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Abstract: The ability to rapidly and accurately delineate open-pit granite mining areas is pivotal for
effective production planning and environmental impact assessment. Over the years, advancements
in remote sensing techniques, including the utilization of satellite imagery, LiDAR technology and
unmanned aerial vehicles, have revolutionized the way mining areas are monitored and managed.
Simultaneously, in the context of the open-pit mining area extraction task, deep learning-based
automatic recognition is gradually replacing manual visual interpretation. Leveraging the potential
of unmanned aerial vehicles (UAVs) for real-time, low-risk remote sensing, this study employs UAV-
derived orthophotos for mining area extraction. Central to the proposed approach is the novel Gather–
Injection–Perception (GIP) module, designed to overcome the information loss typically associated
with conventional feature pyramid modules during feature fusion. The GIP module effectively
enriches semantic features, addressing a crucial information limitation in existing methodologies.
Furthermore, the network introduces the Boundary Perception (BP) module, uniquely tailored to
tackle the challenges of blurred boundaries and imprecise localization in mining areas. This module
capitalizes on attention mechanisms to accentuate critical high-frequency boundary details in the
feature map and synergistically utilizes both high- and low-dimensional feature map data for deep
supervised learning. The suggested method demonstrates its superiority in a series of comparative
experiments on a specially assembled dataset of research area images. The results are compelling, with
the proposed approach achieving 90.67% precision, 92.00% recall, 91.33% F1-score, and 84.04% IoU.
These figures not only underscore the effectiveness of suggested model in enhancing the extraction of
open-pit granite mining areas but also provides a new idea for the subsequent application of UAV
data in the mining scene.

Keywords: open-pit granite mine; mining; quarry; unmanned aerial vehicles; multi-scale feature
fusion; attention mechanisms

1. Introduction

Open-pit mining plays a pivotal role in supplying raw materials for various sectors
including construction, municipal engineering, and industrial production. However, this
form of mining poses potential threats to the ecological balance, impacting soil, water,
and air quality [1–3]. Monitoring and assessing changes in open-pit mines are therefore
imperative. This involves the crucial task of tracking the extent of mining operations.
Such monitoring helps in identifying instances of excessive mining that adversely affect
the local environment [4–6]. Furthermore, integrating these data with the 3D point cloud
information of the mine enables accurate volume calculations [7].

In open-pit mining, different types of rocks exhibit distinct characteristics in remote
sensing image data. Image information formed by the red (R), green (G), and blue (B) bands
can provide rich feature information. Techniques such as Principal Component Analysis
(PCA), band ratio, and false-color synthesis can be employed, even in multispectral remote
sensing imagery, to enhance the discrimination of different rock units [8]. Traditionally,
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data collection in these areas involves using total stations or Global Navigation Satellite
Systems (GNSS-RTK) to create three-dimensional models, yielding detailed images of the
mining zones. However, the rugged terrain of open-pit mines often makes data acquisition
in steep areas challenging. These mining environments pose safety risks and are associated
with high costs and time-consuming data collection processes. Furthermore, such methods
yield limited data points, insufficient for a comprehensive characterization of the area [9].
Consequently, remote sensing, a non-intrusive method that does not physically interact
with the data source or disrupt mining activities, has emerged as the preferred approach
for data acquisition in mining. Researchers have carried out long-term exploration to solve
the feature extraction problem in remote sensing images. For example, Chen [10] employed
various supervised classification techniques such as maximum likelihood estimation (MLE),
minimum distance classification (MDC), and support vector machine (SVM) on GaoFen-1
satellite images. This study examined the differences in principles, technologies, processes,
and accuracy of these methods. Maxwell et al. [11] explored combining SVM with random
forests for land cover classification in mountaintop open-pit coal mines, utilizing NAIP
orthophotos and RapidEye satellite images. They discovered that SVM could effectively
complement random forests in classifying land cover of surface mines. Cheng [12] uti-
lized GaoFen-1 satellite imagery and SVM classification to analyze land cover in open-pit
mining areas and to assess ecological restoration. Recent advances in deep learning have
brought convolutional neural networks (CNNs) into the spotlight. Chen et al. [13], for in-
stance, developed an enhanced UNet+ network structure and conducted experiments on
GaoFen-2 images to improve information mapping accuracy in complex open-pit mining
environments. Xie et al. [14] used GaoFen-2 satellite images to create a semantic segmen-
tation dataset for open-pit mines through manual annotation, proposing a UNet-based
pixel-level semantic segmentation model. Ren et al. [4] introduced a model based on an
expectation maximization attention network and a fully connected conditional random
field. Xie et al. [15] presented DUSegNet, a new network for segmenting open-pit mining
areas, which synergizes the strengths of SegNet, UNet, and D-LinkNet, showing competi-
tive performance on GaoFen-2 images. Liu et al. [16] proposed an integrated framework for
small object detection and drivable area segmentation in open-pit mining, incorporating
a lightweight attention module to enhance focus on small objects’ spatial and channel
dimensions, without slowing down inference. Li et al. [17] developed a siamese multi-scale
change detection network (SMCDNet) with an encoder–decoder architecture for change
detection in open-pit mines, emphasizing the integration of low-level and high-level change
features. Satellite images have a long interval between monitoring the same area. Further-
more, the extensive nature of them complicates the delineation of boundaries in mining
areas. In contrast, Unmanned Aerial Vehicles offer close-range, multi-perspective, and time-
efficient imaging for terrain analysis and mineral exploration [18,19]. Eppelbaum et al. [20]
utilized UAV magnetic field and Very Low Frequency (VLF) detection technology to obtain
unique geological geophysical information. They proposed a new complex environmental
interpretation system for locating targets in noisy backgrounds and eliminating the influ-
ence of terrain undulations, used to search for useful minerals. Thiruchittampalam et al. [21]
used UAV remote sensing technology to characterize coal mine waste, extracting texture
and spectral features from real-time on-site data, and employing machine learning al-
gorithms combined with expert experience for waste classification. Kou et al. [22] used
high-resolution images obtained by UAVs to identify acidic mine drainage in coal mining
areas, comparing three methods—SVM, Random Forest (RF), and UNet—and proposing
an efficient and economical monitoring approach. Utilizing oblique photography, these
UAVs can create 3D models and generate point cloud data [7,23]. This process yields an
abundance of high-quality images and digital products [24]. Deep learning techniques are
instrumental in pinpointing mining areas and streamlining the computation in 3D point
clouds. Moreover, the model construction process, requiring numerous photos, lays the
groundwork for deep learning datasets [23,25,26]. Thus, the integration of deep learning in
open-pit mining research and application is highly valuable.
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This study takes the No.2 mine located in Xiling, Huashan Township, Zhongshan
County, Hezhou City, Guangxi Province, as the study area, which is an open-pit granite
mine. A drone is employed to collect and establish a dataset. UAV imagery, offering
centimeter-level resolution compared to the meter-level resolution of remote sensing im-
ages, enhances the precision in identifying mining areas. This high accuracy expands the
potential for applications across various fields. Nonetheless, the detailed nature of high-
resolution images includes a wide array of land features, like water bodies, soil, vegetation,
and other elements, which pose challenges to the extraction process. And the research
conducted in this study has revealed that the use of feature pyramid networks (FPN) or
similar structures in high-resolution UAV imagery for multi-scale feature fusion presents a
challenge of information loss. FPN, which downsamples the image at multiple levels and
combines multi-scale feature maps, reduces its size but at the same time sacrifices some of
the original data [27–29]. When it comes to information exchange between different levels,
obtaining data from non-adjacent levels requires an indirect path through intermediate
layers. This indirect transmission hinders the impact of information from feature maps
beyond adjacent levels on the current level. Moreover, the recursive transmission of in-
formation further aggravates information loss, resulting in the suboptimal utilization of
data provided by features at different scales and an inadequate identification of mining
areas. Moreover, in the high-resolution low-altitude drone imagery of mining areas, there
are different interfering objects, such as mining trucks, minerals, water bodies, and bare
soil. It is crucial to distinguish these objects from the mining area itself. This is in contrast
to remote sensing images of satellites, where the features of the mining area appear as a
unified whole. Therefore, there is a need for higher standards in accurately positioning the
mining area and identifying its boundaries.

Based on the above research and analysis, this study introduces the Gather–Injection–
Perception Net (GIPNet) to overcome challenges in extracting information from open-pit
granite mining areas using UAV aerial images. GIPNet consists of three stages: the feature-
extraction, -processing, and -decoding stages. The feature-extraction stage leverages the
corresponding deep learning backbone. In the feature-processing stage, the GIP module
is crafted to handle both low-dimensional local features and high-dimensional semantic
features, thereby preserving more information during multi-scale feature fusion. In the
feature-decoding stage, spatial upsampling attention and the introduction of boundary
loss for boundary aggregation supervision are incorporated to enhance the model’s ability
to recognize boundaries. Enhancements are introduced to optimize information retention
within the GIP module. The conventional pooling downsampling operations are replaced
by a discrete wavelet transform module, preserving more information in the channel
dimension while reducing image size. A dual-branch attention module segregates features
into high-frequency local information and low-frequency global information, injecting
them into different levels of feature maps as complementary details. The overall GIP
module is further refined with the addition of a perception stage, where results from the
fusion of multiple feature maps directly engage in information interaction, complementing
new features generated in the injection stage. This refinement enables the model to more
effectively address information loss during multi-scale feature fusion. Transitioning to the
feature-decoding stage, the BP module is designed with two branches corresponding to
two loss functions to better distinguish boundaries in open-pit mining areas. The proposed
upsampling attention branch activates significant areas in the image using the sigmoid
function during the overlay process of feature maps at different scales. The boundary
aggregation branch enhances the spatial boundary details of advanced semantic features
through attention mechanisms, enriching the semantic content of lower-level features.
The outputs of both branches contribute to model training. GIPNet is applied to an open-
pit granite mining area in Xiling, Huashan Township, Zhongshan County, Hezhou City,
Guangxi Province, using a dataset of drone orthophoto maps. The study aims to enhance
the extraction efficiency of mining areas by focusing on two aspects: preserving information
from multi-scale feature fusion and improving the identification and positioning capabilities
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of open-pit mining area boundaries. This provides a basis for mining management and
ecological environment protection.

2. Methodology
2.1. Motivation

The study tackles challenges related to extracting high-resolution images from mining
areas. It aims to enhance the effectiveness of mine area identification by introducing the
proposed GIPNet in the research context of open-pit granite mines. The overall technical
process is illustrated in Figure 1. Initially, raw image data collected by drones is imported
in the data preparation phase. The orthophoto of the study area is generated through steps
such as aerotriangulation and three-dimensional reconstruction. Subsequently, the per-
tinent open-pit mining region areas in the orthophoto are chosen for initial cropping to
diminish interference from irrelevant data. The cropped images are labeled and split
into training, validation, and test datasets. They are preprocessed to acquire the labeled
datasets. In the proposed GIPNet processing workflow, the training dataset is inputted to
build and train the GIPNet. Further optimization is conducted on the validation dataset.
Upon convergence of the training loss, the associated model weights are saved and loaded.
The model’s performance on the test dataset is assessed, and the corresponding prediction
result images are generated.

Figure 1. The flow diagram of the methodology.

In developing an encoder–decoder framework for segmenting open-pit granite mining
areas, two critical considerations arise. The first is the integration of multi-scale features.
This need stems from the substantial variation in the size and shape of mining areas
across different images. In the FPN module, feature maps of various scales and channel
numbers are aligned to a consistent channel number. They are then combined through
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element-wise addition. This technique effectively transmits information between adjacent
levels. Yet, for information exchange across multiple levels, interactions between non-
adjacent levels are limited to indirect connections via intermediate layers. Consequently,
this approach reduces the impact of non-adjacent level feature maps on the current layer.
Drawing inspiration from recent studies [30], the suggested methodology shifts focus to
intermediate layers in the feature maps. Unlike previous methods focusing on the bottom
layer, the suggested approach facilitates the merging of information from two adjacent
feature maps, aiming to decrease information loss.

The second major issue pertains to the blurring of boundaries and imprecise localiza-
tion of mining areas. In high-resolution, low-altitude drone imagery, the variety of terrains,
landforms, and features presents a considerable challenge in accurately identifying mining
areas. These factors contribute to less accurate identification results. To mitigate these
challenges, the Boundary Perception module bolsters the model’s ability to localize mining
areas more precisely by employing attention and deep supervision mechanisms, thereby
enhancing the differentiation of mining area boundaries.

Figure 2 displays the detailed structure of GIPNet. The Gather–Injection–Perception
(GIP) module selectively outputs feature maps of moderate sizes, enabling the integration
of additional adjacent feature maps for information fusion. This module also includes a
Low Stage Branch and a High Stage Branch to improve the object recognition of various
sizes within the image, each incorporating gather, injection, and perception processes.
Feature maps from the GIP module are then fed into the Boundary Perception (BA) module.
Here, the Upsampling Attention (UA) mechanism up-samples the multi-scale feature
maps while utilizing attention to highlight salient regions. Meanwhile, the Boundary
Aggregation (BA) component combines features from both lower and higher levels. This
integration compensates for the lack of spatial boundary information in high-level features
and enhances the precision in identifying mining area boundaries.

2.2. Gather–Injection–Perception Module

The GIP module consists of three key processes: gather, injection, and perception.
In the gather stage, the goal is to collect comprehensive information from both lower
and higher levels. This involves aligning multiple input feature maps to the same scale
and concatenating them along the channel dimension in both Low Gather and High
Gather steps. The subsequent Low Fuse and High Fuse stages merge images from various
channels to create the global information. The injection process enhances the traditional
interaction in FPN by fusing global information with feature maps at different levels.
The perception stage focuses on adding extra global information to offset loss incurred
during indirect propagation. The inputs include feature maps F2, F3, F4, F5, extracted from
the five-stage backbone network, where each Fi belongs to RB×CFi×RFi . Here, B represents
the batch size, C signifies the channels, and R, denoting dimensions, is calculated as
H × W. The dimensions of RF1 , RF2 , RF3 , RF4 , and RF5 are R

2 , R
4 , R

8 , R
16 , and R

32 , respectively.

2.2.1. Low Stage Branch

Based on the configuration of input feature maps in [30], this branch only uses F2, F3,
F4, and F5 generated by the backbone as inputs to gather detailed information about the
target object at lower levels, as shown in Figure 3.

Low Gather Module. This module employs intermediate feature map sizes of F4 and
F3 to generate global information LG4 and LG3, respectively, as illustrated in Figure 3a,b.
A significant difference from Gold-YOLO [30] is the use of the Discrete Wavelet Trans-
form (DWT) for processing downscaled feature maps larger than RF4 and RF3 . Traditional
downsampling through pooling can result in the loss of high-frequency information [31].
In contrast, wavelet transform, a mathematical method for signal decomposition, sepa-
rates signals into various frequency components represented by wavelet coefficients in
images [32,33]. An example is Haar filtering, which performs convolution-like operations
using four filters: a low-pass filter fLL and three high-pass filters fLH , fHL, and fHH . No-
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tably, these filters utilize a stride of 2 for downsampling. The Haar filter definition is
detailed further below.

fLL =

[
1 1
1 1

]
fLH =

[
−1 −1
1 1

]
fHL =

[
−1 1
−1 1

]
fHH =

[
1 −1
−1 1

]
(1)

These four filters are orthogonal and create a reversible matrix. The Discrete Wavelet
Transform (DWT) functions in the following manner: xLL = ( fLL ⊗ x)↓2, xLH = ( fLH ⊗ x)↓2,
xHL = ( fHL ⊗ x)↓2, xHH = ( fHH ⊗ x)↓2.

Figure 2. The architecture overview of proposed Gather–Injection–Perception Net(GIPNet) for open-
pit granite mining area extraction based on UAV aerial images. Fi, Pi, and Ni are symbols representing
feature maps at different stages, where i indicates the scale of the feature map in the backbone. When
an image is input into the network, different scale feature maps Fi are obtained through the backbone
section. Gray, yellow, red, and blue colors represent feature maps at different levels, and the size
of the rectangles, along with i, distinguishes the scales. These feature maps are input into the GIP
framework for multi-scale fusion. LGi and HGi represent global information at low stage and high
stage. First is the low stage, where F2 to F4 generate global information LGi at two scales, and colors
indicate the subsequent paths they follow. High and Low in the figure represent the division of
feature maps into high-frequency and low-frequency information. Dashed lines denote the operation
of injecting global information LGi and HGi into the feature maps. After the low stage, the obtained
feature maps are P3, P4, and P5, which serve as inputs to the high stage, ultimately yielding N3,
N4, and N5. Finally, in the Boundary Perception stage for decoding features, F2, N4, and N5 are
inputs for Boundary Aggregation (BA), while N3, N4, N5 are inputs for Upsampling Attention (UA).
The results from both modules contribute to model training. The prediction results are output from
the UA module.

Here, x symbolizes the input two-dimensional image matrix. The symbol ⊗ repre-
sents the convolution operation, and ↓2 signifies standard downsampling by a factor of 2.
Essentially, the DWT involves four predetermined convolution filters, each with a stride
of 2, to execute the downsampling process. As per Haar transform theory, the values of
xLL, xLH , xHL, and xHH at a given position (i, j) after undergoing a two-dimensional Haar
transform are defined by the subsequent formulas.
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xLL(i, j) = x(2i − 1, 2j − 1) + x(2i − 1, 2j) + x(2i, 2j − 1) + x(2i, 2j)
xLH(i, j) = −x(2i − 1, 2j − 1)− x(2i − 1, 2j) + x(2i, 2j − 1) + x(2i, 2j)
xHL(i, j) = −x(2i − 1, 2j − 1) + x(2i − 1, 2j)− x(2i, 2j − 1) + x(2i, 2j)
xHH(i, j) = x(2i − 1, 2j − 1)− x(2i − 1, 2j)− x(2i, 2j − 1) + x(2i, 2j)

(2)

The terms xLL, xLH , xHL, and xHH correspond to four downsampled images. They
retain various frequency information: xLL for low-frequency details in both horizontal
and vertical directions; xHL for high-frequency in horizontal and low-frequency in ver-
tical; xLH for low-frequency in horizontal and high-frequency in vertical; and xHH for
high-frequency information in both directions. The Discrete Wavelet Transform (DWT) in-
corporates a downsampling phase, yet thanks to the orthogonality of its filters, it allows for
the original image to be losslessly reconstructed from these components. The mathematical
representation of this process is detailed below.

x(2i − 1, 2j − 1) =
xLL(i, j) − xLH(i, j) − xHL(i, j) + xHH(i, j)

4

x(2i − 1, 2j) =
xLL(i, j) − xLH(i, j) + xHL(i, j) − xHH(i, j)

4

x(2i, 2j − 1) =
xLL(i, j) + xLH(i, j) − xHL(i, j) − xHH(i, j)

4

x(2i, 2j) =
xLL(i, j) + xLH(i, j) + xHL(i, j) + xHH(i, j)

4

(3)

Figure 3. The structure of GIP Low Stage Branch Modules. (a) Low Gather Module base on F4;
(b) Low Gather Module base on F3; (c) Low Injection Module; (d) Low Perception Module. DWT
represents Discrete Wavelet Transform. LGi means global information at low stage with a size of RFi .
F5LL, also represented in (c) as F5low, represents the low-frequency feature on the F5treated by DWT.

This suggests that using xLL, xLH , xHL and xHH , one can infer the pixel values at
any location in the two-dimensional image matrix x. As a result, applying DWT makes it
feasible to adjust the dimensions of F2 to align with those of F3 and F4, and similarly for F3
with F4. Nevertheless, the wavelet transform’s effective information preservation incurs an
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increase in channel dimensions. Following a single wavelet transform, the height and width
of images are reduced by half, while the channel count quadruples from C to 4C, leading to

higher computational demands. To address this, in the initial stage, F2HH ∈ RB×CF2×
RF2

2 ,
derived from the wavelet transform, is chosen for subsequent multi-level DWT iterations
to match F4’s size, as depicted in Figure 3a.

For aligning feature maps of smaller scales, such as adjusting F5 to match F4’s scale
and then aligning both F5 and F4 with F3, bilinear interpolation is utilized. The aligned
feature maps are then concatenated, as depicted in Figure 3a,b.

Low Fuse Module. This module represents a departure from the approach used
in Gold-YOLO [30]. Instead of traditional methods, 1 × 1 and 3 × 3 multidimensional
attention dynamic convolutions, termed ODConv, are implemented on the RepVGG ar-
chitectural foundation [34,35]. These replace the original convolutions. ODConv enables
the learning of specific attentions in various dimensions: spatial, input channel, output
channel, and convolution kernel quantity. ODConv is detailed in Equation (4).

y = (αw1 ⊙ αin1 ⊙ αout1 ⊙ αs1 ⊙ W1 + . . . + αwn ⊙ αinn ⊙ αoutn ⊙ αsn ⊙ Wn)× x (4)

The Low Fuse Module encompasses several attention mechanisms on different dimen-
sions of the convolutional kernel. Attention is allocated as follows: αwi for the convolution
weight dimension, αini for the input image channel, αouti for the output image channel,
and αsi for the image’s spatial dimension. Element-wise product, denoted by ⊙, is utilized
across various kernel space dimensions. And x means input images matrix. Detailed
discussion of attention calculation is deferred to subsequent sections. This design enhances
the convolution operation’s ability to extract comprehensive contextual information from
multiple dimensions.

The module computes results through three distinct pathways: 1× 1 and 3× 3 dynamic
convolution, and direct input matrix processing. Post-computation, batch normalization,
element-wise addition, and ReLU activation are performed, as illustrated in Figure 3a,b.

This process generates low global information, expressed as LG4 ∈ RB×
CF4

2 ×RF4 based on

F4 and LG3 ∈ RB×
CF3

2 ×RF3 based on F3.
Low Injection Module. This module leverages low-frequency images, F5LL, derived

from DWT processing. In these images, F3 and F4 serve as inputs for feature information
learning, as depicted in Figure 3c. The process involves downsampling of RF3, targeting
the output size of RF4. To avoid the overuse of deep recursive layers in DWT, adaptive max
pooling is incorporated. This step is followed by a channel-wise concatenation to preserve
critical information during downsampling. The smaller feature map of F5 is resized to align
with F4’s dimensions using bilinear interpolation and then concatenated along the channel
dimension. A 1 × 1 convolution is subsequently employed to modify the output channel,
producing the targeted low-level local information. The final step integrates the global
information LG4 with the local fusion information using a 1 × 1 convolution and a Sigmoid

activation function, culminating in P4 ∈ RB×
CF4

2 ×RF4 .
Low Perception Module. The Low Stage features interactions among four feature

maps. However, in fusing F3 and P4, there is an indirect and insufficient capture of
information from F5. This shortfall persists despite strategies to select intermediate feature
maps that aim to cover adjacent levels. To overcome this, a new integration approach is
needed. It involves combining P4 with LG3—derived from the Low Gather process based
on F3. This integration is part of the local information fusion, as illustrated in Figure 3d.
Feature maps larger than F3 undergo DWT, while smaller ones are resized using bilinear
interpolation. The final step involves a 1× 1 convolution to refine the output channel count,

producing P3 ∈ RB×
CF3

2 ×RF3 .
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Therefore, the general formula for the Low Stage Branch is shown below.

F4_align = Low_Gather([F2, F3, F4, F5]), F3_align = Low_Gather([F2, F3, F4, F5])

LG4 = Low_Fuse(F4_align), LG3 = Low_Fuse(F3_align)

F5_low = DWT(F5), P5 = Concat(F5_low, F5_high)

P4 = Low_Inj(F3, F4, F5_low, LG4), P3 = Low_Perc(F2, F3, P4, LG3)

(5)

In summary, the design of the proposed Low Stage Branch significantly deviates from
the downsampling method utilized in Gold-YOLO [30], which predominantly employs
adaptive average pooling to modify feature map sizes. This simpler pooling approach might
result in the loss of critical information, inadequately addressing the challenges that the
framework intends to resolve. To counter this limitation, the proposed method integrates a
fully reversible discrete wavelet transform for downsampling. This technique effectively
isolates low-frequency and high-frequency components, ensuring the retention of vital
image details. Additionally, to rectify the issue of limited information exchange between F3
and F4, a perception module is incorporated. This module is specifically designed to enrich
both P4 and LG3 with F5 information, facilitating a more integrated fusion.

2.2.2. High Stage Branch

This branch represents a departure from the low stage, focusing more on high-
dimensional semantic information in the image. It utilizes P3, P4, and P5 as inputs, as de-
picted in Figure 4.

Figure 4. The structure of GIP High Stage Branch Modules. (a) High Gather Module base on P4;
(b) High Gather Module base on P5; (c) High Injection Module; (d) High Perception Module. Pi

represents feature results from Low Stage and Ni represents those from High Stage. HGi means
global information at High Stage with a size of RFi . P4High represents the high-frequency feature on
P4 through attention operation in High Fuse Module.

High Gather Module. In this module, with an emphasis on higher-level information,
the target outputs are set as images of RP4 and RP5 . To facilitate self-attention computations
and reduce computational demands, both adaptive max pooling and adaptive average
pooling are applied to downscale P3 and P4. Adaptive max pooling is utilized to capture the
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maximum value in each pooling window, highlighting prominent features and maintaining
local details. Conversely, adaptive average pooling calculates the average value in each
window, aiding in the preservation of overarching information while softening finer details.
For resizing, small-scale feature maps are adjusted using bilinear interpolation, whereas
large-scale maps are refined through the two pooling methods. Ultimately, these varied
feature maps are concatenated together.

High Fuse Module. This module adopts a dual-branch attention mechanism to cap-
ture both high-frequency and low-frequency features from the global information at the
high stage. While traditional self-attention modules are adept at capturing low-frequency
global information, they struggle with high-frequency local details [36,37]. Hence, for pro-
cessing low-frequency information, the standard self-attention mechanism is employed.
The process begins with a linear transformation Q, K, V = FC(Pin), resulting in Q, K, and V
that align with conventional attention standards, where Pin denotes the input [38,39]. In this
branch, K and V are downscaled prior to undergoing the standard attention procedure
with Q, K, and V. The formula is described as follows:

HGlow_fre = Attention(Q, Pool(K), Pool(V)) (6)

In the branch dedicated to high-frequency information, aggregation of local details
initiates with DWConv processing, demonstrated by the formula Vlocal = DWConv(V).
Following this, Q and K independently gather local details, guided by the DWConv weights.
The element-wise product ⊙ is calculated between Q and K, which then undergoes a
transformation to produce context-aware weights. This phase incorporates Swish and tanh
functions to add enhanced nonlinear perception capabilities. Ultimately, the synthesized
weights are utilized to amplify local features, as expressed in the formula:

Qlocal = DWConv(Q),

Klocal = DWConv(K),

Attnlocal = FC(Swish(FC(Ql ⊙ Kl))),

Attn = tanh
(

Attnlocal√
d

)
,

HGhigh_fre = Attn ⊙ Vlocal

(7)

where d represents the channel count of each token. The high-frequency local information
HGhigh_fre and the low-frequency information HGlow_fre are then merged to form HG4 ∈

RB×
CF4

2 ×RF4 and HG5 ∈ RB×CF5×RF5 . This process is illustrated in Figure 4a,b.
High Injection Module. This module serves to downsample the P3 scale by utilizing

both average pooling and max pooling, while also adjusting the channel dimensions.
The process then merges this downscaled output with the high-frequency information
P4high_fre, which is derived from the dual-branch attention mechanism like Equation (7).
This injection procedure reflects the techniques used in the Low Stage, culminating in the
integration of hierarchical and global information HG4 at the F4 scale.

High Perception Module. This module is crafted to handle the high-dimension
target size located at the edge level F5. This setup results in a scenario where information
transmission from P3 is indirect. To manage this, a specialized perception mechanism has
been integrated. The mechanism processes inputs from N4 and P5, subsequently enhancing
the HG5 based on P5, ultimately leading to the creation of N5.

Therefore, the general formula for the high stage branch is shown below.

P4_align = High_Gather([P3, P4, P5]), P5_align = High_Gather([P3, P4, P5])

HG4 = High_Fuse(P4_align), HG5 = High_Fuse(P5_align)

N4 = High_Inj(P3, P4high_fre, LG4), P3 = High_Perc(N4, P5, HG5)

(8)
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In conclusion, this branch exhibits advancements in attention mechanisms over the
Gold-YOLO model [30]. It integrates modules that prioritize local high-frequency details,
thus boosting perceptual abilities. Moreover, to tackle the challenges associated with
indirect information transfer, perceptual modules have been utilized to enrich feature map
information between non-adjacent hierarchical levels.

2.3. Boundary Perception Module

Low-level and high-level features each offer unique benefits. Low-level features, while
containing less semantic detail, are rich in complex elements and are marked by clearer
boundaries and reduced distortion. In contrast, high-level features are abundant in semantic
information. Merging these two types of features directly can lead to redundancy and
inconsistency. To address this issue, two distinct branches are developed. The first, named
Upsampling Attention (UA), applies an attention mechanism to adaptively fuse features
during upsampling, enhancing the richness of information at each level. The second branch,
Boundary Aggregation (BA), selectively combines high-dimensional and low-dimensional
features to aid in computing the boundary loss function [40]. This improves the model’s
ability to perceive boundaries in open-pit mining areas. The overall structure is depicted in
Figure 5.

Figure 5. The structure of Boundary Perception Module. The feature map input to the Boundary
Perception Module is denoted as Fi. The symbolization of i is consistent with that of Figure 2. The
Boundary Perception Module comprises two branches. One is Upsampling Attention (UA) with
inputs F3, F4, F5. In the yellow area of the figure, Oi+1 denotes the output from the previous UA
module, also serving as the input for the current UA module. Oi+1 undergoes upsampling, batch
normalization, DWConv convolution, and ReLU activation to produce a result. Subsequently, it
is concatenated with Fi after size adjustment through batch normalization and DWConv opera-
tions. Post spatial attention activation, it is element-wise added to Fi to yield the output result Oi

of the current UA module. The other branch, Boundary Aggregation (BA), takes F2, F4, and F5 as
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inputs. To distinguish the flow of F4 and F5 in both branches, dashed lines represent their inputs
in Boundary Perception. Within the blue area depicting the BA structure, F4 and F5 undergo size
adjustment followed by concatenation. This result is then subject to spatial attention activation
with F2. The output result undergoes reverse, matrix multiplication, and element-wise addition,
ultimately resulting in O through convolution. The outcomes from UA and BA contribute to the
model’s loss function computation. For generating the predicted result image, only the output from
UA is required.

2.3.1. Upsampling Attention Branch

The UA module operates by taking the small-sized feature map Oi+1 from the high-
level output and the feature map Fi from the current level as inputs. It up-samples Fi+1,
where i is a member of the set 3, 4. Following this, Fi is concatenated along the channel
dimension with the upsampled map. The salient regions in the image are then activated
using a Sigmoid function. The enhancement of Fi’s feature information is achieved by per-
forming matrix multiplication with Fi, obtaining corresponding weights, and implementing
element-wise addition. The related formula is presented below.

Oconv
i+1 = DWConv(Fi),

Oup
i+1 = Sigmoid(BN(Concat(Upsample(Oi+1), Oconv

i+1 )),

UA(Oup
i+1, Oconv

i+1 ) = Conv(Oup
i+1 ⊙ Oconv

i+1 ) + Fi,

(9)

Upsampling attention involves a sequence of steps beginning with the activation of
a spatial attention module. This is succeeded by convolution and batch normalization.
The sequence culminates with the application of the Sigmoid function. This series of steps is
in harmony with the attention mechanism operating across four dimensions in the ODConv
module, which is an integral part of the GIP Module.

2.3.2. Boundary Aggregation Branch

In the BA module, two high-level feature maps, F4 and F5, are chosen from four avail-
able maps. These maps are first scaled to align them, and then a channel-wise concatenation
is conducted to form Fhigh_in. Next, the module selects F2, the feature map from the lowest
level, as Flow_in. Figure 5 illustrates how low-level and high-level information are processed
separately, each contributing to the spatial saliency activation process. This branch is crucial
for enhancing the spatial boundary details in high-level semantic features and enriching
the semantic content in low-level features. The formula associated with this process is
presented below.

Flow = Conv(F2),

Fhigh = Conv(Concat(F4, F5)),

BA(Flow, Fhigh) = Flow ⊙ F2 + Fhigh ⊙ Conv(Concat(F4, F5))⊙ (Conv(⊖(Flow))) + F2

(10)

2.4. Loss Function

Research has indicated that employing multiple loss functions with adaptive weights
at different levels can significantly enhance network performance and expedite conver-
gence [41,42]. In view of this, the suggested approach incorporates the use of cross-entropy
loss and boundary loss for supervision [40]. To address challenges in boundary recogni-
tion, a weighted binary cross-entropy loss was opted for instead of the conventional Dice
Loss [43]. Boundaries are determined based on pixel values, where the current value is 1,
while one side is assigned 0 and the other side is assigned 1. This choice of loss function
helps rectify the imbalance in boundary aggregation, reducing interference from an exces-
sive number of 0 pixel values. The loss function is depicted in (11). In this equation, OUA
represents the output from the UA module, while OBA, which contributes to the boundary
loss, represents the output from the BA module. The ground truth is denoted as GT. In the
cross-entropy loss formula LCE(OUA, GT), N denotes the sample size, yi corresponds to the
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ground truth labels, ŷi denotes the model’s predictions, and σ refers to the Sigmoid function.
In the boundary aggregation loss formula LBD(OBA, GT), wi represents the weight term,
which is adjusted based on the count of positive and negative samples. In the computation
of wi, numpos denotes the total count of pixels with a value of 1 in the image, numneg
represents the total count of pixels with a value of 0, and sum indicates the total pixel count.
The weight at the corresponding position is denoted as wi. The weighting coefficients are
indicated by λ1 and λ2.

LCE(OUA, GT) = − 1
N

N

∑
i=1

[yi · log(σ(ŷi)) + (1−yi) · log(1−σ(ŷi))],

wi =

{numneg
sum , if valuei = 0

numpos
sum , if valuei = 1

,

LBD(OBA, GT) = − 1
N

N

∑
i=1

[yi · log(σ(ŷi)) · wi + (1 − yi) · log(1 − σ(ŷi)) · (1 − wi)],

Ltotal = λ1LCE(OUA, GT) + λ2LBD(OBA, GT)

(11)

3. Experiments
3.1. Raw Data

This research investigated No.2 open-pit granite mine located in Xiling, Huashan
Township, Zhongshan County, Hezhou City, Guangxi, China, as shown in Figure 6a.
The study area is located within the coordinates of 24°32′30′′N to 24°34′30′′N and
111°07′30′′E to 111°09′30′′E. The main variety of granite is Zhongshan Qing, also known as
“Golden Spot Green Granite”, derives its name from Zhongshan County in Hezhou City,
Guangxi Province [44]. It features a dark green color, almost approaching black, with a
dense structure and hard texture. The confirmed resource reserves are approximately
21.578 million m3, with a prospective mining area of about 16.75 km2. The potential re-
source reserves are estimated to be around 1.86 billion m3. The area, marked in yellow on
the Google Earth image (see Figure 6b). It contains 22 typical mining sites, and Figure 6c
illustrates the on-site mining scene of one of these.

In this study, the DJI M300RTK unmanned aerial vehicle, outfitted with five SONY ILCE-
5100 perspective cameras, was employed. Detailed specifications of the UAV and camera can
be found in Figure 7 and Table 1. Five distinct sets of images were captured in the research
area in 2022, each set using different camera inclination angles. These efforts resulted in a
collection of 2905 images, each with a resolution of 6000 × 4000 pixels, thoroughly covering
the yellow zone shown in Figure 6b. Subsequently, Context Capture software was used
to perform three-dimensional reconstruction on these image sets [24]. This procedure
generated various geospatial digital products, including a three-dimensional point cloud,
a Digital Surface Model (DSM), and a Digital Orthophoto Map (DOM).

Table 1. Parameter configuration of aerial survey.

Camera UAV

Type ILCE-5100 Type M300RTK
Sensor 23.5 mm Flight time 55 min

Millimeter focal length 6.56287 mm Maximum take-off weight 9 kg
Focal length in pixel 1675.63 pixel Maximum load 2.7 kg

3.2. Dataset

ArcGIS software was used to analyze the orthophoto map, which consists of
82,536 columns and 112,426 rows with a pixel resolution of 0.04 m [9]. In this map,
22 open-pit mining areas were identified, as highlighted by red line annotations in Figure 8a.
To focus on relevant data, rectangular vector boxes in ArcGIS were applied to crop these
mining areas and adjacent terrain. The cropped TIFF data were then imported into Labelme
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software for consistent annotation [45]. All images remained RGB three bands, TIFF format
8 bit depth, cropped image block size was 512 × 512 and overlap factor was 256. After pro-
cessing, a collection of 2762 annotated images was produced. Recognizing the complexity of
features in high-resolution open-pit mining scenes, a preliminary analysis was conducted
to assess the proportional distribution of these features in the dataset, as illustrated in
Figure 8b. This study focuses on the granite mining area, particularly the portion labeled
as “pit” in pixel terms. In high-resolution low-altitude UAV images, machines, trucks,
and large rocks resulting from excavation display clear semantic distinctions from the pit,
leading to a lack of semantic consistency. Consequently, this research classifies all features,
excluding the pit, as the background class. The boundary of the pit class is considered as
the boundary of the mining area.

Figure 6. Research area and location of the open-pit granite mine. (a) The geographical location of
the studied mining area; (b) an aerial view of the research mining area as viewed from Google Earth.;
(c) a field mining scenario in the study area.
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Figure 7. Drone equipment to collect data. (a) DJI M300RTK. The device is manufactured by
Shenzhen DJI Innovation Technology Co., Ltd., based in Shenzhen, Guangdong Province, China.
(b) SONY ILCE-5100. The device is manufactured by SONY (China) Co., Ltd., located in Bei-
jing, China.

3.3. Experiment Setup

The computing system employed in the experimental setup featured an Intel Xeon
G6130H and an Nvidia GeForce RTX 3090 graphics card. This system operated on Ubuntu
20.04 and was equipped with 64 GB of RAM. Python 3.8 served as the programming lan-
guage for the experimental model, while PyTorch was used as the deep learning framework.

A series of network models were selected for comparison experiments, which were
shown in Table 2. Among them, the K-Net and SegNeXt models were relatively large,
and the optimizer was implemented according to the original paper, using the AdamW op-
timizer. The encoder and decoder of UNet were composed of five layers of BasicConvBlock.
The backbone of SegNeXt was a model called MSCAN proposed in the original paper,
which replaced traditional convolution with convolutional attention modules. Other mod-
els not specifically mentioned used ResNet-50 as the backbone, meaning a ResNet with a
depth of 50, and they utilized the Stochastic Gradient Descent(SGD) optimizer.

Figure 8. Information about the study area. (a) 22 mining sites in the study area. They are marked in
the figure using red lines. (b) Pixel category statistics of the labeled dataset.

The dataset was divided into three subsets: training, validation, and testing, in a
7:2:1 ratio, comprising 1933, 552, and 277 images, respectively. In the training set, data
augmentation techniques such as random image flipping and photometric distortions were
implemented. Each image underwent a 50% chance of random flipping. Photometric dis-
tortions involved randomly varying brightness, contrast, saturation, and hue. A consistent
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batch size of 8 was used throughout the training, starting with an initial learning rate of
0.01. The momentum was set at 0.9, with a weight decay of 0.0005. The model underwent
80,000 iterations to effectively predict mining regions. During the training phase, the cross-
entropy loss function and boundary loss function were used for backpropagation to opti-
mize the GIPNet model strategy. For other models, only the cross-entropy loss function
was applied.

Table 2. An overview of the characteristics of the network models involved in the comparison experiment.

Network Characteristic Backbone Optimizer

K-Net [46] K-Net enhances segmentation core by dynamically updating
instance kernels and mask predictions.

ResNet-50 AdamW

PointRend [47] PointRend achieves denser sampling in boundary regions and
predicts point-based segmentations at adaptively chosen
positions.

ResNet-50 SGD

PSPNet [27] PSPNet introduces the Pyramid Pooling Module, replacing
global pooling operations and collecting information from
diverse scales and sub-regions.

ResNet-50 SGD

UNet [48] UNet features a U-shaped network structure for precise
localization and enhances segmentation accuracy.

5 layers of
BasicConvBlock

(Conv+BN+ReLU)

SGD

UPerNet [49] UPerNet enhances global prior representation by applying the
Pyramid Pooling module and predict texture labels through
additional convolution layers.

ResNet-50 SGD

HRNet [50] HRNet incrementally adds high to low-resolution subnetworks,
connecting them to exchange information and generates rich
high-resolution representations.

HRNet SGD

FCN [51] FCN replaces fully connected layers with convolutional layers for
direct pixel-level predictions.

ResNet-50 SGD

DeepLabv3 [31] DeepLabv3 utilizes dilated convolutions to extract dense feature
maps capturing long-range contextual information and
introduces the Atrous Spatial Pyramid Pooling module to
improve accuracy.

ResNet-50 SGD

DANet [52] DANet introduces spatial and channel attention for integration of
global information to captures pixel-level spatial relationships
and inter-channel correlations.

ResNet-50 SGD

SegNeXt [53] SegNeXt presents a multi-scale convolutional attention module
within the conventional encoder–decoder framework,
substituting the traditional self-attention mechanism.

MSCAN AdamW

3.4. Evaluation Metrics

During the experimental validation and test phase, widely used evaluation metrics
in the relevant field were employed to quantitatively analyze the model’s prediction
results, ensuring a reliable and comprehensive assessment of the extraction of mining
areas in open-pit mines [54]. In the semantic segmentation task for open-pit mining areas,
the digit 0 typically represents the background region, while the digit 1 denotes the mining
area. The T and P represent the ground truth and model prediction results, respectively.
The pixel classification in an image can be summarized into four categories: TP (True
Positive) indicates the correctly classified background pixels and their quantity, TN (True
Negative) represents the correctly classified mining area pixels and their quantity, FP (False
Positive) signifies the mining area pixels incorrectly classified as background along with
their quantity, and FN (False Negative) denotes the background pixels wrongly classified
as mining area and their quantity. The selected metrics are based on these classification
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scenarios. For example, precision represents the proportion of pixels correctly classified as
mining areas to the total number of pixels, as formulated below.

Precision =
TP

TP + FP
(12)

Recall, which signifies the percentage of pixels predicted by the model among all
mining areas in the ground truth, is formulated as follows.

Recall =
TP

TP + FN
(13)

The F1-score represents the harmonic mean between Precision and Recall, formulated
as follows.

F1-score =
2 × Precision × Recall

Precision + Recall
(14)

The Intersection over Union (IoU) represents the intersection divided by the union
between the model’s predicted results for mining areas and the ground truth, formulated
as follows.

IoU =
TP

TP + FN + FP
(15)

4. Results
4.1. Comparison Experiments

To assess the GIPNet’s effectiveness and rationality in segmenting open-pit granite
mining areas, comparative experiments were performed using various established methods
on the dataset described in Section 3. The UNet was selected as the backbone for GIPNet.
Its training took 12 h.

Table 3 displays a significant improvement in evaluation metrics with the integration
of the pluggable GIP framework into the backbone. Additionally, this approach surpasses
the performance of other methods, showcasing superior overall results. The evaluation
employs metrics such as Precision, Recall, F1-score, and IoU. GIPNet attains impressive
scores: 90.67% in Precision, 92.00% in Recall, 91.33% in F1-score, and 84.04% in IoU.
On F1-score and IoU, it surpasses the second position by 1.10% and 1.84%, respectively.
The Precision and Recall also rank within the top two.

Table 3. Accuracy assessment results of comparison experiments on proposed dataset (with the bold
and underlined data for the best and second-best metrics).

Method Precision Recall F1-Score IoU

SegNeXt 85.35 89.66 87.45 77.70
UNet 90.37 87.31 88.81 79.88

DeepLabv3 86.64 91.56 89.03 80.23
FCN 90.68 87.74 89.19 80.48

UPerNet 88.70 90.10 89.39 80.82
DANet 89.27 90.40 89.83 81.54
PSPNet 89.64 90.20 89.91 81.68
HRNet 89.76 90.49 90.13 82.03
K-Net 89.42 90.91 90.06 82.09

Pointrend 89.91 90.55 90.23 82.20
GIPNet 90.67 92.00 91.33 84.04

UAV aerial images within the research area exhibit a variety of sizes and shapes in
both mining areas and other objects. The performance of different deep learning models in
training and prediction varies considerably. To visually showcase mining area extraction in
the dataset, selected representative images are presented in Figure 9. GIPNet, the proposed
model, excels in accurately delineating boundaries between mining and non-mining re-
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gions, while effectively reducing misidentification and omission errors. Conversely, UNet
and SegNeXt struggle with multi-scale feature fusion and perception, leading to less effec-
tive segmentation in challenging differentiation areas, as depicted in columns (c) and (d).
In high-resolution open-pit mining contexts, specific interferences hinder the recognition
capabilities of UNet and SegNeXt. Meanwhile, the accuracy of FCN, DeepLabv3, and PSP-
Net in discerning detailed features and geometric shapes within mining areas could be
enhanced, as demonstrated in columns (e), (f), (g), and (h). Although these models capture
general outlines, the shapes segmented by DeepLabv3 and PSPNet lack precision due to
limitations in similar feature pyramid modules. In contrast, GIPNet effectively identifies
mining area contours, matches correct geometric shapes, and preserves multi-scale feature
perception in complex scenes, thereby enabling efficient mining area extraction.

4.2. Ablation Experiments

The experimental results, both qualitative and quantitative, highlight GIPNet’s ex-
ceptional ability in detecting mining areas in open-pit granite mines. To further assess the
impact of the GIP Module and BA Module on the outcomes, ablation studies were per-
formed on the dataset. These experiments aimed to validate their effectiveness. The mod-
ules were also compared with FPN [55] and Gold-YOLO [30], hereafter referred to as
GD. Consequently, six experimental setups were created: (i) baseline; (ii) baseline + FPN;
(iii) baseline + GD; (iv) baseline + GIP; (v) baseline + BA; (vi) baseline + GIP + BA. For consis-
tency in comparison, all experiments used UNet as the baseline model. Figure 10 displays
the visual outcomes of these ablation studies on selected images.

The absence of modules adept at multi-scale feature fusion leads to frequent false
and missed segmentations. Incorporating the FPN module generally enhances recognition
capabilities, especially in challenging or smaller areas. However, the use of GD sometimes
shows reduced effectiveness compared to FPN. This reduction in performance is often
due to the loss of detail during the feature aggregation in GD, which may create black
voids in complex segmentation scenarios, as depicted in Figure 10e. The improved GIP
module, on the other hand, retains more information through the multi-scale fusion process,
thus enhancing recognition precision. Despite this improvement, there is room for further
refinement in extracting intricate contour details, as shown in column (f). Importantly,
the absence of GIP leads to persistent fragmented regions in difficult-to-distinguish areas,
as column (g) illustrates. The combination of the GIP and BA modules effectively over-
comes these challenges, culminating in superior recognition performance. Table 4 presents
the evaluation of these modules using four distinct metrics. The improved GIP module
alone leads to enhancements in both F1-score and IoU compared to the FPN and GD
modules. Moreover, the integration of GIP with BA yields more substantial improvements,
with enhancements of 2.52% and 4.16%, respectively, over the baseline UNet. Compared
with GD, the integration of both GIP and BA leads to improvements of 1.80% and 2.99%.

Section 2 introduces that GIPNet allows the utilization of various backbones for
feature extraction. ResNet, a classical convolutional neural network structure, is available
in depths of 18, 34, 50, 101, and 152 [56]. Deeper networks suggest the capacity to grasp
more intricate and abstract features, albeit potentially leading to overfitting and extended
training durations. The recognition performance of GIPNet employing ResNet as backbones
of these five depths is presented in the Table 5. Due to memory limitations, batch sizes for
ResNet 101 and 152 are configured at 4, while other models with varying depths adopt a
size of 8. SGD serves as the optimizer, and the models train 80,000 iterations.

The results reveal that ResNet-50 is a suitable depth for GIPNet. It outperforms the
second-best by 0.73% in F1-Score and 1.19% in IoU metrics. This suggests that, within the
dataset proposed in this paper, a model with a depth of 50 avoids underfitting issues
resulting from inadequate training or the inability to capture deep features due to shallow
depth. In contrast to ResNet-101 and ResNet-152, it prevents overfitting in training by
prioritizing the effectiveness on the training set and maintaining good performance on the
test set.
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Figure 9. Visualization results of comparison experiment on proposed dataset. (a) Image; (b) Ground
Truth; (c) UNet; (d) SegNeXt; (e) FCN; (f) DeepLabv3; (g) PSPNet; (h) GIPNet.

Table 4. Accuracy assessment results of ablation experiments on proposed dataset (with the bold and
underlined data for the best and second-best metrics).

Method Precision Recall F1-Score IoU

Baseline 90.37 87.31 88.81 79.88
Baseline + FPN 89.82 89.28 89.55 81.08
Baseline + GD 88.62 90.46 89.53 81.05
Baseline + GIP 90.98 89.66 90.31 82.34
Baseline + BA 90.12 87.60 88.84 79.92
Baseline + GIP + BA 90.67 92.00 91.33 84.04

Table 5. Comparison of evaluation metrics results of GIPNet with different backbones on the proposed
dataset (with the bold and underlined data for the best and second-best metrics).

Backbone Precision Recall F1-Score IoU

ResNet-18 90.94 87.40 89.14 80.04
ResNet-34 88.71 89.98 89.34 80.74
ResNet-50 89.16 90.99 90.07 81.93
ResNet-101 84.95 92.90 88.75 79.78
ResNet-152 84.63 89.39 86.95 76.91
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Figure 10. Visualization results of ablation experiments on proposed dataset. (a) Image; (b) Ground
Truth; (c) Baseline; (d) Baseline + FPN; (e) Baseline + GD; (f) Baseline + GIP; (g) Baseline + BA;
(h) Baseline + GIP +BA.

Moreover, considering the overarching goal of model training and optimization,
the effectiveness of the cross-entropy loss and boundary loss is influenced by λ1 and λ2.
Consequently, this study varies these parameters for comparison purposes. The relative
magnitudes of them impact the model’s performance in multi-scale land cover recognition
and boundary localization. In this set of comparative experiments, GIPNet employs Unet
as the backbone, with a batch size of 8, SGD optimizer, and 80,000 iterations, as depicted in
the Table 6.

Table 6. Comparison of evaluation metrics results of GIPNet with different λi in the loss function on
the proposed dataset (with the bold and underlined data for the best and second-best metrics).

λ1:λ2 Precision Recall F1-Score IoU

4:1 88.00 92.49 90.19 82.13
3:2 83.70 93.48 88.32 79.08
1:1 87.97 90.66 89.29 80.66
2:3 90.33 88.62 89.47 80.94
1:4 90.67 92.00 91.33 84.04

Upon comparing the results, it is evident that elevating the weight ratio of boundary
loss during the loss stage leads to a increase of 1.91% in the IoU over the second highest,
with the highest F1-score. The GIP module has initially processed the information interac-
tion of multi-scale fusion. Therefore, in the loss calculation of the BA module, the features
obtained tend to have a marginal effect towards the high weight of lambda1. If the weight is
biased towards lambda2, which is related to boundary recognition, it can enrich the model’s
recognition ability and improve the performance.
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5. Discussion
5.1. Advantages and Disadvantages of Multi-Scale Feature Fusion Methods

When objects of varying sizes are subjected to the same downsampling ratio, they
experience significant semantic discrepancies. This often results in less effective recognition
of smaller objects. The Feature Pyramid Network (FPN) addresses this by providing
different resolution levels, each tailored to represent features of objects at various sizes.
This multi-scale approach substantially improves model performance. Figure 11 shows the
data flow in FPN. In the downsampling phase (left side of Figure 11), the height and width
decrease while the channel dimension increases, forming a hierarchical pyramid. In the
decoding head, corresponding feature maps are produced during upsampling (right side
of Figure 11). Each level’s feature map can serve as an independent prediction output or be
combined with the next level’s map for multi-scale fusion. This process repeats until the
final prediction is reached.

Figure 11. The information flow of FPN structure.

However, accessing information across multiple scales can be complex. For instance,
in Figure 11, retrieving information from level L3 requires integrating features from levels
L2 and L3 at level L1. Accessing level L4 involves an even longer chain of recursive
calls. To address these challenges, researchers have developed several enhancements.
Deeplabv3’s ASPP module, for example, uses branches with different strides, followed
by downsampling and channel-wise concatenation [31]. PANet introduces a bottom-
up path to enrich the information flow [57]. The FPT model incorporates background
objects, providing context like relative positions to assist in object classification [58]. These
advancements emphasize the importance of fully integrating semantic features across
levels. However, even with these improvements, FPN-based fusion structures still face
limitations in cross-layer information exchange.

Inspired by the progress in TopFormer [59] and Gold-YOLO [30], this study aims
to enhance information preservation. Initially, the research explored the idea proposed
in [30], which advocates for the use of intermediate over edge levels in the hierarchical
structuring of feature maps. This approach is crucial for accurate predictions and allows
for a wider reach to neighboring layer images. Following this, it was found that modifying
feature maps across different scales using basic pooling operations resulted in substantial
loss of information. Specifically, methods like average and max pooling downsampling
involve calculating a single value within a defined scope, replacing the original details.
This process, whether using average or maximum values, tends to neglect the finer aspects
of the original data. To address this, the discrete wavelet transform was adopted. This
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technique decomposes an image into wavelet coefficients at varied scales and directions,
capturing intricate information effectively. Furthermore, the wavelet transform skillfully
segregates information into high-frequency and low-frequency elements. This segregation
enhances the adaptability in applying it to the low and high branches of the GIP module.
Figure 12 showcases the visual comparison of average pooling downsampling, max pool-
ing downsampling, and discrete wavelet transform. It highlights the clear distinctions
in detail preservation between average and max pooling, shown in (a) and (b), respec-
tively. In contrast, (c) demonstrates how the discrete wavelet transform enriches the image
with more high-frequency details and low-frequency contours in both the horizontal and
vertical planes.

Figure 12. Visualization results of average pooling, max pooling and discrete wavelet transform on
input image. (a) Average pooling; (b) max pooling; (c) discrete wavelet transform.

Furthermore, consideration is given to feature maps created by concatenating in the
channel dimension and modifying the number of channels through convolution, which re-
sults in the creation of new feature information. It is crucial to not overlook this information,
emerging from the fusion process. Such information should be seamlessly incorporated
into feature maps at multiple levels, especially in the Perception process of the GIP module.
Through this series of operations, the model’s ability to discern feature information in
input images is evaluated, utilizing Class Activation Mapping (CAM) [60]. The red areas’
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presence and intensity in the CAM highlight the model’s enhanced detection ability in
those zones, as illustrated in Figure 13.

Figure 13. Visualization results of CAM on input image. (a) Image; (b) Ground Truth; (c) UNet;
(d) UNet + FPN; (e) UNet + GD; (f) GIPNet.

5.2. Limitation and Potential Improvements

The utilization of drones in mining has significantly advanced data acquisition for
open-pit mining area recognition, creating a robust dataset foundational for this
research [19,61,62]. This study emphasizes the importance of identifying and outlining
mining areas to formulate effective mining strategies and detect illegal mining activities.
Techniques like oblique photogrammetry and 3D modeling are integrated to build a special-
ized dataset, focusing primarily on high-resolution drone imagery for recognizing open-pit
granite mining areas. Despite the promising outcomes and the establishment of a novel
research framework, there remains scope for ongoing refinement and exploration within
this domain.

Challenges and future directions in this research include the time-intensive process of
manual dataset annotation, essential for verifying the proposed technical methods. Given
the surplus of images from drones beyond those used in this study, exploring weakly
supervised and unsupervised deep learning for open-pit mining recognition presents a
promising future trend. Furthermore, the limited size and scope of the dataset, confined
to a single research area and specific data collection tools, indicate a need for diversifying
data sources to enhance model scalability. Finally, leveraging the image dataset from
the 3D modeling of mining sites, combined with geographical digital data, facilitates
the production of two-dimensional segmentation maps. Integrating these with three-
dimensional site representations could enable advanced analyses for volume calculation
and excessive excavation detection in mining areas.

6. Conclusions

To obtain high-precision and timely information on open-pit mining areas is of great
significance for the mining industry in carrying out production plans, preventing illegal
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mining activities, and protecting the ecological environment. To achieve such results, high-
quality image data are indispensable. Drones, as a low-cost, low-risk, and high-precision
remote sensing technology, combined with rapidly developing deep learning methods, can
fully leverage each other’s advantages.

This study took the No. 2 granite mine in Xiling, Huashan Township, Zhongshan
County, Hezhou City, Guangxi Province, as the study area, selecting 22 mining areas sup-
ported by drone orthophoto images as experimental data. Furthermore, a new GIPNet
is designed to propose improvements from two perspectives: reducing information loss
in multi-scale feature fusion and enhancing the boundary recognition ability of open-pit
mining areas. The Gather–Injection–Perception (GIP) module divides multi-scale feature
fusion into low-level and high-level fusion stages. By gathering feature maps of different
scales to form global information, it injects them into feature maps of each scale. In this
process, upsampling and downsampling are required for scale unification. In the low-level
stage, discrete wavelet transform is used instead of ordinary downsampling to preserve
more feature information. In the high one, a dual-branch attention mechanism is designed
to distinguish high-frequency features from low-frequency features. Additionally, new per-
ceptual pathways are proposed to further integrate multi-scale information. The Boundary
Perception (BP) module, through the design of boundary aggregation and upsampling
attention modules, better utilizes the high-dimensional semantic information and low-
dimensional detail information output by the GIP module, improving the model’s ability
to recognize the boundaries of open-pit mining areas.

The proposed GIPNet demonstrates significant effectiveness, achieving 90.67% Preci-
sion, 92.00% Recall, 91.33% F1-score, and 84.04% IoU. These experimental results demon-
strate competitiveness when compared with results from other classic and advanced net-
work models. Ablation analysis proved the effectiveness of the GIP module and BP module.
Moreover, the proposed framework is applicable to different backbones.

Future research will focus on the integration and application of multi-source image
data, weakly supervised, and unsupervised learning to enhance the model’s generalizability.
Additionally, the integration of 2D segmentation and 3D volume calculation for mining
areas is planned to be carried out, broadening the applications of drones and deep learning
in the mining industry.
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