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Abstract: Drone-based photogrammetry typically requires the task of georeferencing aerial images
by detecting the center of Ground Control Points (GCPs) placed in the field. Since this is a very
labor-intensive task, it could benefit greatly from automation. In this study, we explore the extent
to which traditional computer vision approaches can be generalized to deal with variability in real-
world drone data sets and focus on training different residual neural networks (ResNet) to improve
generalization. The models were trained to detect single keypoints of fixed-sized image tiles with a
historic collection of drone-based Red–Green–Blue (RGB) images with black and white GCP markers
in which the center was manually labeled by experienced photogrammetry operators. Different
depths of ResNets and various hyperparameters (learning rate, batch size) were tested. The best
results reached sub-pixel accuracy with a mean absolute error of 0.586. The paper demonstrates
that this approach to drone-based mapping is a promising and effective way to reduce the human
workload required for georeferencing aerial images.

Keywords: drones; photogrammetry; ground control points; GCPs; RGB; computer vision; deep
learning; ResNet; CNN

1. Introduction

The utilization of camera-equipped Uncrewed Airborne Systems (UASs), commonly
referred to as drones, within the realm of geomatics has experienced a notable surge in
recent years. This can be attributed to advancements in sensor quality, cost reduction,
and enhanced integration, all of which have significantly improved accessibility and usabil-
ity [1]. The raw data procured by UAS are typically used in a a meticulous photogrammetric
process to generate metric, survey-grade 3D deliverables. Equipped with Global Naviga-
tion Satellite Systems (GNSSs), these UASs capture center coordinates for each individual
image acquisition point, with contemporary systems offering Real-Time Kinematic (RTK)
correction, thereby registering image positions at the centimeter level and providing better
constraints to the photogrammetric algorithms.

The photogrammetric process then consists of bundle adjustment, camera self-
calibration, dense point cloud generation, orthorectification, and mosaicing of the images.
These steps collectively rectify errors present in the initially recorded sensor positions
and interior and exterior sensor orientation values [2,3].

Figure 1 shows the photogrammetric process. Starting with bundle adjustment or
alignment, this step establishes connections between overlapping images by identifying
keypoint features within images, using algorithms such as Scale-Invariant Feature Trans-
form (SIFT) [4–7] or Speeded-Up Robust Features (SURFs) [8]. These keypoint features are
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interlinked across images, culminating in a solution that explains the position and orienta-
tion (both interior and exterior) of cameras through tiepoints. Notably, bundle adjustment
and georeferencing may be susceptible to substantial errors, necessitating precise tiepoint
measurements. This is accommodated within the camera calibration step, where the bundle
adjustment process is reiterated based on the specification of pixel coordinates of Ground
Control Points (GCPs) of known real-world coordinates.

Subsequently, the densification of the point cloud is executed, whereby a 3D coordinate
is determined for every pixel within the image. Following this, a digital representation of
the terrain is generated onto which orthorectified images are projected and mosaiced.

Figure 1. Simplified diagram of some steps for the photogrammetry workflow.

The integration of GCPs is an indispensable facet of an accurate photogrammetric
process. Even when using RTK or post-processed GNSS-INS (Inertial Navigation System),
a limited set of GCPs remains crucial for calibration purposes or for independent accuracy
assessments [2]. These markers, comprising easily identifiable shapes that stand out against
the background, are strategically positioned on the ground. Their precise world coordinates,
acquired using survey-grade instruments such as RTK-GNSS or Post-Processed Kinematics
(PPK), are meticulously measured in the field [9]. A proper layout and measurement of
GCPs, as well as the precise indication of the point of measurement in the individual images
(labeling), has proven crucial in ensuring photogrammetric accuracy [10,11].

Various types of GCP markers exist, predominantly consisting of contrasting surface
colors such as black and white arranged in quadrants, while coded targets adhering to
recognized standards can be detected by software through computer vision, this method is
mainly used in close-range photogrammetry and proves impractical for large-scale aerial
imagery. Challenges persist regarding the standardization of algorithms capable of au-
tonomously identifying non-coded GCP marker centers centers in drone-based applications.
Consequently, labeling is mostly performed manually to date [12]. This manual process
is arduous, time-intensive, prone to human error, and would significantly benefit from
accurate automation.

Prior attempts to automate GCP center point detection have employed methodologies
like Edge Orientation Histograms [13], complemented by the integration of a Convolutional
Neural Network (CNN) to enhance robustness [14]. These efforts aimed to predict the inter-
section point of 65 cm × 65 cm L-shaped GCPs. However, the accuracy of these approaches
was susceptible to confounding features in the imagery, such as high altitudes, overlap
with road stripes, or surrounding white dust, impacting their reliability. Other computer-
vision-based strategies involved X-marker detection using the Hough transform, achieving
an average sub-pixel distance of 0.51 between predictions and centers [15]. However, this
method operated on 12 × 12-pixel images extracted by a preliminary algorithm. A purely
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deep learning-driven approach for keypoint detection might offer better generalization
capabilities, accommodating irregularities in data without the prerequisite of an initial
algorithm to extract the GCP center image.

Another study devised to streamline the process of GCP detection involved the de-
velopment of a comprehensive pipeline integrating deep learning techniques to detect a
broad position of the marker and then compute the center point with computer vision
algorithms such as the Canny edge detection method [16]. It found success in using in
situ features such as road signs as substitutes for GCPs; however, such features do not
commonly exist in agricultural environments. This research was motivated by the need for
TLS and photogrammetry data fusion, where two different types of control point patterns
are traditionally used. The model’s training utilized a small dataset comprising 246 images
with fixed resolutions, showcasing prominently visible markers while exhibiting commend-
able performance under these conditions; the efficacy of this pipeline remains untested in
scenarios involving obscured markers, diverse lighting conditions, and variable resolutions.
In practical agricultural applications, GCPs are conventionally installed and retained for
successive UAS flights, potentially leading to differences in light conditions, resolutions,
and the quality of the markers, with all causing degradation in the control point pattern
appearance and necessitating the pipeline’s ability to generalize to predict GCPs amid
non-ideal circumstances.

Convolutional Neural Networks (CNNs), a subset of Artificial Neural Networks
(ANNs), are commonly employed for analyzing visual imagery. Studies have investigated
combinations of handcrafted filters like Harris [17] and Hessian [18] detectors with learned
CNNs—dubbed Key-Net—to detect keypoints, revealing that increasing CNN complexity
does not consistently enhance accuracy. Interestingly, integrating handcrafted filters signifi-
cantly reduces architectural complexity [19]. When it comes to keypoint matching across
different raw images, CNNs outperform handcrafted descriptors in terms of accuracy amid
illumination and viewpoint changes [20]. Further comparison between pre-trained CNNs
and those trained from scratch suggests pre-trained CNNs fare better with illumination
changes, while trained CNNs excel with viewpoint alterations.

Deeper CNNs face a degradation issue: as depth increases, accuracy plateaus, not
due to overfitting but due to higher training error with additional layers. To tackle this,
ResNet employs skip connections or shortcuts that leap over several layers [21]. Similar
to Long Short-Term Memory (LSTM) recurrent neural networks [22], there are two main
reasons why it is beneficial to add paths to skip connections in the model. First is the
aforementioned accuracy saturation problem, and second, to avoid the issue of vanishing
gradients [23], thus resulting in more easily optimizable models. The gating mechanism
allows information to go through so-called information highways [24]. When comparing
ResNet to the performance of other deep CNN models such as VGG16 [25] or Xception
network [26], the ResNet model outperformed all others in classification tasks [27]. ResNet
has been used in the context of GCP detection for classification purposes. In several recent
studies, it has been used in combination with object detection architectures such as retinaNet
to accurately extract the bounding boxes of GCP pads [28,29]. Similar approaches have
been applied using other object detection architectures, such as object-oriented YOLOv5
[30]. The localization of the center point is performed by extracting the actual center of the
bounding boxes or utilizing edge features within them. While these methods can detect
GCP pads, including non-standard variants, with very high accuracy, the localization of
center points remains an issue in operational agricultural applications. In this context, GCP
pads may be partly obscured or degraded, and such methods are likely to be inaccurate.

Originally intended for classification, ResNet’s adaptability extends to regression tasks.
By adjusting output layers and activation functions, ResNet transforms into a regression
model, evident in studies predicting pig weight from 3D images [31]. Specifically in the
field of keypoint regression, ResNet has seen a lot of success in recent projects, such as in
keypoint regression from a 2D image using image-level supervision [32]. Modifications of
models like Masked Loss Residual Convolutional Neural Network (ML-ResNet) have been
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used for facial keypoint detection with missing labels, producing satisfactory results [33],
as well as skeletal-point keypoint detection in single images [34]

This paper aims to explore the resilience of a computer-vision-based approach us-
ing real-world data. It proposes a ResNet-based deep learning pipeline specifically to
swiftly and accurately detect pixel coordinates of black and white ground control marker
center points. The paper suggests utilizing residual networks of various depths and com-
paring a wide array of training hyperparameters to identify an architecture capable of
achieving sub-pixel accuracy. The research will compare both deep learning and computer
vision approaches.

2. Materials and Methods
2.1. Existing Data Set

This study started by assembling a curated dataset comprising 2980 JPEG images at
their original resolution, gathered between 2018 and 2021. The images were collected in the
context of several drone-based agricultural monitoring campaigns across fields in various
countries, covering several crop types at different growth stages. All drone flights (474
in total) covered at least 5 GCP markers, and several drone and camera types were used,
resulting in image dimensions ranging from 2870 to 5460 pixels in width. Only images
containing at least one GCP marker were selected for the current dataset in the framework
of this research. For a comprehensive overview, Table 1 details the make and model of
all drones utilized in this study, alongside the total number of images captured by each
drone during its flights, while Figure 2 shows the geographic and temporal distribution of
drone flights. Target ground sample distances ranged from 2 to 10 mm, and the marker
sizes within the images varied between 80 and 700 pixels in length. Drones were flown at
heights of either 18 or 38 m, depending on target resolution. Figure 3 shows an example of
a drone image containing a representative GCP marker in the dataset.

Table 1. Maker, model, and number of pictures taken by each drone used in the study.

Maker
Pictures Taken Model Pictures Taken

DJI FC550 120
DJI FC6310 1077
DJI FC6310R 763
DJI FC6310S 25
DJI FC6510 79
DJI FC6520 334
DJI FC6540 132
DJI M600_X5R 28
DJI ZenmuseP1 299

Hasselblad L1D-20c 24
SONY DSC-RX1RM2 76

The dataset exhibited variations in resolution and flight altitude, leading to diverse
sizes of Ground Control Points (GCPs) within the images. All individual images underwent
manual annotation by proficient photogrammetry operators who used specialized software
to zoom in on the images and click on the GCP markers’ center point, thereby assigning a
single floating point image coordinate pair to the labeled point. Each operator meticulously
assigned a single keypoint, denoted by two floating point image coordinates in pixels,
precisely at the center of each GCP.
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Figure 2. Distribution of sites surveyed (a), distribution of flights per month (b).

Figure 3. Example of a 6016 × 4008-pixel image captured with a FC6540 with 1/100 s of exposure
time, 50 mm of focal length, and 2.97 max aperture.

The dataset includes variability in environmental conditions and GCP marker quality,
originating from the different flight locations and times. Figure 4 shows typical potential
issues that could impede center point detection, even for experienced human operators.
In certain instances, the leaves and branches of crops near the control points might obstruct
the UAS line of sight, as depicted in (d) of Figure 4. Additionally, environmental factors
like wind might lead to the accumulation of sand or dead branches on the squares, ob-
scuring their features, similar to the example shown in (d) of Figure 4. Moreover, direct
sunlight reflecting off the GCP material into the camera could result in sun glare, causing a
blurred distinction between the white and black sections, as seen in (c) of Figure 4. Other
confounding factors such as (limited) motion or focus blur can also occur.
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Figure 4. Examples of 512 × 512-pixel tiles, (a) a perfectly visible GCP, (b) GCP partially covered by
the crop, (c) GCP reflecting sunlight, (d) GCP covered by sand.

2.2. Pre-Processing

Due to the dimensions and variable sizes of the entire individual images, training most
deep learning models accurately for regression was infeasible. As a solution, the images
were split into smaller, fixed sizes. A custom script was developed to extract tiles of a
specified size encompassing the GCP center point. To prevent issues arising from tiles where
the GCP center lay at the image edge, potentially impacting model accuracy, a padding
parameter was implemented. This padding ensured that if a situation occurred where the
GCP center was at the edge of a tile, an adjacent tile with better GCP visibility would cover
it. Consequently, this technique could generate multiple tiles per GCP, depending on the
padding amount.

The initial execution of the script, focusing solely on images with black and white
control points, aimed to generate 512 × 512-pixel tiles with a 25% padding (128 pixels). This
process resulted in 5658 tiles from the original 2980 images. Leveraging the human-labeled
image pixel-coordinates for the GCP, the script efficiently determined tiles that undoubtedly
contained a GCP. Moreover, the script provided the capability to include random tiles
without associated labels, yielding a subset of tiles without any GCPs. The discussion
section outlines potential applications for these empty tiles.

2.3. Data Augmentation

The diversity in drone flights offered a wide array of orientations of the ground control
markers in the images, with various lighting characteristics as a result. The tiling algorithm
employed on full-resolution images also introduced variability in the GCP position within
each tile. The tiles covered instances of partially obscured control points, whether by sand,
crop leaves, or material reflections. Initial testing revealed the model’s subpar performance
with tiles predominantly occupied by the GCP. This might stem from factors such as flight
altitude, camera sensor specifications, resolution, and marker size. To address this issue
and create more instances where the GCP covered the entire tile, an additional set of tiles,
beyond the initially generated ones (512 × 512, 25% padding), was computed.

These new tiles featured a resolution of 224 × 224, aligning better with the require-
ments of the ResNet model without requiring resizing, and maintained the same 25%
padding (56 pixels). This operation notably augmented the dataset by adding 5744 new
tiles for training, validation, and testing. Figure 5 illustrates an image that generated two
512 × 512 tiles, as the GCP center lay within the padding area along one side. Conversely,
the generation of 224 × 224 tiles resulted in four distinct tiles since the GCP center was
situated within a corner within the 25% padding.

In essence, the marker predominantly occupied a larger portion of the smaller resolu-
tion tiles, providing the model with examples featuring larger GCPs and entirely new GCP
center locations. Notably, despite the example in Figure 5, the number of tiles produced by
the tiling script remained unaffected by the tile size.
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Figure 5. Comparison of the same ground control point tiled in 512 × 512-pixel tiles, as presented by
figure (a) and tiled in 224 × 224 pixel tiles as presented by figure (b).

2.4. Computer Vision Approach

The determination of the edges of the ground control points involves a straightforward
process based on the formation of four squares. This method was implemented using the
CV2 Python library. Initially, the image was loaded (Figure 6a), and a binary mask was
created to highlight the white pixels (Figure 6b). This process yielded two square clusters
representing the white tiles of the GCP. The parameters for generating this binary mask
are typically set between [255,255,255] and [240,240,240] (hexadecimal values ranging from
#FFFFFF to #F0F0F0), which generally provided satisfactory outcomes.

Figure 6. Visual representation of the computer vision pipeline, (a) original tile, (b) binary mask with
white pixels, (c) binary mask after morphological operations, (d) Canny edge detection, (e) Hough
Line Transform, (f) intersections of lines, (g) intersection of 90º angles, (h) average point.

To minimize noise interference in the sample, morphological transformations were
applied to the mask to close internal gaps within the clusters. This step aimed to reduce
the number of undetected pixels resulting from debris like sand or leaves covering the GCP.
CV2 offers functions to perform dilation followed by erosion for this purpose.

The subsequent morphological transformation aimed to eliminate smaller clusters
outside the ground control points, which could arise from factors like white stones or
reflections in leaves. Utilizing CV2 functions for erosion followed by dilation, this operation
retained only the essential clusters. Both transformations employed a specific kernel size,
and adjustments to this kernel size would yield different outcomes. In the example, a 7 × 7
kernel was used (Figure 6c).

Following the isolation of the white tiles, detecting their edges ideally produces six
segments forming two connected squares sharing a corner. This edge detection process
employs the Canny edge detection algorithm [35] (Figure 6d). Modifiable parameters
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within these functions, notably two thresholds and the aperture size, allow for adjustments
to attain optimal results.

The resulting image comprises two long segments intersecting in the center of the
GCP, this task is well suited for line detection algorithms. The Hough Line Transform [36]
(Figure 6e) operates by representing potential lines in the image as points in a two-parameter
space: Rho, denoting the distance from the origin to the line along a normal vector, and Theta,
signifying the angle of that normal vector. As the Hough transform algorithm computes
all feasible lines that could intersect each edge in the image, it saves these lines in an
accumulator matrix, a grid in the Rho–Theta space. The accumulation of votes in this matrix
results in peaks that indicate regions where lines are most likely to exist in the image. It is
imperative during this process to filter and isolate only the lines passing through the center
of the GCP, disregarding those that intersect its edges.

After line detection, all intersections are computed and displayed as red dots in
the image (Figure 6f). However, a challenge arises as the Hough Line Transform might
detect multiple lines for the same GCP segment, leading to intersections distant from the
GCP center. To resolve this issue, angles between each pair of lines are calculated. Only
intersections originating from lines within a specified angle range, ideally close to 90º,
are considered.

Eliminating intersections outside the [75º–105º] range refines the results (Figure 6g).
Finally, averaging all the remaining points yields the outcome of this approach (Figure 6h).
This calculated average represents the center of the GCP based on this methodology.

2.5. Deep Learning Models

In this paper, we tested three configurations of the ResNet model. By modifying
the linear activation layer after the last bottleneck layer of the network with two output
neurons, for both the coordinates of the keypoint, it is possible to train such models for
regression. The two output neurons have a range of activation from 0 to 224 coinciding
with the image-relative pixel coordinate of the center of the GCP after resizing both the
tiles and the pixel coordinates to fit the input neurons of the model. The architectures
tested for this study are ResNet-50, ResNet-101, and ResNet-152; these models are proven
to be more accurate by considerable margins in classification tasks than smaller ResNets,
such as ResNet-18 or even ResNet-34 [21]. All parameters in the ResNet architecture are
trainable, and the number increases linearly with respect to the number of layers of the
model. Table 2 shows these specifications as well as the size the fully trained models have.

This paper explores three configurations of the ResNet model by adjusting the linear
activation layer post the final bottleneck layer. This modification involves incorporating
two output neurons specifically tailored for the coordinates of the keypoint. These models
are trained for regression, and the two output neurons are calibrated to have an activation
range from 0 to 224. This range corresponds to the image-relative pixel coordinates of the
GCP center, after both the tiles and pixel coordinates have been resized to align with the
input neurons of the model.

Table 2. Size and number of parameters for residual neural networks utilized.

Model Number of Parameters Size of Model

ResNet-50 23,512,130 277.289 MB
ResNet-101 42,504,258 397.366 MB
ResNet-152 58,147,906 674.413 MB

The training pipeline was constructed using the PyTorch Python library. The architec-
ture of the pretrained ResNets was sourced from the pretrainedmodels library available on
GitHub (https://github.com/Cadene/pretrained-models.pytorch, accessed on 21 February
2024). This repository aims to provide access to pretrained Convolutional Neural Net-
works, aiding in the reproducibility of research paper results. Initial tests highlighted that
utilizing pretrained models instead of training from scratch resulted in superior accuracy.

https://github.com/Cadene/pretrained-models.pytorch
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Prior research in image-related studies has consistently demonstrated the superiority of
pretrained ResNets over their trained-from-scratch counterparts [37].

All models underwent pretraining using the ImageNet dataset—a repository com-
prising over 14 million images and accessible to researchers for non-commercial use [38].
The models were configured to accept torch tensors of 224 × 224 pixels and 3 RGB channels
as input. Prior to training, the dataset was resized in memory to align with the required
specifications of the models.

For the model evaluation process, three distinct loss functions were considered: mean
absolute error (MAE) (Equation (1)), mean squared error (MSE) (Equation (2)), and smooth
L1 loss (SL1) (Equations (3) and (4)). The smooth L1 loss function incorporates a default
parameter beta, typically set to 1. This criterion employs a squared term if the absolute
error falls below beta, otherwise utilizing the L1 norm. SL1 exhibits less sensitivity to
outliers and, in certain scenarios, mitigates issues related to exploding gradients compared
to MSE [39].

MAE =
∑n

i=1 |yi − ŷi|
n

(1)

MSE =
∑n

i=1(yi − ŷi)
2

n
(2)

l(y, ŷ) = L = {l1, . . . , lN}T (3)

li =

{
0.5(yi − ŷn)2/beta if |yi − ŷi| < beta
|yi − ŷi| − 0.5 ∗ beta if otherwise

(4)

An experiment was conducted to assess the effectiveness of different loss functions
used for training a single architecture. Three pretrained ResNet-50 models underwent
training for 50 epochs, employing a learning rate of 0.001 and a batch size of 32. These
models were trained using three distinct loss functions. Post-training, the models were
evaluated against an independent test set, and their performance was assessed using all
three loss functions to determine the most accurate model. The outcomes of this experiment
are summarized in Table 3.

The model trained with mean absolute error (MAE) exhibited superior performance
across all three evaluation metrics, achieving approximately a 35% enhancement compared
to the model trained with smooth L1 loss (SL1). Notably, utilizing mean squared error
(MSE) as the loss function for the ResNet resulted in the least accurate predictions among
the three metrics assessed.

Table 3. Errors on predictions of the test set of models trained with different loss functions.

Model Trained with Mean Absolute Error Mean Squared Error Smooth L1

MAE 0.858 1.405 0.481
MSE 3.074 21.338 2.606
SL1 1.237 2.788 0.831

The training pipeline employed the Adam optimizer [40], selected for its efficacy
in optimizing stochastic objective functions based on adaptive estimates of lower-order
moments. Notably, this optimizer requires minimal tuning and is ideal for first-order
gradient-based optimization. Preliminary experiments indicated that all models converged
before reaching the 50th epoch, signifying efficient convergence rates. Table 4 presents the
shared hyperparameters utilized across all trained models in this study.
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Table 4. Common hyperparameters utilized to train all models.

Hyperparameters Value

Training epochs 50
Loss function MAE
Training slip ≈70%

Validation slip ≈15%
Test slip ≈15%

Transfer learning ImageNet
Activation function Linear

Optimizer Adam

All experiments were executed using Jupyter notebooks within the Google Colab
platform. The allocated Graphics Processing Unit (GPU) provided by the platform was
the NVIDIA Tesla T4, equipped with approximately 12.6 GB of Random-Access Memory
(RAM) and 33 GB of available disk space. Additionally, the Central Processing Unit (CPU)
allocated for computation was the Intel Xeon CPU @ 2.20GHz.

2.6. Experimental Setup

The complete raw dataset was utilized to generate two types of tiles: 224 × 224 and
512 × 512 pixels. These tiles were then distributed across a test set and a validation set,
with each set containing 15% of the tiles. The remaining 70% constituted the training set.
The primary focus of the experiments centered on identifying optimal hyperparameters
for model training and comparing various ResNet architectures—ResNet50, ResNet101,
and ResNet152. A total of 36 models were trained for the principal experiment, encom-
passing combinations of 3 learning rates ([0.01, 0.001, 0.0001]) and 4 batch sizes (16, 32, 64,
and 96) across the 3 architectures.

During training, the validation split was employed to calculate the model’s accuracy
on each epoch based on the mean absolute error (MAE) criterion. Upon reaching a new
minimum validation loss, the model was saved, ensuring that the stored model represented
the instance with the lowest validation loss within 50 epochs.

Performance evaluation on the test sets was conducted using both mean absolute error
and mean squared error metrics. The evaluation encompassed the complete test set, as well
as test sets comprising only 224 × 224 and 512 × 512 tiles individually. Figure 7 visually
illustrates the workflow of this study.

Figure 7. Workflow of the main steps performed in this study.
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3. Results
3.1. Computer Vision Approach

Initial testing revealed that the Rho parameter within the Hough Line Transform
operator significantly impacted the results. In this function, the Rho parameter determines
the granularity of the accumulator array in the Hough transform. A smaller Rho value
results in a finer resolution of the accumulator matrix, potentially enhancing the detection
of lines at finer resolutions and smaller gaps within the image. Conversely, increasing the
rho value coarsens the resolution of the accumulator matrix, accelerating the algorithm
but potentially limiting its ability to detect lines at finer resolutions or with subtle details.
Figure 6 demonstrates a prediction with an absolute distance of approximately 1.96 pixels,
specifically observed with a Rho value set to 1.15. Conversely, Figure 8 showcases three
additional examples where the computer vision-based approach predicted the point within
a reasonable distance from the human-labeled point. Notably, the optimal Rho parameter
varied for each of these images and was specifically selected to optimize the predictions.

Figure 9 presents another tile computed using the same hyperparameters, as demon-
strated in Figure 6. In this case, the Hough Line Transform operation erroneously detects
lines along the outer edges of the white squares. This detection generates crossing points
in all four corners, consequently shifting the average point away from the intended target
point. This discrepancy results in a considerable difference of 75.56 pixels between the
predicted and desired points. In more extreme scenarios, the Hough Transform may fail
to detect any lines or produce angles between the lines that deviate significantly from 90º,
leading to a lack of detected intersections and, subsequently, no point prediction.

Figure 8. Visualization of the computer vision algorithm predicting the center points of different
GCPs with the parameters utilized and the absolute error between the predicted point and the
human-labeled point.

Figure 9. Example of the computer vision pipeline with non-optimal parameters for the tile (a) un-
altered tile, (b) Canny edge detection, (c) crossing points, red points for intersections of lines, blue
point as the average crossing point.
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To investigate the impact of the Rho parameter on the Hough Transform and its
effect on the computer vision approach’s performance, an experiment was devised. This
experiment involved generating predictions for 1000 512 × 512-pixel tiles while varying
the Rho parameter from 0.5 to 3.5. Figure 10 illustrates the outcomes of this experiment
across three graphs.

The first graph (a) in Figure 10 illustrates the number of unpredicted tiles against the
Rho parameter. Lower Rho values result in fewer Hough Lines detected. Consequently,
if no lines or their intersections have acute angles, no point prediction is made. With a
starting Rho value of 0.5, over 85% of the images resulted in no prediction. However, as Rho
increases, this proportion decreases, dropping below 40% at Rho = 3.5.

The second graph (b) in Figure 10 illustrates the Mean Absolute Error (MAE) for the
computer vision pipeline against the Rho parameter. Variations in the parameter produce
minimal changes in the MAE, maintaining a relatively consistent value of approximately
75 throughout the experiment.

Lastly, the third graph (c) in Figure 10 depicts the time required to predict the thousand-
image batch against the Rho parameter. Beginning around 15 s with Rho = 0.5, the time
exponentially increases with higher Rho values, reaching over 15 min with Rho = 3.5.
Notably, there exists a substantial variance in computational time among individual images.
Images that yield numerous lines necessitate extensive computational effort to compute all
intersections between them.

Figure 10. Graphs representing the results of testing the computer vision pipeline on a thousand
images with different Rho values for the Hough Line Transform. (a) Number of unpredicted tiles vs.
Rho, (b) MAE vs. Rho, and (c) time to predict 1000 images vs. Rho.
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3.2. Deep Learning Approach: Influence of Tile Size
3.2.1. Influence with Training

The depicted graph in Figure 11 illustrates the outcomes of training using the chosen
data augmentation technique compared to training solely with one tile size resolution.
The model trained with a combination of tiles showcased significant performance gains.
Specifically, when tested against 224 × 224-pixel tiles, it outperformed the rest by over
60%. Additionally, it showcased a 25% improvement with 512 × 512-pixel tiles and an
exceptional 80% enhancement with the combined dataset of both resolutions. In contrast,
the performance of the dataset with the smaller tile size was notably poor compared to the
higher tile size or augmented datasets.

Figure 11. Mean absolute error of three ResNet-50 models trained for 50 epochs with: 224 × 224-pixel
tiles, 512 × 512-pixel tiles and a mix of both. Learning rate of 0.001 and a Batch Size of 32. Results
displayed against a test set containing only 224 × 224-pixel tiles (orange), 512 × 512-pixel tiles (light
blue), and a mix of both (dark blue).

3.2.2. Influence with Testing

The graph presented in Figure 12 offers a comparative analysis of the Mean Absolute
Error (MAE) results for all three architectures. These models were trained using a batch
size of 32 and a learning rate of 0.001, utilizing test sets composed of 224 × 224-pixel
tiles, 512 × 512 pixel tiles, and a combination of both, all sourced from the augmented
dataset. Across the board, the results indicate that the models performed less accurately
on the test sets comprising smaller tiles in comparison to the 512 × 512-pixel tiles and
the augmented set. Notably, the test set involving mixed tile sizes consistently exhibited
superior performance throughout all three models when compared to the other test sets.

In Figure 13, an extensive comparison of the Mean Absolute Error (MAE) across all
trained models is presented against the three distinct test sets. These findings reinforce the
trends observed in previous experiments. Specifically, the MAE scores from the 512 pixel
test set were consistently, on average, 71.388% lower than those obtained from the 224 pixel
test set.

Once again, the test set consisting of a mix of tile sizes demonstrated superior perfor-
mance across all models. On average, its Mean Absolute Error was approximately 80.513%
lower than that of the 224-pixel test set and exhibited a 30.113% reduction compared to the
512-pixel test set. These findings solidify the superiority of the model trained on mixed tile
sizes in comparison to the single tile-size-based models.
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Figure 12. Mean absolute error of three models: ResNet-50, ResNet-101 and ResNet-152, trained
for 50 epochs with a mix of 224 × 224- and 512 × 512-pixel tiles, with a learning rate of 0.001 and a
Batch Size of 32. Results displayed against a test set containing only 224 × 224-pixel tiles (orange),
512 × 512-pixel tiles (light blue), and a mix of both (dark blue).

Figure 13. Comparison of mean absolute error of all trained models in order against a test set
composed of 224 × 224-pixel tiles, 512 × 512-pixel tiles and a mix of both. Each color represents a
single ResNet model with specific hyperparameters.

Table 5 provides an overview of the average MAE across different image-size test sets
for each studied architecture (ResNet50, ResNet101, and ResNet152). Consistently, the data
align with the previous observation highlighting the superior performance of the mixed
tile models.

Across the architectures, performance is notably uniform, showcasing similar MAE
values. However, ResNet152 exhibited superior performance in predicting center points
within the 224 × 224-pixel tiles compared to the other architectures. In contrast, ResNet101
demonstrated relatively poorer performance in the 512 × 512-pixel tiles compared to
its counterparts.

It is important to note that all trained models underwent testing against a diverse test
set containing a mix of 224 × 224- and 512 × 512-pixel tiles.
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Table 5. Average mean absolute error across all trained models on different ResNet architectures with
different test sets: 224 × 224-pixel tiles, 512 × 512-pixels tiles, and a mix of both.

Architecture MAE for 224 × 224 MAE for 512 × 512 MAE for Mix Tiles

ResNet50 13.732 2.775 2.038
ResNet101 11.272 3.309 2.099
ResNet152 10.365 2.771 2.215

3.3. Deep Learning Approach: Main Results

Figure 14 outlines the performance outcomes for various batch sizes and learning rate
combinations specific to ResNet50. Similarly, Figures 15 and 16 depict the corresponding
results for ResNet101 and ResNet152, respectively. Notably, Figure 16 lacks results for
models trained with a batch size of 96. This omission arises due to the substantial memory
requirements (as detailed in Table 2) for ResNet152 models and the memory limitations of
the Google Colab environment (approximately 12.6 GB), rendering the use of such a batch
size unfeasible within this experimental setup.

The impact of hyperparameter configurations on model accuracy is evident from the
presented results. The most optimal performance was achieved by ResNet152, yielding an
MAE of 0.723 when trained with a batch size of 32 and a learning rate of 0.0001. Following
closely, ResNet101 attained an MAE of 0.746 with a batch size of 64 and a learning rate
of 0.0001, securing the second-best performance. ResNet50, utilizing default parameters,
obtained an MAE of 0.858 with a batch size of 32 and a learning rate of 0.001, positioning it
in third place among the tested configurations.

ResNet 50

Figure 14. Accuracy (MAE) of ResNet50 with different hyperparameters (batch size and learning
rate) after 50 Epochs of training.

ResNet 101

Figure 15. Accuracy (MAE) of ResNet101 with different hyperparameters (batch size and learning
rate) after 50 Epochs of training.
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ResNet 152

Figure 16. Accuracy (MAE) of ResNet152 with different hyperparameters (batch size and learning
rate) after 50 Epochs of training.

Table 6 shows the mean MAE and MSE across all three architectures as well as their
standard deviations, while ResNet101 performed best overall, all models scored on average
around 2 pixels MAE.

Table 6. Mean MAE and MSE as well as the standard deviation for the results of all trained models
in all three architectures.

Architecture Mean MAE Standard Deviation
for MAE Mean MSE Standard Deviation

for MSE

ResNet50 2.133 1.265 12.061 12.915
ResNet101 1.841 1.116 9.180 10.439
ResNet152 2.215 1.172 14.032 14.473

The influence of the learning rate hyperparameter on the model performance is notably
evident. As demonstrated in Table 7, reducing the learning rate correlates with enhanced
accuracy. This table presents the mean values for both MAE and MSE, accompanied by
their respective standard deviations, showcasing a consistent reduction in these metrics as
the learning rate decreases. Similarly, Table 8 explores the impact of varying batch sizes
on model performance, portraying MAE and MSE alongside their standard deviations.
Interestingly, while mean values hover around 2 for MAE and 10 for MSE across different
batch sizes, there appears to be no direct correlation between altering the batch size in
isolation and achieving improved performance.

Table 7. Mean MAE and MSE as well as the standard deviation for the results of all trained models
in all three studied learning rates.

Learning Rate Mean MAE Standard Deviation
for MAE Mean MSE Standard Deviation

for MSE

0.01 3.475 0.716 26.328 9.477
0.001 1.505 0.516 5.860 4.998

0.0001 1.167 0.341 2.463 1.437

Table 8. Mean MAE and MSE as well as the standard deviation for the results of all trained models
in all three studied batch sizes.

Batch Size Mean MAE Standard Deviation
for MAE Mean MSE Standard Deviation

for MSE

16 2.083 0.831 12.877 11.618
32 1.929 1.228 10.446 12.340
64 1.995 1.244 10.752 12.975
96 2.260 1.596 12.415 15.187
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3.4. Deep Learning Approach: Individual Model Analysis

For validation of model convergence throughout training, both the training and
validation MAE losses were recorded per epoch. Among these, the model chosen was the
one displaying the lowest validation loss within the 50 epochs. Figure 17 visualizes the
progression of training and validation losses across 50 epochs for each architecture. All
models reach convergence well before the 35th epoch.

Displayed in Figure 18 are frequency distribution plots portraying the disparity be-
tween human-labeled and model-predicted X and Y coordinates. These plots focus on the
three most effective models derived from the array of experiments conducted. A slight bias
is noticeable towards a positive X coordinate (indicating predictions skewed to the right of
the center point). Specifically, ResNet-50 model showcased an average X coordinate error
of 1.14 pixels, while ResNet-101 displayed 0.33 pixels, and ResNet-152, 0.70 pixels. Corre-
spondingly, their standard deviations were 6.19, 6.52, and 7.17, respectively. To address this
bias, an experiment was executed, extending the training of these top-performing models
by an additional 150 epochs each.

(a) (b)

(c)

Figure 17. Graphs comparing the training loss MAE (orange) and validation loss MAE (red) on
different models across 50 epochs of training. (a) ResNet 50: learning rate = 0.01, batch size = 64,
(b) ResNet 101: learning rate = 0.001, batch size = 96 and (c) ResNet 152: learning rate = 0.01, batch
size = 16.
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(a) (b)

(c)

Figure 18. Frequency distribution plot for the difference between the human-labeled and model-
predicted point coordinates (X red and Y blue). Three architectures trained for 50 epochs are displayed:
(a) ResNet 50: learning rate = 0.001, batch size = 32, (b) ResNet 101: learning rate = 0.0001, batch
size = 64 and (c) ResNet 152: learning rate = 0.001, batch size = 32.

In Figure 19, the outcomes of the extended training experiment are depicted. With the
additional training, there is a marginal reduction in the mean absolute error (MAE) for
all models, alongside a significant decrease in the bias toward the X coordinate. Post-
extension, ResNet-50 exhibits an average error of 0.62 for the X coordinate, while ResNet-
101 demonstrates −0.18, and ResNet-152 shows −0.06. Their respective standard deviations
for this metric are 6.18, 9.18, and 9.06. In Table 9, the MAE for models after undergoing
four times the initial epochs is tabulated, showcasing a notable reduction in losses across
the board, with ResNet-152 achieving a value lower than 0.6.

Figure 20 shows some examples of the top 50% predictions of the best performing
model (ResNet-152: batch size = 32, learning rate = 0.0001 trained for 200 Epochs). The red
dot represents the prediction of the model and the blue the human-labeled center of the
GCP, if both points are in close vicinity the red one will appear on top. Predictions in
problematic tiles are displayed in the examples, (b) and (d) Figure 20 show control points
partially covered by leaves and sand. (a) Figure 20 shows a tile that is comprised almost
entirely by the marker. (e) Figure 20 shows sun glare occurring, (c) Figure 20 is a marker
whose center is on the edge of the tile and (f) Figure 20 is a smaller marker due to a higher
resolution image.
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(a) (b)

(c)
Figure 19. Frequency distribution plot for the difference between the human-labeled and model-
predicted point coordinates (X red and Y blue). Three architectures trained for 200 epochs are
displayed: (a) ResNet-50: learning rate = 0.001, batch size = 32, (b) ResNet-101: learning rate = 0.0001,
batch size = 64 and (c) ResNet-152: learning rate = 0.001, batch size = 32.

Table 9. Comparison of the MAE for the top three performing models after being trained for 50 and
200 epochs. (ResNet-50: learning rate = 0.001, batch size = 32, ResNet-101: learning rate = 0.0001,
batch size = 64 and ResNet-152: learning rate = 0.0001, batch size = 32.)

Architecture MAE after 50 Epochs MAE after 200 Epochs

ResNet-50 0.858 0.664
ResNet-101 0.746 0.632
ResNet-152 0.721 0.586
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Figure 20. Examples of the top 50% predictions of the ResNet-152 trained for 200 epochs with batch
size = 32 and learning rate = 0.0001. The blue point represents the human-labeled keypoint and the
red point represents the prediction

In Figure 21, three examples of the worst 5% predictions are showcased to study the
model’s limitations. Instance (a) illustrates an extreme scenario with dense vegetation
obscuring the tile, while in (b), environmental conditions and image acquisition parameters
resulted in image blurring, making the center cross of the marker indistinct. In tile (c),
the marker’s center lies on the image’s edge, leading to inaccurate center detection by the
model. Conversely, within the bottom 5% of predictions, some instances exhibit the model’s
higher accuracy compared to the human-labeled center point. These cases are portrayed in
Figure 22.

Figure 21. Examples of the bottom 5% predictions of the ResNet-152 trained for 200 epochs with
batch size = 32 and learning rate = 0.0001. The blue point represents the human-labeled center point
and the red point represents the prediction
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Figure 22. Three prediction examples with human error by the ResNet152 batch size = 32, learning
rate = 0.0001, the blue point represents the human-labeled center point and the red point represents
the prediction. Images (a,c) are 512 × 512-pixel tiles, and (b) is 224 × 224-pixel tiles.

3.5. Deep Learning: Training Time

Regarding the model training time, Table 10 shows the average time it took to train
each of the different models for 50 epochs with all configurations. A deeper ResNet model
means a higher number of parameters to train and backpropagate (Table 2) and, with this,
a longer training time.

Table 10. Average training time for 50 epochs for all tester architectures.

Architecture Average Training
Time (s)

Average Training
Time (HH:MM:SS)

Average Seconds
per Epoch

ResNet-50 6559.116 01:49:19 131.182
ResNet-101 9802.033 02:43:22 196.040
ResNet-152 11,893.568 03:18:13 237.871

3.6. Deep Learning: Prediction Time

To test the inference time of the different models, a number of test set (1200 tiles)
predictions were carried out. Table 11 shows the results of computing the center of the
control points utilizing only the CPU (Intel Xeon CPU @ 2.20GHz) and utilizing also a GPU
(NVIDIA Tesla T4). Similar to the training times, the deeper the model, the longer it takes
for the inference. The inference time when using GPU is less than 3% of the inference time
using only CPU.

Table 11. Average time of prediction of 1200 tiles with batch size = 32 for different architectures with
only a CPU and with the use of a GPU.

Architecture Average
Seconds CPU

Average
Min:Sec CPU

Average
Seconds GPU

Average
Min:Sec GPU

ResNet50 238.083 03:58 6.687 00:07
ResNet101 401.205 06:41 7.482 00:07
ResNet152 582.306 09:42 9.415 00:09

4. Discussion

This study aimed to explore a deep learning-driven methodology for accurately
localizing the center of black and white squared Ground Control Points (GCPs) from RGB
images captured by drones. We conducted a comparative analysis involving three ResNet
architectures (ResNet-50, ResNet-101, and ResNet-152) with varying hyperparameters.
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The ResNet-152 model, trained with a learning rate of 0.0001 and a batch size of 32,
demonstrated the most favorable performance, achieving a mean average error (MAE) of
0.586 pixels, indicating sub-pixel accuracy. Comparable results were observed with other
architectures, with the ResNet-50 and ResNet-101 achieving MAEs of 0.664 pixels and
0.632 pixels, respectively.

Studies relying solely on a computer vision approach, employing methods like the
Hough transform, have demonstrated a precision level averaging 0.51 pixels in discerning
centers compared to reference centers [36]. However, these methodologies were executed
on small 12 × 12 pixel tiles exclusive to markers. Implementing such an approach in
real-world scenarios necessitates an initial algorithm to accurately extract these centers,
a method not detailed by the authors of this study. Without precise extraction of markers
from images, this approach might lack applicability in diverse drone imagery contexts.

In our investigation, we experimented with a computer vision pipeline leveraging the
Hough transform, akin to the reference study [36]. Unlike the referenced methodology, our
pipeline processed complete 512 × 512-pixel tiles encompassing substantial background
along with the Ground Control Points (GCPs), while this algorithm yielded reasonably
accurate outcomes, its heavy reliance on parameter settings poses a significant challenge.
Fine-tuning parameters becomes imperative for individual images, accommodating varia-
tions in lighting conditions, material coverage over control points and resolution disparities,
among other factors. Consequently, this approach lacks the capability to generalize for
automation. Modifying parameters such as the Rho value in the Hough Line Transform
does not enhance overall performance but substantially reduces the number of unpredicted
tiles at the expense of exponentially elongated prediction times for the pipeline.

An alternative study introduced an approach using edge-oriented histograms in con-
junction with a modified Canny edge detection, coupled with a CNN [14]. This method
effectively segmented GCP markers, accommodating variations in scale, rotation, and il-
lumination. However, the pipeline demonstrated shortcomings when faced with image
irregularities, such as unclear marker visibility, the presence of other white objects proxi-
mate to or beneath the GCP, and the influence of shadows on the GCP.

Studies using deep learning for broad GCP location and computer vision for center de-
tection [16] are effective within the scope of controlled conditions. However, this method’s
reliance solely on computer vision algorithms for edge detection is susceptible to failure in
scenarios less conducive to ideal conditions, as evidenced by the findings in this study.

In contrast, the deep learning approach adopted in our study exhibits robustness
against these data irregularities (refer to Figure 20). By training the model with less distinct
examples, it gains the capacity to discern GCPs across a wide spectrum of scenarios, offering
enhanced adaptability to various environmental conditions.

The augmentation of the dataset through the inclusion of varied tile sizes has proven
to be a potent strategy in enhancing the accuracy of diverse models. Upon comparing the
performance of ResNet architectures (ResNet-50, ResNet-101, and ResNet-152), it is evident
that all these architectures are capable of achieving sub-pixel Mean Absolute Error (MAE)
against an independent test set, provided their hyperparameters are appropriately tuned.

While ResNet-152 emerged as the top-performing model after 50 epochs of training,
achieving a modest increase of approximately 2.5% in accuracy over the best ResNet-101
model, this improvement comes at the expense of a larger model size (refer to Table 2).
Moreover, employing ResNet-152 entails roughly 20% longer training times (as indicated
in Table 10). Additionally, the computational resources required for predictions are notably
impacted by deeper models; transitioning from ResNet-101 to ResNet-152 architecture
increases the prediction time by approximately 30% when relying solely on CPU computa-
tions, although this effect is significantly mitigated when utilizing a GPU.

Choosing the appropriate model for a specific pipeline should consider the technical
constraints and logistical implications of the project, while 50 epochs generally suffice
for model convergence, further training can marginally enhance accuracy while reducing
biases in error along any axis.
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It is straightforward to reproduce the methodology delineated in this study concern-
ing data preprocessing, augmentation, and machine learning predictions. Paramount to
the successful deployment of this framework is the acquisition of an extensive, human-
annotated dataset meticulously capturing the myriad of scenarios anticipated in real-world
applications. Variables such as drone flight altitudes, diverse lighting conditions, GCP
marker characteristics and potential obstructions on GCPs among other factors stand as
pivotal components necessitating representation within this dataset. The comprehensive-
ness and fidelity of this dataset significantly underpins the robustness and adaptability of
the proposed pipeline to diverse real-world conditions. Further, adequate finetuning of the
hyperparameters can also significantly influence model performance.

This study exclusively focused on black and white-squared GCPs, leaving scope for
further exploration regarding the transferability of the model to recognize other shapes and
materials of GCPs. The models were specifically trained to detect the image-relative pixel
coordinates of GCPs within tiles of limited, fixed size. Future investigations should delve
into methodologies to identify the pixel coordinates of GCP centers within variably-sized
entire images.

It is generally preferred by drone operators to fly in clear sky conditions, however due
to weather and time constraints this isn’t always possible. Stable conditions are otherwise
preferred, to limit the appearance of clouds on the final orthomosaic. Limited instances
of spotty cloud directly over GCP targets occurred in the dataset, and so performance
in this regard has not been evaluated. For the purpose of model training, additional
data augmentation to synthetically alter illumination can lead to better generalization in
differing flight conditions.

Potential avenues for exploration could involve integrating a classifier to identify tiles
containing GCPs and subsequently performing keypoint regression exclusively on those
tiles. Alternatively, employing object detection on entire images to focus tiling efforts solely
on areas where GCPs are detected could be explored. Further research could explore the
utilization of the You Only Look Once (YOLO) architecture [41], a state-of-the-art, real-time
object detection system. YOLOv7, in particular, has demonstrated high accuracy and speed
across various scenarios [42], and its applicability for pose estimation via keypoint detection
makes it a promising avenue to explore. Investigating a rapid, single-step approach to
detect both the GCP marker and its center point using this model could be a valuable
pursuit. Additionally, recently released multimodal large language models (LLMs) such as
GPT-4V, Mixtral 8x7B and CogVLM are worth exploring for their capabilities in GCP center
point detection, based on image tiles small enough to be ingested for inference. The same
models can potentially be used to first look for GCP markers in entire images before
tiling and selecting the relevant tiles for center point inference. Particularly, investigating
improvements based on Set-of-Mark prompting using output from segmentation such as
Segment Anything Model (SAM) holds potential to fast-track this process, especially as the
hardware requirements of running inference based on LLMs can still present a bottleneck.

In practice, the model developed in this study will be integrated into an operational
workflow. Its predictions will be cross-validated against further human annotations. The ul-
timate goal is to automate the generation of accurate, geo-referenced spatial datasets,
rendering the process more precise and faster than manual intervention. This move to-
wards automation seeks to replace human annotators, ensuring efficient and accurate
processing of spatial data.

5. Additional Content
Tile Classifier

In this paper, a method to detect the centers of black and white squared GCP markers
is outlined, albeit not encompassing the entire pipeline required for handling variable
resolution images. As a proof of concept, a machine learning tile classifier was developed
to differentiate tiles containing GCPs from those without.
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Due to time constraints and this aspect not being the primary focus of the study, Mi-
crosoft Lobe was utilized to construct the model. Lobe is a desktop application facilitating
the creation, management, and utilization of custom machine learning models for image
classification. Training data, obtained through the tiling script, consisted of approximately
10,000 512 × 512-pixel tiles, with 60% devoid of GCPs and 40% including them. The ap-
plication offers real-time control over the training process. Specifically, the model within
Lobe can be optimized for speed, in which case MobileNetV2 is used, or for accuracy,
in which a ResNet50-V2 is trained. Lobe automatically takes care of data augmentation in
the background to improve training accuracy. Once an acceptable accuracy level is achieved,
the model can be tested within the application by introducing new, unlabeled examples.
Additionally, misclassified examples can be utilized for further training. Although the
model was trained exclusively using 512 × 512-pixel tiles, Lobe supports training with
variable-sized images.

Once the model was trained, it was exported as a protobuf file for integration with
TensorFlow in Python3, enabling its incorporation into the broader pipeline. The Lobe
desktop application purported a 98% accuracy in classification, albeit when tested against
tiles it had already encountered. To validate its performance further, a new evaluation
was conducted involving approximately 7000 unseen 512 × 512-pixel tiles—60% devoid
of GCPs and 40% containing them. Table 12 demonstrates the outcomes of this assess-
ment, indicating a close to 97% accuracy in classifying unseen tiles, both those with and
without GCPs.

Table 12. Results of the Lobe trained classifier.

Statistic Percentage

GCP classified as GCP 96.8034%
GCP classified as Empty 3.1965%

Empty classified as Empty 96.5290%
Empty classified as GCP 3.4709%

Total Accuracy 96.6847%

Based on the visual inspection of misclassified examples, it appears that many misclas-
sifications occur when the GCP marker is positioned near the edges of the image, similar to
the scenario depicted in image (c) in Figure 21. Additionally, shapes sharing structural and
color resemblances with the markers may lead to erroneous classifications.

For a comprehensive view of the tile detection process and an illustration of a mis-
classified tile, Figure 23 provides a detailed depiction. The image is initially divided into
512 × 512 pixel tiles, each of which passes through the TensorFlow model. Tiles tinted in
blue represent those identified as GCP-containing tiles. In one instance, the entire GCP
marker is correctly identified within a single tile, while the surrounding tiles, despite
padding, do not encompass the marker’s center, correctly classified as non-GCP. However,
an adjacent tile contains a signpost casting a shadow that bears a striking resemblance to a
black corner of a GCP, potentially leading to the misclassification observed.
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Figure 23. Example of the classifier on a full size image. The blue tinted tiles are the ones classified
as containing a GCP.

6. Conclusions

This study extensively explored various ResNet architectures and their hyperparam-
eters to accurately localize the center of black and white squared GCP markers within
fixed-sized image tiles. Comparisons between deep learning and a purely computer vision
approach employing Hough Transform revealed a significant enhancement in performance
with the deep learning method. The ResNet-152 architecture, trained with a batch size of
32, a learning rate of 0.0001, and utilizing the Adam optimizer, showcased, to the best of
our knowledge, acceptable accuracy with sub-pixel MAE results.

Notably, the investigation into automating GCP detection in drone imagery via a
purely deep learning approach is a novel contribution in the literature. The study’s out-
comes underline the potential of the proposed pipeline in minimizing human efforts
required for georeferencing aerial images. However, while promising, more research is
essential to further generalize and optimize this approach for real-world applications
across diverse scenarios. Exploring other model architectures and LLMs may contribute to
these goals.
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