the province (south and north),
principally in the areas occupied by mangrove forests, wetlands, and saltmarshes (Figure 6).

Table 4. LULC proportions for each class in hectares (ha) and percentage of the total area for 1994 and 2022.

LULC Classes
1994 2022

Ha % of Total Area Ha % of Total Area

Water 12,799.42 2.04 12,898.86 2.05
Woodland 44,241.82 7.07 30,613.68 4.86

Infrastructure 11,410.92 1.82 31,160.16 4.95
Grassland 163,501.12 26.14 125,860.58 20.01

Irrigated crops 19,320.3 3.08 17,264.19 2.74
Bare soil 16,622.47 2.65 73,823.71 12.33

Flood-prone areas 95,312.79 15.24 99,268.14 15.78
D. cinerea 61,977.59 9.91 91,533.47 14.56
Mangrove 25,871.49 4.14 19,229.40 3.06

Rainfed crops 174,248.46 27.86 123,366.68 19.62
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Table 5. Areas covered by D. cinerea (by municipality and total) in 1994 and 2022 in the Ciego de
Ávila province.

Municipality Area 1994 (ha) Area 2022 (ha) Net Change (ha) % of Class Area in 1994

Primero de Enero 10,229.08 13,061.79 2832.71 27.69
Majagua 3180.96 6737.71 3556.75 111.81

Ciro Redondo 9869.36 7898.66 −1970.70 −19.96
Florencia 6238.19 7387.68 1149.00 18.41

Ciego de Ávila 6468.68 6364.71 −103.97 −1.61
Bolivia 8831.28 18,729.04 9897.76 112.07
Morón 3257.55 5834.08 2576.53 79.09

Chambas 7396.34 8649.63 1253.29 38.47
Baraguá 4563.04 5994.61 1431.57 31.37

Venezuela 1943.11 10,875.56 8932.45 459.69

3.4. Marabú-Induced Changes in other LULCs

During the 28-year period, three of the ten LULC classes (D. Cinerea, infrastructure,
and bare soil) significantly increased their spatial coverage, by 48%, 173%, and 366%,
respectively, while the rest decreased or had almost no change (<5%) (Table 6). Overall, the
highest losses were found in the woodland class, which was reduced by 30%, followed by
rainfed crops by 29%, mangrove by 26%, grassland by 23%, and irrigated crops by 11%.

Table 6. The overall net changes in LULCs in hectares (ha): the percentage of the total study area by
class and the percentage of change for each class between 1994 and 2022 with the base area being
1994. These changes were calculated for the 1994–2022 time period.

Net Changes 1994–2022

LULC ha % of Total Area % of Change per Class by
Area from 1994 to 2022

Water 99.44 0.01 0.77
Woodland −13,268.14 −2.21 −29.99

Infrastructure 19,749.24 3.13 173.07
Grassland −37,640.54 −6.13 −23.02

Irrigated crops −2056.11 −0.34 −10.64
Bare soil 60,929.24 9.68 366.54

Flood-prone areas 3955.35 0.54 4.14
D. cinerea 29,555.88 4.65 47.68
Mangrove −6642.09 −1.08 −25.67

Rainfed crops −50,881.78 −8.24 −29.20

Our results show that woodlands, mangroves, and rainfed crops were mostly lost
to marabú during the studied period (Table 7). Within almost three decades, the marabú
invasion has resulted in LULC losses of woodlands by 16,790 ha (38%), rainfed cropland by
6671 ha (4%), grasslands by 4186 ha (2,5%), flood-prone areas by 2085 ha (2%), mangroves
by 1079 ha (4%), and irrigated crops by 192 ha (1%). The area that maintained a land cover
of D. cinerea from 1994 to 2022 comprised 17,445.62 ha.

Table 7. The net impact of D. cinerea invasion on individual LULCs for the period from 1994 to 2022.
Losses to D. cinerea: changes from a LULC in 1994 to D. cinerea in 2022. Gains from D. cinerea: changes
from D. cinerea in 1994 to other LULCs in 2022.

LULC Losses to D. cinerea (ha) Gains from D. cinerea (ha) Net Change (ha) % of Change for the Total
Area from 1994 to 2022

Water 24.30 101.07 76.77 0.59
Woodland 24,691.05 7900.38 −16,790.67 −37.95
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Table 7. Cont.

LULC Losses to D. cinerea (ha) Gains from D. cinerea (ha) Net Change (ha) % of Change for the Total
Area from 1994 to 2022

Infrastructure 288.27 1860.21 1571.94 13.77
Grassland 18,838.80 14,652.36 −4186.44 −2.56

Irrigated crops 1388.43 1196.01 −192.42 −1.00
Bare soil 1212.84 5166.99 3954.15 23.78

Flood-prone areas 6477.03 4392.27 −2084.76 −2.19
Mangrove 1135.26 55.53 −1079.73 −4.17

Rainfed crops 20,031.39 13,260.15 −6771.24 −3.88

4. Discussion
4.1. Dichrostachys cinerea Detection Using Remote Sensing

The results obtained in mapping and detecting changes in D. cinerea cover in Central
Cuba using Landsat 5 TM and 8 OLI satellite images (moderate spatial resolution with
a pixel size greater than 10 m) were considered satisfactory, achieving AUC > 0.92 and
overall accuracies higher than 90%, which are higher than the ones achieved in other works
monitoring invasive species [31,45,70,71]. These results are supported as well by [3], the
authors of which suggested that imagery with spatial resolutions of more than 10 m can
generally be used to detect and map invasive species in large areas, as is the case in this
study, where the invasion of D. cinerea was studied on a provincial scale. The results of
the mapping of this species using different classification algorithms (ML, RF, and SVM)
demonstrated the superior performance of the random forest (RF) algorithm (Table 2). The
highest PA values for the Dichrostachys cinerea class (lowest omission errors) were obtained
when using the RF algorithm, for both 1994 and 2022 (83.64% and 98.18%, respectively)
(Table 2). RF was significantly more accurate than ML and SVM regarding PA (p < 0.05),
according to the confidence intervals. Moreover, the highest UA values (lowest commission
error) obtained were also with RF, for both years (93.88% for 1994 and 95.09% for 2022)
(Table 2). These values were significantly higher (p < 0.05) than the ones achieved using ML
and SVM, considering the confidence intervals. As expected, considering the PA and UA
values, the AUC values were also higher for the classifications using RF (0.92 for 1994 and
0.97 for 2022). Regarding the performance of the classifiers for all 10 classes, the OA values
achieved by RF were also the highest (90.91 and 95.09, respectively, for 1994 and 2022).
Taking into account the confidence intervals, these values were significantly higher (p < 0.05)
than the ones achieved using ML and SVM. These findings are in line with the broader
literature on the use of different classification algorithms for mapping and monitoring
invasive plant species. In [31], the authors emphasized the importance of algorithm
selection in remote sensing applications for invasive species, which is corroborated by
the observed performance of the RF algorithm in this study. The superior performance of
RF over SVM has been also reported by [45,51,71–73] for land cover and invasive species
mapping, while [70] also found the use of RF instead of ML more effective in mapping
invasive plant species, emphasizing the relevance of these methods in remote sensing
applications for invasive species management. The authors of [73] conducted a comparison
between ML and SVM classifiers for tree cover mapping, also finding higher accuracy when
using SVM, as shown in our work. On the one hand, one of the limitations of this work could
be the possible difficulty in finding free cloud cover images for the optimal phenological
status (flowering period); however, the availability of Landsat 8, Landsat 9 and, if needed,
Sentinel 2 imagery simultaneously since February 2022, increases the temporal resolution and
the likelihood of accessing cloud-free data [74]. On the other hand, the minimum mapping
area is limited by the spatial resolution of the Landsat 5 and Landsat 8 imagery used in this
study, which limits the detection of very small areas covered by marabú. This issue could
be overcome by the use of Sentinel 2 imagery, which has a higher spatial resolution (10 m
for VIS and NIR and 20 m for SWIR) since the critical spectral bands identified to detect
marabú (NIR) are also present in Sentinel 2 imagery (Figure 5).
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4.2. Dichrostachys cinerea Spread from 1994 to 2022 and Land Cover Changes

D. cinerea is considered a species of great concern; it has transformed the land cover of
Cuba and has been defined as an invasive species that is not from Cuba [13]. Furthermore,
it constitutes an obstacle to landscape recovery for ecological restoration and agricultural
redevelopment [75].

Our results showed that there was an increase of almost 30,000 hectares covered by
marabú between 1994 and 2022 (Table 6). However, except in some specific areas, such as
the highest areas (more than 130 m a.s.l. (above sea level)) between the municipalities of
Florencia, Chambas, and Ciro Redondo, and around Loma de Cunagua (Figures 1 and 6),
the areas covered by marabú changed. For example, in 2022, an increase in the density of
the plant was noted towards the northwest (Bolivia and Primero de Enero municipalities)
and south (Venezuela municipality), and a decrease in the density of areas covered by
marabú towards the center of the province (Ciro Redondo municipality) (Table 5).

These temporal changes in the areas covered by marabú could be related, in the case
of the increase, to the definitive closure of sugar mills at the beginning of 2002 (more
than 20 years before the 2022 image was captured) in the municipalities of Bolivia and
Venezuela and, therefore, to the decrease in areas dedicated to planting sugar cane [11].
Furthermore, both municipalities have suffered, in the last decade, a significant decrease in
their populations [54]. In fact, Bolivia and Venezuela are the municipalities with the lowest
population densities [54], in the province (17.2 inhabitants/km2 and 32.5 inhabitants/km2,
respectively). Coupled with the fact that they are purely agricultural municipalities, this
population decrease in Bolivia has also impacted the availability of a labor force in the
agricultural sector, and therefore less of the land area is used for agriculture, which provides
an opportunity for the establishment and expansion of marabú [17]. Table 5 shows a large
decrease in irrigated and rainfed crop areas, which reinforces our previous statements.

In the area studied, only the municipalities of Ciro Redondo and Ciego de Ávila
showed a decrease in the areas covered by marabú, which could be due to the fact that
since 2019, a bioelectric plant has been in operation (in the Ciro Redondo municipality)
that uses marabú biomass as an alternative energy. According to the feasibility studies,
the yields of the areas covered by marabú in a 50 km radius around the bioelectric plant
were expected to have a yield of 70 tons/ha [11]. However, reality has shown that yields
do not exceed 30 tons/ha, which could be due to the estimation method, which was based
on the compilation of reports from landowners, whether private or state, who contributed
the values according to their own assessments [24]. For this reason, our study can offer
important information for the management of this species as biomass in the production
of electrical energy and for the management of marabú as an emerging popular charcoal
source for wood-fired ovens and grills in Cuba [75]. In recent years, marabú charcoal has
become one of the major agricultural exports from Cuba to Europe, and since 2017 it has
been the largest agricultural export to the United States in more than 50 years [75].

Although some relate the prevalence of marabú to factors such as altitude, rainfall,
and availability of sun, in the province where the study was conducted, these were not the
determining factors in the spatial distribution of the species, since the plant populations
were maintained in the highest areas of the province above sea level between 1994 and
2022 [10]. This could be due to the lack of mechanized and specialized technology for its
eradication, in addition to the fact that these areas are not used as much as other areas
for agricultural and livestock exploitation. According to [11], marabú eradication is so
laborious and expensive that very often the invaded lands are abandoned by agricultural
producers. In the case of the spatial distribution of rainfall in the province [76], a direct
relationship was not determined, since marabú aggressively invaded both the areas with
the lowest rainfall (<1150 mm/ year) in the province (northeast) and also the areas with
significantly higher rainfall (>1340 mm/year) (west).

One of the control methods used to curb the expansion of marabú is the flooding of
flat lands, since the species is not tolerant to soil inundation [11]. For this reason, the spatial
distribution of the species, both in 1994 and in 2022, did not extend to the areas where
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marshes, wetlands, and mangroves were located in the southern and northern edges of
the province; for example, in the Morón municipality (located within the Great Northern
Wetland of Ciego de Ávila), the area covered by marabú remained almost the same over
the time period (Tables 6 and 7). The above also constitutes one more reason to protect
these ecosystems, their freshwater sources, and the populations of species such as the
mangrove forest. In fact, Table 6 shows a decrease (of around 6600 ha) in the areas covered
by mangroves between 1994 and 2022, which must be monitored in order to conserve this
important environmental resource.

In summary, the spatial distribution and temporal changes in D. cinerea in the Ciego
de Ávila province showed heterogeneous dynamics (with an increase of around 48% of
the area occupied by marabú), which was associated more with changes in land use and
tenure than to other factors, such as height above sea level and rainfall.

This methodology for mapping marabú can be applied to other provinces in Cuba
that have the same problem as Ciego de Ávila, in relation to the expansion of marabú and
its effects on the other sectors of the Cuban economy.

5. Conclusions

This work provides a remote sensing-based tool for Dichrostachys cinerea (marabú)
detection and mapping in central Cuba, offering insights into its spatial distribution,
temporal changes, and impact on land cover. The findings contribute valuable knowledge
for regional management and lay the groundwork for future research addressing complex
challenges associated with invasive species.

This study successfully employed Landsat imagery and machine learning classifiers,
achieving satisfactory results (AUC > 0.82) in detecting and mapping marabú in central
Cuba. The RF algorithm demonstrated superior performance in comparison to ML and
SVM. The research emphasized the critical role of algorithm and image selection (flowering
time) in remote sensing applications for invasive species mapping. The independent
validation of the developed model revealed a strong ability to accurately identify 10 main
land covers in the area (overall accuracy >90%).

Regarding the temporal dynamics, the analysis of marabú spread from 1994 to 2022
revealed a notable increase of almost 30,000 hectares (48%) in the area occupied by this
species. The analysis of the spatial distribution and dynamics of marabú during that period
of time showed fluctuations in density across different areas of the Ciego de Ávila province
(the highest increases in the Bolivia and Venezuela municipalities, and a decrease in the
center of the province), indicating a dynamic interaction with land use and economic factors.
The LULC classes most significantly impacted by this invasion have been woodlands,
mangroves, and rainfed crops, with implications for agriculture and ecosystem health.
Changes in land use, including the closure of sugar mills and population decline in specific
municipalities, were identified as influencing factors.

The developed methodology not only provides valuable insights into marabú dy-
namics in Ciego de Ávila but also offers a transferable tool for other Cuban provinces
facing similar challenges. The methodology and results of this paper can also be used as
a base to develop detection and monitoring models for economically constrained areas,
by using free multispectral imagery and the RF algorithm. This could be applicable to
similar invasive species that have a flowering period different from the native species and
are spectrally different from other land covers in that area, and it would contribute to
advancing the understanding of the model’s robustness and applicability in other areas,
potentially improving its performance and expanding its utility for management objectives.

The challenges identified in this study include the need for continuous, accurate
monitoring, and the exploration of sustainable solutions for marabú management. The
spread of marabú must be addressed and managed in a holistic way, which would involve
the eradication of this plant in some areas; also, it could be used both as a source of energy
and for the production of charcoal in other areas, which would result in an increase in
income for families and municipalities linked to this activity. Future research should
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focus on refining mapping techniques, considering the evolving socioeconomic landscape,
and developing targeted interventions to address the persistent threat posed by marabú.
Exploring the integration of additional data sources, such as free higher temporal- and
spatial-resolution imagery like Sentinel 2 data, could further refine the model’s usability.

Future studies could delve deeper into the socioeconomic drivers influencing marabú
dynamics. Understanding the intricate relationship between economic activities, popu-
lation changes, and land use decisions will enhance predictive models and management
strategies. Given marabú’s impact on agriculture and ecosystems, continuous monitor-
ing and intervention strategies should be explored. Integrating remote sensing with
on-the-ground efforts can contribute to dynamic, adaptive management practices to curb
marabú expansion.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/rs16050798/s1, Table S1: Producer’s Accuracy (PA) and User’s Accuracy
(UA) results for 2014 classifications for all LULC classes using RF, NL and SVM algorithms; Table S2:
Producer’s Accuracy (PA) and User’s Accuracy (UA) results for 2022 classifications for all LULC
classes using RF, NL and SVM algorithms; Table S3: Confusion matrix obtained from the validation of
the classification carried out with the RF algorithm in 1994 in the province of Ciego de Ávila; Table S4:
Confusion matrix obtained from the validation of the classification carried out with the ML algorithm
in 1994 in the province of Ciego de Ávila; Table S5: Confusion matrix obtained from the validation
of the classification carried out with the SVM algorithm in 1994 in the province of Ciego de Ávila;
Table S6: Confusion matrix obtained from the validation of the classification carried out with the RF
algorithm in 2022 in the province of Ciego de Ávila; Table S7: Confusion matrix obtained from the
validation of the classification carried out with the ML algorithm in 2022 in the province of Ciego de
Ávila; Table S8: Confusion matrix obtained from the validation of the classification carried out with
the SVM algorithm in 2022 in the province of Ciego de Ávila.

Author Contributions: Conceptualization, A.V.-J., F.Á.-T. and R.G.-D.Z.; methodology, A.V.-J. and
F.Á.-T.; software, A.V.-J. and A.L.B.-G.; maps, A.V.-J. and A.L.B.-G.; investigation, A.V.-J., R.G.-D.Z.
and F.M.-P.; statistical analysis, A.V.-J., F.Á.-T. and R.G.-D.Z.; writing, A.V.-J., R.G.-D.Z. and F.M.-P.;
supervision, F.Á.-T., R.G.-D.Z. and F.M.-P. All authors have read and agreed to the published version
of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The raw data supporting the conclusions of this article will be made
available by the authors upon request.

Acknowledgments: The deepest gratitude to the Spanish Agency for International Development
Cooperation (AECID) and the faculty of the Master in Geoinformatics for the Management of Natural
Resources of the University of León, Spain. Without them, this research would not have been possible.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Dubyna, D.V.; Dziuba, T.P.; Iemelianova, S.M.; Protopopova, V.V.; Shevera, M.V. Alien Species in the Pioneer and Ruderal

Vegetation of Ukraine. Diversity 2022, 14, 1085. [CrossRef]
2. Espínola, L.A.; Júlio Junior, H.F. Espécies invasoras: Conceitos, modelos e atributos. Interciencia 2007, 32, 580–585.
3. Álvarez-Taboada, F.; Paredes, C.; Julián-Pelaz, J. Mapping of the invasive species Hakea sericea using Unmanned Aerial Vehicle

(UAV) and Worldview-2 imagery and an object-oriented approach. Remote Sens. 2017, 9, 913. [CrossRef]
4. de Francesco, M.C.; Tozzi, F.P.; Buffa, G.; Fantinato, E.; Innangi, M.; Stanisci, A. Identifying Critical Thresholds in the Impacts of

Invasive Alien Plants and Dune Paths on Native Coastal Dune Vegetation. Land 2022, 12, 135. [CrossRef]
5. Richardson, D.M.; Pyšek, P. Elton, C.S. 1958: The ecology of invasions by animals and plants. London: Methuen. Prog. Phys.

Geogr. 2007, 31, 659–666. [CrossRef]
6. Moyle, P.B.; Ellssworth, S. Alien Invaders, Essays on Wildlife Conservation. 2004. Available online: http://marinebio.org/

Oceans/Conservation/Moyle (accessed on 1 January 2023).
7. Izco Sevillano, J. Botánica; McGraw-Hill Interamericana de España S.L.: Madrid, Spain, 1997.
8. Pippard, H.; Ralph, G.M.; Harvey, M.S.; Carpenter, K.E.; Buchanan, J.R.; Greenfield, D.W.; Harwell, H.D.; Larson, H.K.;

Lawrence, A.; Linardich, C.; et al. The Conservation Status of Marine Biodiversity of the Pacific Islands of Oceania; IUCN: Gland,
Switzerland, 2017; Volume viii, 59p. [CrossRef]

https://www.mdpi.com/article/10.3390/rs16050798/s1
https://www.mdpi.com/article/10.3390/rs16050798/s1
https://doi.org/10.3390/d14121085
https://doi.org/10.3390/rs9090913
https://doi.org/10.3390/land12010135
https://doi.org/10.1177/0309133307087089
http://marinebio.org/Oceans/Conservation/Moyle
http://marinebio.org/Oceans/Conservation/Moyle
https://doi.org/10.2305/iucn.ch.2017.04.en


Remote Sens. 2024, 16, 798 18 of 20

9. Mittenmeier, R.A.; Robles Gil, P.; Hoffman, M.; Pilgrim, J.; Brooks, T.; Goettsch Mittenmeier, C.; Lamoreux, J.; Da Fonseca, G.
Hotspots Revisited: Earth’s Biologically Richest and Most Threatened Terrestrial Ecoregions; Conservation International: Ciudad de
México, México; CEMEX: Mexico City, México, 2004.

10. Aguilera Marín, N. Impactos de las Invasiones de Plantas en las Islas Oceánicas: El Caso de Dichrostachys cinerea (L.) Wight &
Arn. 2010. Available online: https://www.researchgate.net/publication/284664079_Impactos_de_las_invasiones_de_plantas_
en_las_islas_oceanicas_El_caso_de_Dichrostachys_cinerea_L_Wight_Arn/ (accessed on 1 January 2023).

11. Sánchez-Hervás, J.M.; Ortz, I.; Maroño, M.; Ciria, P.; Ramos, R.; Arribas, L.; Domínguez, J. Gasificación de Biomasa e Hibridación
AECID 2015/ACDE/001558. In Cogeneración de Energía, Eléctrica y Térmica, Mediante un Sistema Híbrido Biomasa-Solar para
Explotaciones Agropecuarias en la Isla de Cuba; Informe Proyecto HYBRIDUS; Ciemat: Madrid, España, 2018.

12. Méndez, I.; Moya, C.; Roquero, L. Primeras evidencias científicas de la presencia del marabú (Dichrostachys cinerea) en Cuba. An.
La Acad. Cienc. Cuba 2022, 12. Available online: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2304-0106202200030001
2&lng=es&tlng=es (accessed on 1 January 2023).

13. Prieto, R.; Oliver, P.; Caluff, M.; Regalado, L.; Ventosa, I.; Plasencia Fraga, J.; Baró, I.; González Gutiérrez, P.; Pérez-Camacho, J.;
González-Oliva, L. Lista nacional de especies de plantas invasoras y potencialmente invasoras en la República de Cuba-2012.
Bissea 2012, 6, 22–112.

14. Nielsen, M.O.; Reinoso-Pérez, M.; Sørensen, M.; Hansen, H.; Gustafsson, J. Eco-Friendly Alternatives for Control and Use
of Invasive Plants in Agroforestry Systems: The Case of Marabú (Dichrostachys cinerea) in Cuba. 2013. Available online:
http://journal.um-surabaya.ac.id/index.php/JKM/article/view/2203 (accessed on 1 January 2023).

15. Martín-Casas, N.; Reinoso-Pérez, M.; García-Díaz, J.R.; Hansen, H.H.; Nielsen, M.O. Evaluation of the feeding value of
Dichrostachys cinerea pods for fattening pigs in Cuba. Trop. Anim. Health Prod. 2017, 49, 1235–1242. [CrossRef] [PubMed]

16. Funes Monzote, R. El fin de los bosques y la plaga del marabú en Cuba. Historia de una “venganza ecológica”. Anu. Ecol. Cult.
Soc. 2001, 1, 71–89.

17. Ruiz Sinoga, J.D.; Remond Noa, R.; Fernández Perez, D. An Analysis of the Spatial Colonization of Scrubland Intrusive Species in
the Itabo and Guanabo Watershed, Cuba. Remote Sens. 2010, 2, 740–757. [CrossRef]

18. Jiménez Escudero, V.M. Desarrollo de Metodología de Teledetección para la Distribución Espacial de la Plaga Marabú
(Dichrostachys cinerea) en Trinidad-Valle de los Ingenios (Patrimonio Cultural de la Humanidad UNESCO), Cuba. Master’s Thesis,
Universidad Internacional de Andalucía, Seville, España, 2016.

19. Grice, A.C.; Clarkson, J.R.; Calvert, M. Geographic Differentiation of Management Objectives for Invasive Species: A Case Study
of Hymenachne Amplexicaulis in Australia. Environ. Sci. Policy 2011, 14, 986–997. [CrossRef]

20. Mbaabu, P.R.; Ng, W.-T.; Schaffner, U.; Gichaba, M.; Olago, D.; Choge, S.; Oriaso, S.; Eckert, S. Spatial Evolution of Prosopis
Invasion and its Effects on LULC and Livelihoods in Baringo, Kenya. Remote Sens. 2019, 11, 1217. [CrossRef]

21. Bradley, B.A. Remote Detection of Invasive Plants: A Review of Spectral, Textural and Phenological Approaches. Biol. Invasions
2014, 16, 1411–1425. [CrossRef]

22. Moreno, E.; Zabalo, A.; Gonzalez, E.; Alvarez, R.; Jimenez, V.M.; Menendez, J. Affordable Use of Satellite Imagery in Agriculture
and Development Projects: Assessing the Spatial Distribution of Invasive Weeds in the UNESCO-Protected Areas of Cuba.
Agriculture 2021, 11, 1057. [CrossRef]

23. Betbeder, J.; Dubiez, E.; Gond, V.; Peltier, R. Rapport de Mission dans le Cadre de L’étude de Faisabilité Portant sur le Projet de Lutte
contre la Prolifération de la Plante Invasive Marabú à Cuba; Centre de Coopération International en Recherche Agronomique pour le
Développment: Montpellier, France, 2018.

24. Almeida, E.; Dorta, D.; Alcantára, A. Metodología para estimación de área cubierta por D. cinerea a partir de imágenes satelitales.
Univ. Cienc. 2010, 10, 32–44.

25. Gaitán Rojas, D.J.; López Calle, M.I. Análisis Multitemporal de la Especie Vegetal Invasora Retamo Espinoso (Ulex europaeus) en el
Embalse la Regadera, Zona Rural de la Localidad de Usme, a Partir de Imágenes Satelitales Sentinel 2 y Landsat 8 Mediante el Uso de
Algoritmos de Clasificación; Universidad Distrital Francisco José de Caldas: Bogotá, Colombia, 2018.

26. Jones, D.; Pike, S.; Thomas, M.; Murphy, D. Object- based image analysis for detection of Japanese Knotweed s.l. taxa (polygo-
naceae) in Wales (UK). Remote Sens. 2011, 3, 319–342. [CrossRef]

27. Liu, M.; Li, H.; Li, L.; Man, W.; Jia, M.; Wang, Z.; Lu, C. Monitoring the invasion of Spartina alterniflora using multi-source
high-resolution imagery in the Zhangjiang Estuary, China. Remote Sens. 2017, 9, 539. [CrossRef]

28. Jensen, T.; Seerup Hass, F.; Seam Akbar, M.; Holm Petersen, P.; Jokar Arsanjani, J. Employing machine learning for detection of
invasive species using sentinel-2 and Aviris data: The case of Kudzu in the United States. Sustainability 2020, 12, 3544. [CrossRef]

29. Paz-Kagan, T.; Silver, M.; Panov, N.; Karnieli, A. Multispectral approach for identifying invasive plant species based on flowering
phenology characteristics. Remote Sens. 2019, 11, 953. [CrossRef]

30. Papp, L.; Van Leeuwen, B.; Szilassi, P.; Tobak, Z.; Szatmári, J.; Árvai, M.; Pásztor, L. Monitoring invasive plant species using
hyperspectral remote sensing data. Land 2021, 10, 29. [CrossRef]

31. Royimani, L.; Mutanga, O.; Odindi, J.; Dube, T.; Nyasha Matongera, T. Advancements in satellite remote sensing for mapping
and monitoring of alien invasive plant species (AIPs). Phys. Chem. Earth Parts A/B/C 2019, 112, 237–245. [CrossRef]

32. Matongera, T.N.; Mutanga, O.; Dube, T.; Sibanda, M. Detection and mapping the spatial distribution of bracken fern weeds using
the Landsat 8 OLI new generation sensor. Int. J. Appl. Earth Obs. Geoinf. 2017, 57, 93–103. [CrossRef]

https://www.researchgate.net/publication/284664079_Impactos_de_las_invasiones_de_plantas_en_las_islas_oceanicas_El_caso_de_Dichrostachys_cinerea_L_Wight_Arn/
https://www.researchgate.net/publication/284664079_Impactos_de_las_invasiones_de_plantas_en_las_islas_oceanicas_El_caso_de_Dichrostachys_cinerea_L_Wight_Arn/
http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2304-01062022000300012&lng=es&tlng=es
http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2304-01062022000300012&lng=es&tlng=es
http://journal.um-surabaya.ac.id/index.php/JKM/article/view/2203
https://doi.org/10.1007/s11250-017-1321-9
https://www.ncbi.nlm.nih.gov/pubmed/28612173
https://doi.org/10.3390/rs2030740
https://doi.org/10.1016/j.envsci.2011.07.006
https://doi.org/10.3390/rs11101217
https://doi.org/10.1007/s10530-013-0578-9
https://doi.org/10.3390/agriculture11111057
https://doi.org/10.3390/rs3020319
https://doi.org/10.3390/rs9060539
https://doi.org/10.3390/su12093544
https://doi.org/10.3390/rs11080953
https://doi.org/10.3390/land10010029
https://doi.org/10.1016/j.pce.2018.12.004
https://doi.org/10.1016/j.jag.2016.12.006


Remote Sens. 2024, 16, 798 19 of 20

33. Viana, H.; Aranha, J. Mapping invasive species (Acacia dealbata link) using ASTER/TERRA and LANDSAT 7 ETM+ imagery. In Forest
Landscapes and Global Change-New Frontiers in Management, Conservation and Restoration Year, Proceedings of the IUFRO Landscape Ecology
Working Group International Conference, Bragança, Portugal, 21–27 September 2010; IPB; IUFRO: Braganza, Portugal, 2010.

34. Civco, D.L. Artificial neural networks for land-cover classification and mapping. Int. J. Geogr. Inf. Sci. 1993, 7, 173–186. [CrossRef]
35. Geiß, C.; Aravena Pelizari, P.; Blickensdörfer, L.; Taubenböck, H. Virtual Support Vector Machines with Self-Learning Strategy for

Classification of Multispectral Remote Sensing Imagery. ISPRS J. Photogramm. Remote Sens. 2019, 151, 42–58. [CrossRef]
36. Carranza-García, M.; García-Gutiérrez, J.; Riquelme, J.C. A framework for evaluating land use and land cover classification using

convolutional neural networks. Remote Sens. 2019, 11, 274. [CrossRef]
37. Du, Q.; Chang, C.I. A linear constrained distance-based discriminant analysis for hyperspectral image classification. Pattern

Recognit. 2001, 34, 361–373. [CrossRef]
38. Kal-Yi, H. A synergistic automatic clustering technique (SYNERACT) for multispectral image Analysis. Photogramm. Eng. Remote

Sens. 2002, 68, 33–40.
39. Etter, A.; McAlpine, C.; Wilson, K.; Phinn, S.; Possingham, H. Regional patterns of agricultural land use and deforestation in

Colombia. Agric. Ecosyst. Environ. 2006, 114, 369–386. [CrossRef]
40. Boukabara, S.; Krasnopolsky, V.; Stewart, J.Q.; Maddy, E.S.; Shahroudi, N.; Hoffman, R.N. Leveraging Modern Artificial

Intelligence for Remote Sensing and NWP: Benefits and Challenges. Bull. Am. Meteorol. Soc. 2019, 100, 473–491. [CrossRef]
41. Geiß, C.; Pelizari, P.A.; Tunçbilek, O.; Taubenböck, H. Semi-supervised learning with constrained virtual support vector machines

for classification of remote sensing image data. Int. J. Appl. Earth Obs. Geoinf. 2023, 125, 103571. [CrossRef]
42. Ahmed, N.; Atzberger, C.; Zewdie, W. Integration of remote sensing and bioclimatic data for prediction of invasive species

distribution in data-poor regions: A review on challenges and opportunities. Env. Syst. Res. 2020, 9, 32. [CrossRef]
43. Kumar, M.; Padalia, H.; Singh, H. Remote sensing for mapping invasive alien plants: Opportunities and challenges. In A Handbook

on Invasive Species, 1st ed.; Devi, K., Chaudhary, S.V., Kalia, S., Mishra, S.R., Eds.; Indian Council of Forestry Research and
Education: Dehradun, India, 2020; Volume 1, pp. 16–31.

44. Arasumani, M.; Bunyan, M.; Robin, V.V. Opportunities and challenges in using remote sensing for invasive tree species
management, and in the identification of restoration sites in tropical montane grasslands. J. Environ. Manag. 2021, 280, 111759.
[CrossRef] [PubMed]

45. Shiferaw, H.; Bewket, W.; Eckert, S. Performances of machine learning algorithms for mapping fractional cover of an invasive
plant species in a dryland ecosystem. Ecol. Evol. 2019, 9, 2562–2574. [CrossRef] [PubMed]

46. Ouma, Y.O.; Gabasiane, T.G.; Nkhwanana, N. Mapping Prosopis L. (Mesquites) Using Sentinel-2 MSI Satellite Data, NDVI and
SVI Spectral Indices with Maximum-Likelihood and Random Forest Classifiers. J. Sens. 2023, 2023, 18. [CrossRef]

47. Huang, C.Y.; Asner, G.P. Applications of remote sensing to alien invasive plant studies. Sensors 2009, 9, 4869–4889. [CrossRef]
[PubMed]

48. Sims, D.A.; Gamon, J.A. Estimation of vegetation water content and photosynthetic tissue area from spectral reflectance:
A comparison of indices based on liquid water and chlorophyll absorption features. Remote Sens. Environ. 2003, 84, 526–537.
[CrossRef]

49. Cervantes, J.; Garcia-Lamont, F.; Rodríguez-Mazahua, L.; Lopez, A. A comprehensive survey on support vector machine
classification: Applications, challenges and trends. Neurocomputing 2020, 408, 189–215. [CrossRef]

50. Vapnik, V. The Nature of Statistical Learning Theory, 2nd ed.; Michael, J., Lawless, J., Lauritzen, S., Nair, V., Eds.; Springer:
Berlin/Heidelberg, Germany, 2000.

51. Shang, X.; Chisholm, L. Classification of Australian Native Forest Species Using Hyperspectral Remote Sensing and Machine-
Learning Classification Algorithms. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2481–2489. [CrossRef]

52. Cutler, D.R.; Edwards, T.C.; Beard, K.H.; Cutler, A.; Hess, K.T.; Gibson, J.; Lawler, J.J. Random Forests for Classification in Ecology.
Ecology 2007, 88, 2783–2792. [CrossRef]

53. Hernández-Blanco, Y.; Fernández-Rigondeaux, Y. Estudio de la evolución del sistema de asentamientos humanos de la provincia
de Ciego de Ávila en el período 1981-2012. Noved. Poblac. 2019, 29, 192–202.

54. Oficina Nacional de Estadística e Información República de Cuba (ONEI). Censo de Población y Viviendas 2012. Cuba. 2012.
Available online: http://www.onei.gob.cu/node/13001 (accessed on 16 February 2023).

55. Kulkarni, K.; Vijaya, P.A. Separability analysis of the band combinations for land cover classification of satellite images. Int. J. Eng.
Trends Technol. 2021, 69, 138–144. [CrossRef]

56. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018.
57. Sheykhmousa, M.; Mahdianpari, M.; Ghanbari, H.; Mohammadimanesh, F.; Ghamisi, P.; Homayouni, S. Support Vector Machine

Versus Random Forest for Remote Sensing Image Classification: A Meta-Analysis and Systematic Review. IEEE J. Sel. Top. Appl.
Earth Obs. Remote Sens. 2020, 13, 6308–6325. [CrossRef]

58. Liaw, A.; Weiner, M. randomForest: Breiman and Cutler’s Random Forests for Classification and Regression; cran.r-project, R Package
Version 4.6-7; R Package: Vienna, Austria, 2012.

59. Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2009.
60. Olofsson, P.; Foody, G.M.; Stehman, S.V.; Woodcock, C.E. Making better use of accuracy data in land change studies: Estimating

accuracy and area and quantifying uncertainty using stratified estimation. Remote Sens. Environ. 2013, 129, 122–131. [CrossRef]

https://doi.org/10.1080/02693799308901949
https://doi.org/10.1016/j.isprsjprs.2019.03.001
https://doi.org/10.3390/rs11030274
https://doi.org/10.1016/S0031-3203(99)00215-0
https://doi.org/10.1016/j.agee.2005.11.013
https://doi.org/10.1175/BAMS-D-18-0324.1
https://doi.org/10.1016/j.jag.2023.103571
https://doi.org/10.1186/s40068-020-00195-0
https://doi.org/10.1016/j.jenvman.2020.111759
https://www.ncbi.nlm.nih.gov/pubmed/33298397
https://doi.org/10.1002/ece3.4919
https://www.ncbi.nlm.nih.gov/pubmed/30891200
https://doi.org/10.1155/2023/8882730
https://doi.org/10.3390/s90604869
https://www.ncbi.nlm.nih.gov/pubmed/22408558
https://doi.org/10.1016/S0034-4257(02)00151-7
https://doi.org/10.1016/j.neucom.2019.10.118
https://doi.org/10.1109/JSTARS.2013.2282166
https://doi.org/10.1890/07-0539.1
http://www.onei.gob.cu/node/13001
https://doi.org/10.14445/22315381/IJETT-V69I8P217
https://doi.org/10.1109/JSTARS.2020.3026724
https://doi.org/10.1016/j.rse.2012.10.031


Remote Sens. 2024, 16, 798 20 of 20

61. Anaya, J.A.; Rodríguez-Buriticá, S.; Londoño, M.C. Clasificación de cobertura vegetal con resolución espacial de 10 metros en
bosques del Caribe colombiano basado en misiones Sentinel 1 y 2. Rev. Teledetec. 2023, 61, 29–41. [CrossRef]

62. Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46.
[CrossRef]

63. Sauro, J.; Lewis, J.R. Estimating completion rates from small samples using binomial confidence intervals: Comparisons
and recommendations. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting, Orlando, FL, USA,
26–30 September 2005; SAGE Publications: Thousand Oaks, CA, USA; Sage: Los Angeles, CA, USA, 2005.

64. He, H.; Garcia, E.A. Learning from Imbalanced Data. IEEE Trans. Knowl. Data Eng. 2009, 21, 1263–1284.
65. Fawcett, T. An introduction to ROC analysis. Pattern Recog. Lett. 2006, 27, 861–874. [CrossRef]
66. Bradley, A.P. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognit. 1997,

30, 1145–1159. [CrossRef]
67. Demšar, J. Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 2006, 7, 1–30.
68. Foody, G.M. Classification accuracy comparison: Hypothesis tests and the use of confidence intervals in evaluations of difference,

equivalence and non-inferiority. Remote Sens. Environ. 2009, 113, 1658–1663. [CrossRef]
69. Tonbul, H.; Colkesen, I.; Kavzoglu, T. Classification of poplar trees with object-based ensemble learning algorithms using

Sentinel-2A imagery. J. Geod. Sci. 2020, 10, 14–22. [CrossRef]
70. Ndlovu, H.S.; Sibanda, M.; Odindi, J.; Buthelezi, S.; Mutanga, O. Detecting and mapping the spatial distribution of Chromoleana

odorata invasions in communal areas of South Africa using Sentinel-2 multispectral remotely sensed data. Phys. Chem. Earth Parts
A/B/C 2022, 126, 103081. [CrossRef]

71. Pouteau, R.; Meyer, J.Y.; Taputuarai, R.; Stoll, B. Support vector machines to map rare and endangered native plants in Pacific
islands forests. Ecol. Inform. 2012, 9, 37–46. [CrossRef]

72. Linhui, L.; Weipeng, J.; Huihui, W. Extracting the forest type from remote sensing images by random forest. IEEE Sens. J. 2020, 21,
17447–17454. [CrossRef]

73. Jombo, S.; Adam, E. Comparison between Maximum likelihood and Support Vector Machines classifiers in mapping urban tree
species using spot 7 imagery. In Geography and Community Research, Learning, Impact, Proceedings of the Biennial Conference of the
Society of South African Geographers; University of the Free State: Bloemfontein, South Africa, 2018; Volume 1, p. 684.

74. Wulder, M.A.; Hermosilla, T.; White, J.C.; Hobart, G.; Masek, J.G. Augmenting Landsat time series with Harmonized Landsat
Sentinel-2 data products: Assessment of spectral correspondence. Sci. Remote Sens. 2021, 4, 100031. [CrossRef]

75. Galford, G.L.; Fernandez, M.; Roman, J.; Monasterolo, I.; Ahamed, S.; Fiske, G.; González Díaz, P.; Kaufman, L. Cuban land use
and conservation, from rainforests to coral reefs. Bull. Mar. Sci. 2018, 94, 171–191. [CrossRef]

76. Valero-Jorge, A.; González-De Zayas, R.; Alcántara-Martín, A.; Álvarez-Taboada, F.; Matos-Pupo, F.; Brown-Manrique, O. Water
area and volume calculation of two reservoirs in Central Cuba using remote sensing methods. A new perspective. Rev. Teledetec.
2022, 60, 71–87. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.4995/raet.2023.17655
https://doi.org/10.1016/0034-4257(91)90048-B
https://doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/10.1016/S0031-3203(96)00142-2
https://doi.org/10.1016/j.rse.2009.03.014
https://doi.org/10.1515/jogs-2020-0003
https://doi.org/10.1016/j.pce.2021.103081
https://doi.org/10.1016/j.ecoinf.2012.03.003
https://doi.org/10.1109/JSEN.2020.3045501
https://doi.org/10.1016/j.srs.2021.100031
https://doi.org/10.5343/bms.2017.1026
https://doi.org/10.4995/raet.2022.17770

	Introduction 
	Invasive Plant Species in Cuba: The Case of Dichrostachys cinerea (L.) 
	Remote Sensing for Invasive Species Monitoring 
	Objective and Aims of This Work 

	Materials and Methods 
	Study Area 
	Satellite Data 
	Field Reference Data 
	Classification of Satellite Imagery 
	Validation 
	Classifier Choice 
	Land Use and Land Cover Change Analysis 

	Results 
	Spectral Characterization of D. cinerea 
	Dichrostachys cinerea Detection with Landsat 5 TM and Landsat 8 OLI images 
	Dichrostachys cinerea Spread from 1994 to 2022 
	Marabú-Induced Changes in other LULCs 

	Discussion 
	Dichrostachys cinerea Detection Using Remote Sensing 
	Dichrostachys cinerea Spread from 1994 to 2022 and Land Cover Changes 

	Conclusions 
	References

